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Robert N. M. Ahrens4 and T. Todd Jones4
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Florida, Gainesville, FL, United States, 2Fisheries New Zealand, Ministry for Primary Industries,
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Western Pacific leatherback sea turtles (Dermochelys coriacea) are a priority

bycatch mitigation concern due to the projected extinction of the population

before the end of the 21st century. The species regularly occurs as bycatch in

gillnet and surface longline fisheries. Here, we explore the potential for dynamic

ocean management in an emerging hotspot of leatherback sea turtle bycatch in

the New Zealand pelagic longline fishery. We compared spatial areas of different

sizes built from single oceanographic covariates as well as built from a composite

risk surface developed through ensemble random forests. We found that,

individually, the Okubo–Weiss parameter, sea surface temperature (SST)

anomaly, SST, moon phase, and distance to the SST front were important

oceanographic covariates for leatherback sea turtle bycatch. However, the

spatial areas built from the composite risk surface were the most effective at

discriminating sets with and without bycatch across a range of risk cutoffs. When

we also considered implementation metrics of spatial area and coherence as part

of performance, the area derived from the composite risk surface with a risk of

interaction per set greater than 52% performed best. This spatial area was

ephemeral, occurring 1 or 2 weeks each year, and localized, occurring along

the north coast of East Cape in the North Island of New Zealand. The apparent

presence of discrete spatial areas with elevated risk may be useful to inform

future management in the area. Considering implementation metrics in defining

utility was useful for identifying tradeoffs between the total size and the

underlying covariates delineating a spatial area. As such, we recommend these

types of metrics to be included when designing spatial bycatch mitigation

strategies elsewhere.
KEYWORDS

ensemble random forests, machine learning, marine reptiles, fisheries bycatch,
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1 Introduction

Western Pacific leatherback sea turtles (Dermochelys coriacea)

are a recognized regional management unit (Wallace et al., 2010)

listed as Critically Endangered on the IUCN Red List (Tiwari et al.,

2013) and are projected to go extinct by the end of the 21st century

(Martin et al., 2020). Females nest throughout the Indo-Pacific with

approximately 50%–75% of nesting occurring in Papua Barat,

Indonesia (NMFS and USFWS, 2020). The nesting females at

Papua Barat were estimated to be declining at an average rate of

5.9% per year between 1984 and 2011 (Tapilatu et al., 2013) and

6.1% per year between 2001 and 2017 (Martin et al., 2020). Recent

nesting trends at Papua Barat indicate that the decline in nesting

females may be abating but has not recovered (NMFS, Pacific

Islands Region, 2023). Bycatch in fisheries remains a major threat

to the population, and finding solutions to mitigate leatherback sea

turtle bycatch remains a management priority (NMFS and USFWS,

2020). Coincident with the changing trends at the main nesting

beaches are increases in fisheries bycatch in areas with historically

low number of leatherback sea turtle bycatch interactions, such as

New Zealand (Dunn et al., 2023). Finding mitigation strategies to

these emerging bycatch risks is critical to continue abating the

population decline and spurring recovery.

Leatherback sea turtles are highly specialized predators of

gelatinous zooplankton that feed in high productivity areas such

as frontal zones and eddies (Benson et al., 2011; Bailey et al., 2012;

Davenport, 2017), often where pelagic fisheries occur. While

foraging and migrating, leatherback sea turtles exhibit diel

patterns in diving behavior that vary with oceanographic

conditions (e.g., sea surface temperature, chlorophyll-a, sea

surface height anomaly) (Eckert et al., 1989; Hays et al., 2004;

James et al., 2006; Sale et al., 2006). Fishery interactions can occur

after animals become hooked after ingesting baits, but externally,

hooking or entanglement in line is more common as a result of

leatherback sea turtles’ specialization on gelatinous prey and

frequent diving behavior (Wallace et al., 2013; Swimmer et al.,

2020; Abraham et al., 2021; Carretta, 2021; Hays et al., 2023). This

latter type of interactions can limit the utility of common bycatch

mitigation strategies such as changing gear (e.g., swapping to circle

hooks), turtle exclusion devices, or changes to bait (e.g., swapping to

fish from squid bait) (Gilman, 2011; O’Keefe et al., 2014; Swimmer

et al., 2020). Often mitigation strategies that constrain the way

fishers deploy pelagic fisheries gear or those that restrict all fishing

activity such as spatial or temporal closures are necessary to reduce

bycatch to acceptable levels. However, these regulatory strategies

can incur high costs on fishers, reduce fishery operations, and, when

closures last for extended periods, impact economies and reliant

communities (Curtis and Hicks, 2000; Allen and Gough, 2006;

Chan, 2020).

Dynamic ocean management (DOM) is a bycatch mitigation

strategy based on designing spatiotemporal areas that more closely

approximate the mobile and dynamic movements of pelagic

bycaught species and are typically disseminated as informational

products to managers and fishers (Maxwell et al., 2012; Lewison

et al., 2015). Overall, DOM begins with identifying relationships

between environmental covariates and protected species
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interactions and shows promise as an agile and responsive tool

for guiding the avoidance of bycatch (Lewison et al., 2015).

Historical DOM informational tools focused on single

oceanographic covariates, such as sea surface temperature (SST)

in the TurtleWatch product (Howell et al., 2008), while recent tools

have used composites of multiple oceanographic covariates, such as

South Pacific Turtle Watch (Hoover et al., 2019) and EcoCast

(Hazen et al., 2018). Increasingly available real-time, remotely

sensed environmental data as well as improved data-analytical

approaches to determine relationships between those data and

bycatch enabled the development of DOM (Lewison et al., 2015).

We can now generate high spatial resolution “products” on a daily

basis and put those products into the hands of fishers out on the

water and the regulators back on land (Lewison et al., 2015; Little

et al., 2015; Hazen et al., 2018).

Despite dynamic ocean management’s potential, practical

implementation has challenges (Lewison et al., 2015; Little et al.,

2015). Many DOM informational products provide raster layers of

some continuous criteria, e.g., a probability of interaction or

weighted fish-avoid metric (Hazen et al., 2018; Welch et al.,

2019). Often, the high interaction areas are non-contiguous,

scattered throughout the fishing area, and can limit the ability of

managers to operationalize these areas into spatial closures or other

management regimes (Welch et al., 2020). Relatedly, DOM

products may struggle to define features that balance competing

objectives of identifying high interaction areas without

encompassing the whole fishing grounds or particularly

productive areas for the fishery (Hazen et al., 2018; Welch et al.,

2020; Siders et al., 2023). One such example of these problems

coalescing is TurtleWatch, an informational product in the style of

DOM released in 2006, that identified SST as a proxy of loggerhead

sea turtle (Caretta caretta) bycatch in the Hawaii pelagic longline

fishery for swordfish (Xiphias gladius) (Howell et al., 2008; Howell

et al. 2015; Siders et al., 2023) and provides a daily map of the 17.5–

18.5°C SST area for reducing loggerhead interactions by voluntarily

avoiding the TurtleWatch band. However, this SST guidance area is

large and encompasses much of the productive fishing grounds, and

the incentives to avoid the area were low for most of the product’s

deployment rendering the tool ineffective at mitigating loggerhead

sea turtle bycatch (Siders et al., 2023). Lastly, there are limitations in

the oceanographic products where small-scale features that pelagic

species may cue off of are not captured due to coarse spatial

resolution, as well as the inherent lags between model predictions

of DOM areas and real-time on-water conditions (Lewison

et al., 2015).

Given these constraints, the practical and operational use of

DOM as a bycatch mitigation tool must be evaluated to understand

bycatch mitigation performance and the associated fishery costs

from closures or area avoidance (Free et al., 2023). Implementation

decisions will depend on the conservation status of bycaught

species, manager’s and fisher’s ability and willingness to

implement the strategy, economic costs, and the effectiveness of

the strategy in achieving conservation goals (Gilman, 2011).

Establishing a framework that balances these competing goals is

imperative for lasting and effective management (Squires and

Garcia, 2018).
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Reported interactions with leatherback sea turtles in New

Zealand tuna and swordfish fisheries prior to the 2020–2021

fishing year were highly variable year to year ranging from 1 to

28 (mean of 12.85, standard deviation of 8.44 turtles per year) but

increased substantially to 50 in 2020–2021 (Dunn et al., 2023).

Between the 2007–2008 and 2020–2021 fishing years, there were

217 leatherback sea turtle captures reported by commercial fishers

and observers comprising 79.5% of all sea turtle interactions

reported (Dunn et al., 2023). Most interactions of leatherback sea

turtles occurred in surface longline fisheries targeting bigeye tuna

(Thunnus obesus) and swordfish in the northeast North Island and

southeast North Island (Fisheries Management Areas 1 and 2,

respectively), particularly in the eastern Bay of Plenty, from

January to April (Figure 1A). Due to the relatively low observer

coverage (~8%–15%) in the surface longline fishery, most captures

were fisher-reported and the true number of leatherback sea turtle

captures is unknown. Leatherback sea turtles found in New Zealand

waters are likely to be boreal winter breeders from nesting beaches

at Wermon, Papua, Indonesia (Huon Gulf), and Solomon Islands

(Santa Isabel, Rendova, and Malaita Islands) (Benson et al., 2011).

These boreal winter nesters at Wermon are also partly responsible

for the recent abatement in the declining population trend with an

increase in the number of nesting females over the 2016 and 2017

nesting seasons (Martin et al., 2020; NMFS, Pacific Islands Region,

2023). As such, interactions with this subsection of the western

Pacific population need mitigation strategies to protect the

improvements in the population’s trend.

The increase in New Zealand leatherback sea turtle interactions

is particularly challenging to manage as most appear to be either

hooked in the body or flipper or entangled in the gear (Dunn et al.,

2022, 2023) and the environmental drivers of the interactions

encompass a wide range of the environmental space (Dunn et al.,

2023). Interactions were predicted to be more likely when sea

surface temperature was between 18°C and 22°C, when

subsurface temperature at 200 m was between 12°C and 16°C,

when northward currents were stronger (southward currents

weaker), and time-varying dynamic height was less than ~2.1
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(a lower heat content, possibly associated with eddy structures)

(Dunn et al., 2022). In this paper, we identify key oceanographic

covariates where the probability of leatherback sea turtle

interactions with the New Zealand pelagic longline fleet increases

and provides a means for defining areas based on the dynamic

interaction–environmental response for guiding bycatch mitigation

measures. In doing so, we compare two DOM informational

product development schemes: simple DOM informational

products consisting of single oceanographic variables (e.g.,

TurtleWatch) against composite products consisting of

predictions of blended oceanographic covariates (e.g., South

Pacific TurtleWatch or EcoCast). Simpler products likely use

oceanography that fishers utilize in their own decision-making.

This familiarity potentially increases understanding and model

transparency. More complex products are likely to have increased

model performance but run the risk of reduced transparency. These

tools highlight the potential for dynamic ocean management as a

bycatch mitigation strategy for reducing western Pacific leatherback

sea turtle interactions with the New Zealand pelagic longline fishery

within the suite of other potential bycatch mitigation strategies.
2 Methods

2.1 Fishery-dependent sampling

Following the development of domestic longlining in the early

1990s, the number of vessels in the domestic tuna fleet operating in

New Zealand fisheries waters peaked in 2001 and has subsequently

declined after the introduction of longline target and bycatch species

into New Zealand’s Quota Management System in 2004. Since 2016,

the New Zealand longline tuna fleet has consisted only of

domestically owned and operated vessels (mostly between 15 and

25 m in length). The total number of longline vessels operating in

New Zealand declined from 151 vessels in 2002 to 37 in 2014 and 29

in 2021. Where observers are deployed, they collect detailed

information on all fish catch and protected species interactions, as
A B

FIGURE 1

(A) Map of New Zealand surface longline sets from 2010 to 2021 in the first 100 days of the year and north of −42° that interacted with leatherback
sea turtles. A simplified East Auckland Current (EAUC) is depicted in gray arrows. (B) Ensemble random forests predicted probability of interaction for
the New Zealand surface longline from 2010 to 2021 in the first 100 Julian days and north of −42°; warmer colors indicate higher probabilities.
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well as fishing efforts and mitigation devices. On longline vessels,

observers make detailed records of the fishery operation and gear

types used, for example, the start and end times and locations of each

fishing event, hooks per basket (basket = line between two

consecutive floats), use of floats, light sticks, hook types, bait types,

and snood setup. The data collected by observers are validated and

uploaded to the Centralised Observer Database operated by the New

Zealand Ministry for Primary Industries. In 2019, New Zealand

implemented mandatory electronic catch and position reporting

across the entire commercial fishing fleet. This self-reporting digital

monitoring system consists of electronic catch and effort reporting

and geospatial positional reporting. Commercial fishers complete,

among other reports, a Non-Fish Protected Species report (for any

protected species interactions) containing information on the species

and quantity captured and must be completed on the day the

interaction occurs. We accessed the observer and self-reporting

datasets from 2010 to 2021 and linked events to remove duplicate

records as the commercial fishers and observers may record the same

protected species interaction event.
2.2 Ensemble random forests

To model the probability of leatherback sea turtle interaction

with the New Zealand surface longline fishery, we used ensemble

random forests (ERFs), which have been used previously to model

rare protected species interactions that occur in longline fisheries

(Siders et al., 2020). Ensemble random forests attempt to correct for

the effects of successive partitioning and data sparseness that occur

with rare event data (He and Garcia, 2009) by generating multiple

training sets to train multiple random forests models. The resulting

mean prediction across the ensemble is achieved through

downsampling—balancing the majority and minority classes in a

given random draw provided to a given decision tree. A variety of

sampling methods have been put forth as ways to deal with the

imbalance class problem in random forests (RFs) (Kuhn and

Johnson, 2013), but ensemble random forests have been shown to

perform well across a range of imbalances in the majority and

minority classes (Siders et al., 2020).

We created the ensemble from 100 individual random forests

created with 1,000 trees in each forest with five random covariates

tried at each node split using the EnsembleRandomForests package

in R 4.1.0 (https://zsiders.github.io/EnsembleRandomForests/

index.html). We included sets with multiple interactions per set

as duplicates and included the reporting type (observer-collected or

fisher-reported) and the fishing effort in terms of length of the set as

a covariate. Effort is included to assess if the probability of a

leatherback sea turtle interaction with the New Zealand pelagic

longline fishery is effort-driven. We also included environmental

covariates: SST, SST anomaly, SST fronts, distance to nearest SST

fronts, zonal ocean currents, meridional ocean currents, ocean

current divergence, ocean current vorticity, sea-level anomaly,

Okubo–Weiss parameter, eddy kinetic energy, wind speed,

Ekman pumping velocity, seafloor bathymetry, distance to nearest

seamount, and moon phase (see Supplementary Information for

additional details on oceanographic covariate collection).
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From the ERF, we calculated the variable importance of each

covariate based on the mean decrease in accuracy. We used a random

Gaussian noise covariate included in the model as a reference;

covariates with a decrease in accuracy greater than this random

variable were considered informative. Accumulated local effects

(ALEs) were calculated to determine the response of the ERF

model’s predicted probability of interaction to changes in values of

the covariates. ALEs are the decision tree approximate of parametric

response curves and employ a windowing procedure by trialing

values across the covariate’s range to determine the change in the

predicted probabilities from the random forest algorithm.

Windowing serves to map the model’s response to a change in the

covariate value akin to a marginal response curve in linear modeling.

ALE does not produce a completely analogous approximation as

nested interactions between covariates can be difficult to untangle.

We ran an initial ERF including Julian day among the covariate

set and used the accumulated local effects plot of Julian day to subset

the dataset to time of the year with more than 75% of the

interactions. The ERF was rerun using this subsetted dataset to

re-estimate the environment–interaction relationships without the

confounding Julian day effect. Ensemble predictions from the

individual random forests predicted the probability of interaction

for each fishery set by averaging across the ensemble. We assessed

the ensemble model performance using threshold-free metrics: area

under the curve, root mean squared error, and true skill statistic. We

also calculated threshold-dependent metrics of the true positive rate

(specificity), the true negative rate (sensitivity), and the correlation

coefficient using the maximum sensitivity and specificity threshold.
2.3 Hindcast assessment

To assess the performance of both the full model and individual

environmental covariates for defining areas for fishers to avoid, we

picked the five environmental covariates with the highest variable

importance as potential candidates for defining areas of avoidance.

This was done to simplify the suite of parameters needed for

prediction after excluding environmental covariates that fell

below the variable importance of the random covariate. Areas of

high interaction rate can be defined using the probability of

interaction from the ERF model or as a function of the

environmental variables that give rise to these probabilities. When

defining areas of high interaction using environmental variables, the

median ALE values (approximately spaced by the 1% quantile) were

subsetted to positive values, the environmental space increasing the

probability of interaction, and we identified the maximum value in

this range. We then iteratively expanded around the maximum

based on whether the ALE response was lower to the left or right of

the existing envelope. This was done because ALE values can

decrease unidirectionally from the maximum value or decrease on

either side (dome-shaped) (see Figure 2—inset). For each envelope,

we determined the range of environmental space encompassed in

the envelope and the proportion of the total positive ALE response

volume filled by each envelope. To define areas using ERF-predicted

probabilities, probability ranges were selected from an upper

percentile of 100% and varying the lower percentile, from 5% to
frontiersin.org
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95%. The effect is that each area defined by these percentiles ranges

from the top 95% of values to the top 5% of values.

We assessed three aspects of areas identified by individual

environmental variables or the ERF that are relevant to

management: how effective the variable or ERF was at identifying

areas with and without bycatch, whether the areas identified are

spatially coherent and therefore more easily enforceable in real-

world management, and the proportion of the total fishing area

identified. To create a metric of discrimination for each envelope

defined by an individual environmental covariate or the ERF-

predicted probability of interaction, we calculated the ratio of the

number of interacting sets (presences) and non-interacting sets

(absences) in and out of the envelope space by year; a high ratio

indicates that the covariate or ERF is effective at identifying which

sets have bycatch while minimizing the inclusion of sets without

bycatch. To understand the clustering of sets within an envelope, a

measure of spatial coherence, as well as the envelope’s footprint, we

calculated the global Moran’s I statistic using the spdep package for

each year and each covariate (Bivand and Wong, 2018). We also

calculated the proportion of the area occupied by sets in each

envelope in each year to the total area occupied by all sets across all

years, i.e., the total fishery footprint. From these yearly metrics, we

calculated the mean and standard deviation across years for each

envelope as well as the correlation of the mean and standard

deviation with the envelope size for each covariate and each

metric. To understand how different covariates or ERF-defined

envelopes traded off between the range of envelope, the ratio of

interacting and non-interacting sets in and out of the envelope, the

clustering of the sets in the envelope, and the proportion of the total

fishing area in the envelope, we rescaled the proportional area and

the global Moran’s Imetrics to be between 0 and 1 and added all the
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aforementioned metrics together for each envelope. We then

identified potential envelopes that performed best across all metrics.

Lastly, we used the best-performing envelope (covariate- or ERF-

defined) to hindcast, at several envelope sizes, the spatial area of the

envelopes in the fishery operational area. We generated a hexagonal

grid over the fishery area with cells roughly 1,700 km2 and used the

oceanographic covariate extraction routine to generate values for the

whole grid (see Supplementary Information for additional details).

For time points, we extracted the oceanographic covariates across the

grid every 7 days, starting on January 1, for the first 14 weeks of the

year to nearly cover the first 100 days of the fishing season for the last

3 years offishing data, 2019–2021. We specified the grid cell size to be

larger than the spatial resolution of the coarsest oceanographic

covariate and used a week time frame to integrate across the

various temporal resolutions of the oceanographic products (see

Supplementary Information for additional details on resolution).

We then predicted the ERF onto these covariates to generate a

probability of interaction field. To define the spatial area of the

envelope, we determined the threshold of probability of presence that

corresponded to the covariate- or ERF-defined quantiles. We used

this threshold to turn the continuous probability of interaction into

binary predictions and visualized the resulting spatial areas of the

various envelopes.
3 Results

3.1 Fishery-dependent samples

Fishery-dependent data were obtained from 5,677 surface

longline sets between 2010 and 2021. This included 2,195 sets
FIGURE 2

Hindcast performance of the top 5 environmental covariates and the composite ensemble random forest (ERF) prediction in terms of the ratio of
presences and absences in and out of the covariate/prediction envelope. Warmer colors indicate wider covariate/prediction ranges and larger
covariate/prediction envelopes. Lines further to the right and below the 1:1 dotted line indicate an envelope that effectively discriminates between
presences and absences. Inset is the SST anomaly accumulated local effects plot with the respective envelopes shown in the filled regions, and each
larger envelope (warmer colors) subsumes the smaller envelopes.
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from self-reporting vessels and 3,482 observed sets. Leatherback sea

turtle interactions were reported in 116 sets, involving a total of 146

turtles; 5,561 sets had no interactions. Of the 116 sets with

interactions, 93 interacted with one turtle, 18 with two turtles,

three with three turtles, and two with four turtles. Of the 5,677 sets,

5,520 could be matched with oceanographic covariates. Sets that

could not be matched were generally the result of errors in

geopositioning. This matched dataset covered 138 of the 146

leatherback sea turtle interactions. Three-quarters of the total

leatherback sea turtle interactions were north of −42° and

occurred in the first 100 Julian days of the year. Subsetting the

data down to this time period resulted in 841 (38.3%) of the self-

reported sets and 425 (12.2%) of the observed sets being used in the

ERF model covering 110 leatherback sea turtle interactions.
3.2 Ensemble random forests

Threshold-free performance metrics for the ERF indicate good

model performance: the area under the curve was 0.998, the true

skill statistic was 0.982, and the root mean squared error was 0.321

(Table 1). The maximum sensitivity and specificity threshold was

0.616 resulting in a 99.1% true positive rate (108/109), a 98.2% true

negative rate (1,080/1,100), a 1.7% false positive rate (20/1,100), and

a 0.9% false negative rate (1/109) (Table 1). Predicted probabilities

of interaction were low to moderate, with higher probabilities

concentrated around the north coast of East Cape in the Bay of

Plenty (Figure 1). The variables that were above the random

Gaussian noise reference were, in order of importance, Okubo–

Weiss, SST anomaly, SST, moon phase, distance to SST front,

chlorophyll-a, sea-level anomaly, meridional ocean currents, and

eddy kinetic energy (Figure 3). Eight other environmental

covariates (SST fronts, zonal ocean currents, ocean current

divergence, ocean current vorticity, wind speed, Ekman pumping

velocity, seafloor bathymetry, distance to nearest seamount) as well

as the fishery effort and reporting covariates fell below the random

Gaussian noise reference.
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3.3 Hindcast assessment

Comparing hindcast discrimination performance using the top

5 oceanographic covariates, only SST and distance to SST front

accrued more interacting sets than non-interacting sets as the

envelope size increased (Figure 2). Okubo–Weiss, SST anomaly,

and moon phase initially had an equal amount of interacting sets

and non-interacting sets. Okubo–Weiss and SST anomaly shifted to

accumulating more non-interacting sets than interacting sets after

the envelope exceeded 10% of the maximum size, while moon

phase shifted approximately 20% of the maximum envelope to

accumulating more interacting sets than non-interacting sets. At the

maximum envelope size, the Okubo–Weiss parameter had nearly

equal ratios of interacting and non-interacting sets in and out of the

envelope (69% and 70%, respectively), SST anomaly had a higher

ratio of non-interacting sets (49%) than interacting sets (31%),

moon phase had similar ratios (64% interacting, 67% non-

interacting), and SST had a higher ratio of interacting sets (93%)

than non-interacting sets (67%), as did distance to SST front (44%

interacting, 30% non-interacting). The envelopes conditioned

on the ERF probability of presence outperformed all single

oceanographic covariate envelopes at small envelope sizes with

the ability to encompass up to 100% of interacting sets while only

accumulating 4.2% of absences when the envelope accumulated

15% of the probability values (Figure 2). After this point, further

increases in the ERF probability of presence envelope only increased

the percentage of absences until at the maximum envelope size

(95% of the distribution of possible probabilities); there was a ratio

of 93.3% of non-interacting sets in and out of the envelope.

Not surprisingly, as envelope size increased, so did the mean

proportional area (r between 0.11 and 0.95, Table 2) occupied by sets

in the envelope with the largest envelopes occupying between 0.4%

(ERF) and 26% (Okubo–Weiss) of the total fishing area

(Supplementary Figure 1A). The mean spatial coherence, measured

by global Moran’s I, behaved somewhat differently (r between −0.46

and 0.91, Table 2) with the most clustering in sets occurring generally

at larger envelope sizes but only at the maximum size for SST, ranging

between 5% (ERF) and 88% (distance to SST front) for the other

covariates. Overall, the mean proportional area and global Moran’s I

were moderately positively correlated for all covariates except for SST

anomaly and SST, which were strongly positively correlated, and the

ERF, which was moderately negatively correlated (Supplementary

Figure 1A) (Table 2). However, there was considerable interannual

variability in the proportional area occupied and the global Moran’s I

(Supplementary Figure 1B). With the exception of moon phase (r =

−0.56), variability in the proportional area strongly positively

correlated (r > 0.65) with envelope size, while variability in global

Moran’s I strongly positively correlated with envelope size for SST

anomaly, SST, and moon phase; weakly positively correlated for

distance to SST front; weakly negatively correlated for Okubo–Weiss;

and not correlated for the ERF (Table 2) (Supplementary Figure 1B).

When seeking to maximize the ratio of interacting sets inside

versus outside of the envelope, maximize the ratio of non-interacting

sets outside versus inside of the envelope, minimize the proportional

area, and maximize the global Moran’s I, the ERF-defined envelopes

outperform all other envelopes until the envelope sizes exceed 65%
TABLE 1 Ensemble random forest threshold-free and threshold-
dependent performance metrics with the lower and upper bounds of a
given metric as well as the value under perfect classification.

Performance metric ERF Lower Upper Perfect

True skill statistic 0.982 0 1 1

Root mean squared error 0.321 0 1 0

Area under the curve 0.998 0 1 1

True positive rate (sensitivity) 1 0 1 1

True negative rate (specificity) 0.982 0 1 1

Correlation coefficient 0.911 −1 1 1

Accuracy 0.983 0 1 1

Error 0.017 0 1 0

False positive rate 0.018 0 1 0
The threshold was calculated based on maximum sensitivity and specificity with a value
of 0.6164.
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(Figure 4). At this point, the SST-defined envelopes do better than the

ERF envelopes as the SST envelopes are more clustered and occupy a

smaller area. The Okubo–Weiss parameter, the top oceanographic

covariate identified by ERF, performs the second best when envelope

sizes are less than 25% then falls sharply to the worst performing at

larger envelope sizes. At small envelope sizes, SST anomaly, SST, moon

phase, and distance to the SST front all perform similarly then spread

apart between envelope sizes greater than 15% and less than 80%

before all except SST converge back to similar performance (Figure 4).

The top-ranked envelope was the ERF-defined envelope at an envelope

size of 15% (corresponding to the probability of interactions greater

than 54%) as this envelope encompassed 100% of interacting sets in
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the hindcast assessment and 4% of non-interacting sets, and this had a

minimal footprint but was weakly clustered.

Using the ERF-defined envelope, we hindcast-predicted onto the

first 14 weeks of oceanographic covariates for the last 3 years (2019–

2021) to visualize the spatial areas of the envelopes (Figure 5). We

considered the most optimal envelope first, the 85th percentile of ERF

probability of interaction predictions and corresponding to a threshold

cutoff of 0.52 (Figure 4). We then considered other well-performing

ERF-defined envelopes at the 75th, 65th, and 55th percentiles

corresponding to threshold cutoffs of 0.42, 0.35, and 0.31,

respectively (Figure 4). The effect of lowering the percentile (and

corresponding cutoff value) generally increased the spatial footprint
TABLE 2 Correlation (r) of the median and standard deviation with envelope size for the proportional area (P.A.) and the global Moran’s I statistic
(G.M.I.) as well as the correlation between the median proportional area and the global Moran’s I statistic.

r (median, envelope size) r (s, envelope size) r (P.A., G.M.I.)

Covariate P.A. G.M.I. P.A. G.M.I. –

Okubo–Weiss 0.87 0.61 0.78 −0.18 0.66

SST anomaly 0.95 0.82 0.73 0.83 0.82

SST 0.89 0.91 0.65 0.79 0.93

Moon phase 0.11 0.60 −0.56 0.75 0.47

d (SST front) 0.87 0.76 0.70 0.25 0.55

ERF 0.94 −0.46 0.86 −0.01 −0.56
Median and standard deviation were calculated for each envelope and across the yearly metric.
A B D

E F G

IH J

C

FIGURE 3

(A) Variable importance measured by mean decrease in accuracy for the top 9 environmental covariates in the ensemble random forests model with
darker colors indicating higher importance; the shaded region is the 50% confidence interval, while the dashed line indicates the 80% confidence
interval from across 100 forests in the ensemble. (B–J) Accumulated local effect plots for the top 9 environmental covariates indicating the change
in model prediction (y-axis) as a function of the change in the covariate (x-axis). The solid line indicates the median relationship, and the gray-
shaded region indicates the 80% confidence interval across 100 forests in the ensemble.
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of the envelope (Figure 5). On average, over the 42 weeks predicted

over, the 85th percentile covered 0.17% of the cells, the 75th covered

2.6%, the 65th covered 9.9%, and the 55th covered 19.8%. In some

weekly predictions, the 55th percentile envelope area covered over a

third of the cells. These values increase when we subset to just cells

where the fishery has historically fished at least once from 2010 to 2021;

the 85th percentile covered 0.7% of the cells, the 75th covered 5.2%, the

65th covered 15.2%, and the 55th covered 26.7%. Again, in some

weekly predictions, the 55th percentile envelope area covered nearly

half of the historic fishing area (48.9%, Figure 5S) but also could cover

as little as 2% (Figure 5H). The coefficient of variations across the 42

weekly predictions decreased as the envelope area increased with the

85th percentile having a CV of 141%, the 75th having a CV of 86%, the

65th having a CV of 65%, and the 55th having a CV of 48%. Generally,

by late January and to late March, the 65th percentile or above

envelopes encompassed the north coast of East Cape (Figures 5C-G,

J-N, P-U), the area also identified as having a high probability of

interaction across the fishery dataset (Figure 1B). However, these

hindcast predictions also highlighted areas northwest of North Island

in the Tasman Sea (see Figure 5E for a representative example) but also

down along the west coast of North Island (Figures 5K, G, S). Very little

fishing effort and no leatherback sea turtle interactions were present in

these areas in our dataset (Figure 1A).
4 Discussion

Substantial increases in the bycatch interactions with Critically

Endangered western Pacific leatherback sea turtles in the New

Zealand pelagic longline fishery necessitate the exploration of

bycatch mitigation strategies (Dunn et al., 2023). We compared a

series of environmentally-defined dynamic ocean management
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informational tools to inform a spatiotemporal bycatch mitigation

strategy. Our ensemble random forests model was highly effective at

discriminating between interacting and non-interacting sets using a

suite of oceanographic covariates aligned to the fishery-dependent

data. Using this model to assess management strategies by

incorporating measures of discrimination, spatial coherence, and

spatial footprint, the ERF predictions outperformed the top 5

environmental covariates in both predictive capacity and

management efficiency. However, the ERF model resulted in a
FIGURE 4

Relative optimization score of each oceanographic covariate- or
ERF-defined envelope as a function of envelope size when seeking
to maximize the ratio of interacting sets inside versus outside of the
envelope, maximizing the ratio of non-interacting sets outside
versus inside of the envelope, minimizing the proportional area, and
maximizing the global Moran’s I.
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FIGURE 5

Fortnightly predicted envelopes from the ensemble random forest
predictions to environmental conditions in 7 weeks in 2019
(A–G), 2020 (H–N), and 2021 (O–U). Envelopes were defined as
predictions over the 85th (p > 0.52), 75th (p > 0.42), 65th (p > 0.35),
and 55th (p > 0.31) percentiles. Gray bordered cells indicate the
fishing area with at least three sets from 2010 to 2021 during the
corresponding week of the year of the predicted envelopes.
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more complex mosaic of potential spatiotemporal closures that could

complicate implementation. Nonetheless, our framework could be

used to inform future management in the area provided that the

dissemination of such information to fishers can be done in a

viable way.

Overall, our results illustrate that DOM informational products

made of composite features outperform those made of simple features

across a variety of metrics. Other DOM informational products have

found similar results. The South Pacific TurtleWatch informational

product used a suite of static and dynamic oceanographic features to

define their linear model-based predictions, such as bathymetry, sea

surface temperature, frontal probability index, and sea surface height

(Hoover et al., 2019). EcoCast used a wider set of static, temporally

dynamic, and spatiotemporally dynamic oceanographic features

along with a machine learning approach to develop three bycatch

risk surfaces that are then combined through weighting schemes for

an informational product that identifies bycatch risk across multiple

species (Hazen et al., 2018). These composite approaches stand in

stark contrast to TurtleWatch, which relied on sea surface

temperature as a more easily measured and communicated proxy

variable for high chlorophyll-a concentrations associated with the

North Pacific Transition Zone (Howell et al., 2008). While DOM

informational products like South Pacific TurtleWatch, EcoCast, and

the ERF predictions here have high discriminatory ability and achieve

specificity, there has not been a validation of their predictive ability

nor their implementation success as an informational product. Even

simpler products such as TurtleWatch do not appear to be readily

used by fishers (Siders et al., 2023). It is challenging to identify

whether the incentive structures, dissemination, or generality are to

blame. Nonetheless, the key hurdles identified by Lewison et al.

(2015) of regulatory frameworks and incentive structures,

technological and analytical requirements, and stakeholder

participation remain challenges to the implementation of DOM as

a bycatch mitigation strategy.

DOM informational products are still useful. Our approach

identified that much of the fishing grounds had some risk of

leatherback sea turtle interactions in any given year; however, we

also identified scattered smaller areas along or seaward of the

continental margin of the Bay of Plenty where the ERF-predicted

interaction probability is the highest (Figure 1B). This area was

noted by Dunn et al. (2023) and marks the southern margin of the

East Cape Eddy, a large permanent warm core eddy formed by the

East Auckland Current (Chiswell and Roemmich, 1998)

(Figure 1A). The zooplankton assemblages of this eddy are

dominated by salps, consistent with the high predicted occurrence

of leatherback sea turtles in this area (Bradford and Chapman,

1988). Potential mitigation strategies include disseminating these

smaller areas to fishers as potential leatherback sea turtle interaction

hotspots for voluntary avoidance, or as closures in particularly high

interaction years, or instituting move-on rules when interactions

occur in this area. Move-on rules are a dynamic strategy whereby

fishers are directed a certain distance away from an area for a period

of time after observed or reported bycatch (Dunn et al., 2014).

Move-on rules may be implemented by government agencies or

private groups (e.g., NGOs, fisher collectives), can vary in temporal

and spatial extent (Little et al., 2015; Dunn et al., 2016), and more
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effectively reduce bycatch while also limiting target catch reductions

when used at fine spatiotemporal resolutions (e.g., daily,<20 km2)

(Dunn et al., 2016). The 85th percentile envelope spatial areas are

typically only predicted to last 2 weeks and in one or two grid cells

(Figure 5). This small spatiotemporal extent of high probability

areas of leatherback sea turtle interaction indicates that pairing a

DOM-defined spatiotemporal area with a move-on rule may be

effective in New Zealand.

Providing metrics that identify the tradeoffs inherent in any

DOM-based bycatch mitigation strategy is critical in any tool.

Metrics of fishery impacts (proportions of interacting and non-

interacting sets) and management tradeoffs (spatial coherence and

spatial footprint) provide a means to decide between potential

strategies. Envelope size is a key implementation decision because

of the tradeoff between a reduction in false negatives (observed

interactions but predicted non-interactions) and the generation of

false positives (observed non-interaction and predicted interaction)

as envelope size increases (Figure 2). Interestingly, this tradeoff

varied considerably among the top 5 environmental covariates we

explored. Some covariates had the same slope as envelope size

increased (distance to SST front and SST anomaly), while others

behaved differently as the envelope size increased (moon phase,

SST, and Okubo–Weiss). This variability in some covariates is

another important consideration to make when choosing between

covariates used to define areas, particularly when relying on single

covariate products.

As a salient example, small SST envelopes encompassed more

absences than presences but rapidly encompassed more presences than

absences as the envelope expanded from 20.95–21.57°C to 20.95–

21.76°C (Figure 2). This 0.19°C increase shows that even minor

changes can lead to massive differences in performance. It is worth

noting that this very small change in SST is very difficult to implement

as this is close to the level of precision for the satellite product and

below the level of precision for on-vessel sensors. This precision issue

lends weight toward providing georeferenced real-time composite

products rather than single covariate environmentally defined areas.

In our case, the composite product outperforms all of the single

oceanographic variable products, but for other fisheries, this may not

be the case (Free et al., 2023). More recent DOM products implement

complex analytical regimes to develop composite risk surfaces that are

not compared with simpler approaches (Hazen et al., 2018; Hoover

et al., 2019). This approach emphasizes discrimination-based

performance over implementation-based performance. To truly

evaluate a DOM product’s performance, it is likely that some metrics

we included in our optimization need to be factored in. Additional

metrics are also likely needed such as manager- and/or fisher-defined

weights based on ease of use, real-time capability, or simplicity. There is

likely an unidentified tipping point where a more complex model/

strategy could be a more effective mitigation strategy, but participation

is so low that the realized efficacy of the method is lower. For DOM to

be an effective mitigation strategy, it is necessary for the analytical

components to more fully integrate management tradeoffs (Free et al.,

2023) and, likely, move to a management strategy evaluation approach.

This New Zealand pelagic longline bycatch case study highlights

the potential benefits and limitations of DOM-based bycatch

mitigation strategies. The inherent dynamism and complexity of
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pelagic fisheries and their interactions with protected species have

also tended to produce complex DOM informational products. As a

result, it can be difficult to transform the model output into

implementable discrete areas for closures or avoidance and

communicate specifically why a particular area is identified (Free

et al., 2023). Inherent to the development of DOM-based bycatch

mitigation tools is a modeling effort that produces a great deal of

information that can guide new management strategies. This

information can include determining whether interactions are

effort-driven, identifying environment–interaction relationships,

and testing a variety of informational product styles. We

recommend that this information be used to develop more

nuanced bycatch mitigation strategies generally. Patterns

highlighted by the modeling process can be used for discerning

whether gear or fishing behavior mitigation is needed when

interactions are effort-driven, spatiotemporal mitigation when high

interaction areas are clearly discriminable, move-on rules when DOM

strategies may be difficult to implement, or pairing strategies to

address the challenge of rare protected species bycatch interactions.
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