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Abstract
The International Union for Conservation of Nature’s (IUCN) Red List is the global

standard for quantifying extinction risk but assessing population reduction (criterion

A) of wide-ranging, long-lived marine taxa remains difficult and controversial. We

show how Bayesian state–space models (BSSM), coupled with expert knowledge at

IUCN Red List workshops, can combine regional abundance data into indices of

global population change. To illustrate our approach, we provide examples of the

process to assess four circumglobal sharks with differing temporal and spatial data-

deficiency: Blue Shark (Prionace glauca), Shortfin Mako (Isurus oxyrinchus), Dusky

Shark (Carcharhinus obscurus), and Great Hammerhead (Sphyrna mokarran). For

each species, the BSSM provided global population change estimates over three gen-

eration lengths bounded by uncertainty levels in intuitive outputs, enabling informed

decisions on the status of each species. Integrating similar analyses into future work-

shops would help conservation practitioners ensure robust, consistent, and transparent

Red List assessments for other long-lived, wide-ranging species.
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1 INTRODUCTION

Identifying species at risk is essential to prioritize conser-

vation efforts against accelerating biodiversity loss (Butchart

et al., 2010; Hoffmann et al., 2008). The International Union

for Conservation of Nature’s (IUCN) Red List of Threatened

Species is the global standard for quantifying extinction risk

(Hoffmann et al., 2008; Mace et al., 2008). In the ocean, over-

exploitation is the overwhelming driver of biodiversity loss

(McClenachan, Cooper, Carpenter, & Dulvy, 2012), so a pop-

ulation reduction estimate (Red List Criterion A) is usually

applicable when assessing marine vertebrates (Dulvy et al.,

2014). However, few marine timeseries are long enough to

directly calculate the percent reduction over three generations

lengths (3GL) required under Criterion A (IUCN Standards

and Petitions Subcommittee, 2019). Fewer still are broad

enough in spatial coverage to easily undertake a global Red

List Assessment, especially for wide-ranging species (Boyd,

2010; Dulvy, Sadovy, & Reynolds, 2003; Godfrey & Godley,

2008).

Bayesian state–space models (BSSM) offer a powerful and

flexible framework to model variable population trends (e.g.,

Boyd, DeMaster, Waples, Ward, & Taylor, 2017; Meyer &

Millar, 1999; Winker, Carvalho, & Kapur, 2018). BSSMs also

have three key properties that could help improve the objectiv-

ity of IUCN Red List assessments. First, the posterior proba-

bilities provide an intuitive way to express uncertainty around

rates of population change to conservation practitioners

(Sherley et al., 2018). Second, missing values can be esti-

mated automatically, providing a robust and transparent way

of dealing with timeseries of differing lengths and quality,

and of forecasting future population trajectories (Kindsvater

et al., 2018). Third, it is simple to combine the posterior prob-

abilities for regional population trends (and their uncertainty)

into a global reduction rate. BSSMs have been used to assess

extinction risk under the U.S. Endangered Species Act (Boyd

et al., 2017), but rarely to assign IUCN categories (Regehr

et al., 2016; Rueda-Cediel, Anderson, Regan, & Regan, 2018).

Here, we outline how a BSSM tool, Just Another

Red List Assessment (JARA, https://github.com/henning-

winker/JARA; Winker & Sherley, 2019; Sherley et al., in

press), facilitated the assessment of 13 wide-ranging pelagic

and coastal-pelagic sharks at an IUCN Species Survival Com-

mission Shark Specialist Group (IUCN SSC SSG) Red Listing

workshop (Dallas, USA, 5–9 November, 2018). We illustrate

our approach using four circumglobal shark species: Blue

Shark (Prionace glauca), Shortfin Mako (Isurus oxyrinchus),

Dusky Shark (Carcharhinus obscurus), and Great Hammer-

head (Sphyrna mokarran). These species differed in data qual-

ity and availability, generation length, and previously pub-

lished Red List category (Dulvy et al., 2014). Finally, we

discuss the wider applicability of tools like JARA for the Red

List assessment of long-lived, widely distributed taxa.

2 METHODS

2.1 Workshop application
Regional relative abundance datasets for each species were

analyzed using JARA, a generalized BSSM tool for global

extinction risk estimates under IUCN Red List Criterion

A (Winker & Sherley, 2019; Sherley et al., in press). The

input timeseries were either formal stock assessment out-

puts (trends in biomass), or standardized or nominal catch

per unit effort (CPUE) from scientific surveys, fisheries data

or bather protection nets, depending on the data available

for each species and region (Table 1, see Supporting Infor-

mation for details). Initial results (e.g., Figure 1) were pre-

sented to workshop participants (see Acknowledgements)

based on the available timeseries (𝐼𝑡), generation lengths

(GL; Table 1), and the proportional geographic area that

each region comprised of a species’ global range (Figures 2

and 3). Participants either approved the data choices or sug-

gested alternative datasets with better temporal or spatial cov-

erage for additional model runs. The final choices were made

by consensus. Participants were then presented with easy-

to-interpret outputs for each species showing (a) fits to the

observed regional data, (b) observed annual rates of change,

(c) any projections (where necessary), (d) how the poste-

rior distribution for the percentage change over 3GL aligned

against the thresholds for Red List criteria A2 (see Support-

ing Information for definition; e.g., Figure 1), and (e) the

most likely IUCN Red List category (Table 1): Critically

Endangered (CR), Endangered (EN), Vulnerable (VU) (the

threatened categories), Near Threatened (NT) or Least Con-

cern (LC) (IUCN, 2012). Here we highlight the decision-

support nature of JARA and accordingly outline the choices

made and decisions taken by consensus of the workshop

participants. In particular, because other forms of informa-

tion, such as geographic range, habitat and ecology, threats,

use and trade, and conservation actions, are considered in

assessments, in addition to the modeled population trend,

the final Red List category proposed may may differ from

the one suggested by JARA. Moreover, after the workshop

results (which we report here) were finalized, it was occasion-

ally necessary to conduct further JARA runs following com-

ments from reviewers and consultation with 166 IUCN SSC

SSG members (https://www.iucnssg.org/who-we-are.html).

Thus, the published IUCN Red List assessments (e.g.,

www.iucnredlist.org/species/39341/2903170) may ultimately

differ from those presented here.

2.2 State–space model formulation
Each timeseries (𝐼𝑡) was assumed to follow an exponen-

tial growth model: 𝜇𝑡+1 = 𝜇𝑡 + 𝑟𝑡 where 𝜇𝑡 is the logarithm

of the expected abundance in year t, and 𝑟𝑡 the normally

distributed annual rate of change with mean �̄�, the estimable

https://github.com/henning-winker/JARA
https://github.com/henning-winker/JARA
https://www.iucnssg.org/who-we-are.html
http://www.iucnredlist.org/species/39341/2903170
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T A B L E 1 Population change (%) and posterior probabilities (%) for changes falling within the IUCN Red List categories Least Concern (LC),

Near Threatened (NT), Vulnerable (VU), Endangered (EN), and Critically Endangered (CR) for Blue Shark (Prionace glauca), Shortfin Mako

(Isurus oxyrinchus), Dusky Shark (Carcharhinus obscurus), and Great Hammerhead (Sphyrna mokarran). The most likely status based on criteria A2

is indicated according to the category that contained the highest proportion of the posterior probability for the rate of change over three generation

lengths (3GL), with the exception that VU is also indicated as a precaution in cases where LC obtained the highest probability but with <50% of the

total posterior probability. The global change is based on weighting the regional posterior probabilities by the proportional area (PA) weighting, an

area-based proxy of the percent of the global population in each region based on each species current geographic range (see Supporting Information)

Notes: 1Stock assessment output (ICCAT, 2016); 2stock assessment output (Carvalho & Winker, 2015); 3stock assessment output (ISC Shark Working Group, 2017);
4stock assessment output (Takeuchi, Tremblay-Boyer, Pilling, & Hampton, 2016); 5stock assessment output (Rice, 2017); 6stock assessment output (ICCAT, 2017); 7stock

assessment output (ISC Shark Working Group, 2018); 8standardized catch per unit effort (Francis, Clarke, Griggs, & Hoyle, 2014); 9stock assessment output (Brunel et al.,

2018); 10stock assessment output (SEDAR, 2016); 11standardized catch per unit effort (Braccini & O’Malley, 2018); 12catch per unit effort (Dudley & Simpfendorfer,

2006); 13stock assessment output (Jiao, Cortes, Andrews, & Guo, 2011); 14catch per unit effort (Carlson J.K. & Driggers W.B. unpubl. Data); 15catch per unit effort (Dudley

& Simpfendorfer, 2006). N. = north; S. = south; NW. = northwest; NE. = northeast; E. = eastern; W. = western. Species and regionally specific GL were calculated from

female age at maturity (𝐴mat ) and maximum age (𝐴max) as 𝐺𝐿 = ((𝐴max − 𝐴mat ) × 0.5) + 𝐴mat (see Supporting Information). For Great Hammerhead, Global 1 used

North Atlantic 1 data to generate the weighted change and Global 2 used North Atlantic 2 data.
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F I G U R E 1 An example of the JARA output presented to the IUCN Species Survival Commission Shark Specialist Group (IUCN SSC SSG)

workshop participants. Results for Shortfin Mako (Isurus oxyrinchus) in the Atlantic Ocean showing (a) the JARA fit (black line) and 95% credible

intervals (gray polygon) to the observed timeseries of biomass estimates (red points) from the stock assessment for the North Atlantic (ICCAT,

2017); (b) the posterior medians (solid lines) and probability distributions (colored polygons) for the annual rate of population change (%) calculated

from all the observed data (in black), from the last one generation length (1GL; in blue), and from the last two generation lengths (2GL; in green),

shown relative to a stable population (% change = 0, black dashed line); (c) the observed (black line) and predicted (red dashed line) population

trajectory (and 95% credible intervals, gray polygon) over three generations (75 years, denoted by the span of the vertical dashed lines); and (d) the

median change in relative abundance over three generation lengths (dashed line) and corresponding posterior probability (gray polygon) for that

change, overlaid on the IUCN Red List category thresholds for the Red List criteria A2. The values in the legend show the percentage of the posterior

probability distribution falling within each Red List category (LC—dark green, NT—light green, VU—yellow, EN—orange, CR—red)

mean rate of change for a population, and process variance

𝜎2 (see Supporting Information for details). We linked the

logarithm of the observed relative abundance 𝐼𝑡,𝑖 for index

𝑖 expected abundance trend, using the observation equation

and observation variance assumptions and priors presented

in the Supporting Information. We used a noninformative

normal prior for �̄� ∼ Normal(0, 1000). Priors for the process

error variance were 𝜎2 ∼ 1∕gamma(0.001, 0.001), or approx-

imately uniform in log space (Winker et al., 2018).

2.3 Regional change
The percentage change in abundance in each regional index

was calculated from the posteriors of the estimated popula-

tion timeseries 𝐼𝑡 = exp(𝜇𝑡). If the span of 𝐼𝑡 was longer

than 3GL, the percentage change was automatically calcu-

lated as the difference between a 3-year average around the

final observed data point 𝑇 , and a 3-year average around year

𝑇 − (3GL) (e.g., Figure S1). The year 𝑇 + 1 is always pro-

jected to obtain a 3-year average around 𝑇 (to reduce the

influence of short-term fluctuations; Froese, Demirel, Coro,

Kleisner, & Winker, 2017). When 𝐼𝑡 was < 3GL, JARA pro-

jected forward, by passing the number of desired future years

to the BSSM until 𝐼𝑡 > (3GL) + 2 (e.g., Figure 1C). Pro-

jections were based on the posterior of 𝑟𝑡 medians across

all T observed years (Figure 1B). The projection gives sim-

ilar results to extrapolating backward to attain a 3GL period,

as recommended when estimating population reduction from

annual rates of change (IUCN Standards and Petitions Sub-

committee, 2019). As these are not the “moving window”

reductions required for criterion A4 (IUCN Standards and

Petitions Subcommittee, 2019), we assessed results against

criterion A2. JARA visualizes the extent and uncertainty in

these projections, to aid final category choice.
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F I G U R E 2 Top: the global range (colored polygons) of the Blue

Shark (Prionace glauca) and the areas used to calculate the

proportional area (PA) of a species’ geographic range occurring in each

ocean region (Table 1). For example, the PA for the North

Atlantic = 0.15 because the light blue colored area in the North Atlantic

represents 15% of the known species range (total colored area). Bottom,

left-hand panels: Mean (solid line) and 95% credible intervals (colored

polygons) for the population trajectories estimated by the Bayesian

state–space model. Bottom, right-hand panel: the corresponding

posterior probability distributions (multicolored polygons) for the

percentage population change falling within the IUCN Red List

categories (LC = Least Concern; NT = Near Threatened;

VU = Vulnerable; EN = Endangered). The Global polygon shows the

weighted global rate of change, with each regional posterior weighted

according to the PA calculation (left panel). Change (%) is calculated

over three generation lengths (3GL), indicated on each population

trajectory as dotted lines (middle panels). 3GL was 30 years in the

North Atlantic Ocean (N. Atl.) and South Atlantic Ocean (S. Atl.) and

31.5 years in the North Pacific Ocean (N. Pac.), South Pacific Ocean (S.

Pac.) and Indian Ocean. The South Pacific Ocean timeseries is observed

data from 1994 to 2014 and projected from 2015 onward (see Figure

S4). All others are fits to observed timeseries from stock assessment

outputs (see Table 1 and Supporting Information for data sources).

Posterior probability distributions (right panel) are colored according to

the IUCN Red List category thresholds for the Red List criteria A2

(LC—dark green, NT—light green, VU—yellow, EN—orange)

2.4 Weighted global change
To assess each species globally, we subsampled from the pos-

terior probability distribution for each regional percentage

change according to the proportional area (PA) weighting of

that species’ geographic range occurring in each ocean region

(Table 1, Figures 2 and 3). Parts of a species range with no

trend data were treated as missing regions. To meet the IUCN

guidelines for uncertainty associated with missing regions,

we assumed that these regional populations had declined by

between 0 and 100% (IUCN Standards and Petitions Sub-

committee, 2019) by subsampling from a uniform distribu-

tion Uniform(−100, 0) according to the PA weighting for the

missing regions. All of these sub-samples were combined to

produce the weighted global rate of change (Figures 2 and 3).

2.5 Model implementation
We ran JARA (v. 1.33) in JAGS (v. 4.3.0) via the “R2jags”

library (v. 0.5-7) for R (v. 3.5.0), using three Monte Carlo

Markov chains of 220,000 iterations, burn-in of 20,000 and

thinning to every second observation. Each chain was initi-

ated by assuming a prior distribution on the initial state cen-

tered around the first data point of each abundance timeseries

(𝑦𝑡 = 1), 𝜇1 ∼ Norma(log(𝑦1), 1000). Convergence was diag-

nosed using the “coda” R library (v. 0.19-1) and minimal

thresholds for Geweke’s diagnostic thresholds of p = 0.05

(Geweke, 1992). All models unambiguously converged.

3 RESULTS

3.1 Timeseries availability and use of
projections
For Blue Shark (Table 1, Figure 2) all timeseries used were

stock assessment outputs and were > 3GL except in the South

Pacific where projections were ∼33% (∼1GL) of the time-

series (Figure S1). For Shortfin Mako, stock assessment out-

puts were available for four regions, with standardized catch-

per-unit-effort (CPUE) available for the South Pacific; all

timeseries required some projection to span 3GL (Table 1).

However, South Atlantic biomass estimates were reported to

be highly uncertain and implausible (ICCAT, 2017), so the

workshop participants decided to use the North Atlantic stock

assessment to represent the Atlantic Ocean. For the Shortfin

Mako, Dusky Shark, and Great Hammerhead all timeseries

were < 3GL (Table 1), so projections were required to reach

3GL (Figures S7–S18). Data were missing for ∼50% of the

ranges of Dusky Shark and Great Hammerhead and input data

were a mix of CPUE and stock assessments (Table 1), which

the workshop participants needed to take into consideration

when finalizing their assessments.
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F I G U R E 3 Left-hand panels: Posterior probability distributions for the percentage population change falling within the IUCN Red List

categories for (a) Shortfin Mako (Isurus oxyrinchus), (c) Dusky Shark (Carcharhinus obscurus), and (e) Great Hammerhead (Sphyrna mokarran).

The “Missing” polygons (in c and e) show the samples drawn from a uniform distribution, Uniform(−100, 0) according to the summed proportional

area (PA) of the species’ geographic range contained within those regions for which no regional trend data were available (see Table 1). The Global

polygon shows the weighted global rate of change, with each regional posterior weighted according to the species-specific PA calculation (right-hand

panels and Table 1). For Great Hammerhead (e), only the outputs using the more recent North Atlantic dataset (North Atlantic 2, Table 1) are

visualized. Posterior probability distributions are colored according to the IUCN Red List category thresholds for the Red List criteria A2 (LC—dark

green, NT—light green, VU—yellow, EN—orange, CR—red). Right-hand panels: The global range (colored polygons) of (b) Shortfin Mako, (d)

Dusky Shark and (f) Great Hammerhead and the areas used to calculate the PA of the species’ distribution occurring in each ocean region. For Dusky

Shark (d), the range was split into the five ocean basins and then further divided longitudinally. Abbreviations: LC = Least Concern; NT = Near

Threatened; VU = Vulnerable; EN = Endangered; CR = Critically Endangered; Atl. = Atlantic Ocean; Pac. = Pacific Ocean; Ind. = Indian Ocean;

N. = North; S. = South; W = Western; E. = Eastern; NW. = Northwest; NE. = Northeast

3.2 The globally distributed, unmanaged,
data-rich Blue Shark
In the Pacific and Indian Oceans, the medians and >80%

of the percentage change posterior probabilities fell into LC

(increases or reduction <20%; Figure 2, Table 1). In the South

and North Atlantic, the medians and posterior probabilities

suggested VU and EN respectively (Figure 2, Table 1), but the

populations were stable over at least the last GL (Figure 2, S1

and S2). Consequently, the combined regional posteriors pro-

duced a bimodal distribution for the global percentage change
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(Figure 2); the median was −7.3%, and ∼66% of the poste-

rior distribution was consistent with LC (Table 1). Despite

the slight population reduction, catch and trade of this species

is largely unregulated and the workshop participants cited a

suspected global population reduction of ∼20–30% over the

last 3GL to suggest retaining a NT assessment.

3.3 The globally distributed, partially
managed, Shortfin Mako
In the Atlantic, which has the longest observed timeseries,

the median and 90% of the posterior probability indicated

a status of EN (Figures 1 and 3A). The last 2GL also had

a faster annual rate of decline than the whole timeseries

(Figure 1B). In both the North Pacific and Indian Oceans, the

median and the largest proportion of the posterior distribu-

tions (∼44%) suggested VU (Table 1, Figure 3A), although

∼44% of the posterior also indicated EN in the Indian Ocean

(Table 1). For the South Pacific, uncertainty was very high

(Figure 3A; trend predominately based on projections), but

a slightly positive annual rate of change (+0.48, Figure

S9) meant ∼70% of the posterior distribution suggested LC

(Figure 3A). The combined regional posteriors produced a

global median of −46.6%, but 43.3% of the posterior dis-

tribution indicated a 50–80% reduction over 3GL, meeting

the threshold for EN (Table 1). These findings, combined

with steep historic declines in the Mediterranean Sea, global

underreporting of catches, limited control of fishing mortality,

highly valued meat, and international trade in moderate-value

fins led workshop participants to recommend a global status

of EN.

3.4 Steep but uncertain decline in the Dusky
Shark
Both Indian Ocean CPUE datasets yielded broad posterior

distributions spanning LC to CR (Figure 3C), but annual

rates of change (−2.8% and −0.9%, Figures S13 and S14)

meant that >70% of the posterior overlapped the threatened

categories (VU–CR; Table 1). Similarly, the 56-year stock

assessment output for the North Atlantic produced an annual

change of −2.6%, which had worsened in the most recent

GL to −3.9% (Figure S12). This generated a median change

of −89.9% over 3GL, with 99.1% of the posterior in CR

(Figure 3, Table 1). When weighted, the regional posteriors

suggested a global listing of CR, though the median (−71.6%)

did not exceed that categories’ threshold (≥80%). The work-

shop participants inferred a global population reduction of

50–80% over 3GL and recommended an EN assessment for

Dusky Shark, based on a balance of the estimated declines and

the possibility for stabilization and slow recovery in parts of

its range following management action. This was confirmed

after the analysis of an additional dataset during review of the

final Red List assessment.

3.5 Steep declines worldwide with signs of
Atlantic recovery in the Great Hammerhead
An initial model using stock assessment output for the North

Atlantic showed a change of −29% over 3GL (North Atlantic

1, Table 1, Figure S16). However, some workshop participants

noted that important U.S. management interventions had been

implemented since that dataset ended in 2005 (NMFS, 2006).

This led to an additional analysis replacing the North Atlantic

stock assessment output with one nominal and one stan-

dardized CPUE timeseries underpinning that stock assess-

ment (updated to 2017). This model run indicated popula-

tion recovery at 6.6% per annum (Figure S17); despite high

uncertainty, 100% of the change posterior fell into LC (North

Atlantic 2, Table 1, Figure 3C). By contrast, the Indian Ocean

(the only other dataset) showed an annual change of −6.6%

(Figure S18) and a 100% probability of exceeding the CR

threshold (Table 1, Figure 3C). Using the newer North

Atlantic dataset (North Atlantic 2), and accounting for the

three regions with missing data using uniform distributions

(see section 2.4), the posterior of the weighted global rate of

change spanned a threat status from LC to CR, with ∼36%

at each extreme (Table 1). While recognizing that manage-

ment can be successful, even for species with low biological

productivity, the workshop participants considered the North

Atlantic to be the exception globally. Given the trajectory in

the Indian Ocean, scarcity, quality and spatial coverage of the

datasets relative to the regions they represented, and ongoing

fishing pressure and trade, the workshop participants inferred

a global reduction of >80% over the last 3GL and listed Great

Hammerhead as CR.

4 DISCUSSION

We present a straightforward solution to the persistent chal-

lenge of rigorously undertaking Red List assessments for

marine species with sparse data and widespread distribu-

tions. We use a classic statistical approach to estimate pop-

ulation growth rate from timeseries (Dennis, Munholland, &

Scott, 1991), while incorporating the power and flexibility of

BSSM. Although updated frequently, the IUCN guidelines

(IUCN Standards and Petitions Subcommittee, 2019) were

laid out long before the widespread availability of Bayesian

techniques, and provide varying levels of guidance on a range

of key issues (e.g., model specification, combining multi-

ple indices, coping with uncertainty). Below, we discuss our

approach to these issues and outline the opportunities pre-

sented by using JARA to guide Red List decision-making.

Below, we highlight five useful features of our approach:
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(1) avoids the need for assessors to choose between different

models of population change (e.g., linear vs. complex), (2)

reduces the influence of outliers in individual timeseries, (3)

outputs are intuitive and easy to communicate, (4) calculation

of global status from the weighted sum of regional statuses,

accounting for regions without data using uniform distribu-

tions, (5) the application of the tool to policy decisions.

The IUCN guidelines provide extensive specification on

how to estimate population reduction based on four different

models of decline (linear, exponential, accelerating, and com-

plex; IUCN Standards and Petitions Subcommittee, 2019).

With JARA, assessors need never agonize over model choice

again; they are provided with posterior distributions of growth

rates decomposed into GL subsets to diagnose whether pop-

ulation trajectories are accelerating or complex (Figure 1B).

For example, in the North Atlantic, Blue Shark population

change has stabilized over the last 2GL, while the popula-

tion reduction of Shortfin Mako has accelerated slightly (cf.

Figures 2B and S1B).

Moreover, timeseries are noisy with outliers (due to process

and observation error) and the classical regression approaches

often used to undertake Red List assessments in the past (Fox

et al., 2019, IUCN Standards and Petitions Subcommittee,

2019) can result in biologically implausible rates of change.

Consequently, the debate on status often vacillated on the

inclusion (or not) of single data points (NKD, HW, pers. obs.),

necessitating sensitivity and counterfactual analyses. A more

objective solution is needed and although JARA is somewhat

constrained by the values at the start and end of a timeseries

(e.g., Figure S16), it is far less sensitive to outliers and more

accurately captures the rate of population change than tra-

ditional regression approaches (Fox et al., 2019; Winker &

Sherley, 2019). At the workshop, we found JARA especially

useful in preventing the need to subjectively exclude putative

outliers from individual timeseries.

During an assessment, the ramifications of the differing

degrees of process and observation error in the data type

used (stock assessment vs. CPUE) and the use (or not)

of projections must be clearly articulated (Carvalho, Lee,

Piner, Kapur, & Clarke, 2018; d’Eon-Eggertson, Dulvy, &

Peterman, 2015). Here, the visualizations provided by JARA

(e.g., Figure 1) allowed participants to rapidly examine

the various input timeseries and provide more appropriate

regional data if needed. This allowed the workshop to pause,

re-run analyses with new data, then reopen discussions and

evaluate the sensitivity of conclusions to differing inputs

(e.g., as for Great Hammerhead; cf. Figures S19 and S20).

The JARA outputs also helped to contextualize the uncer-

tainty within each regional and global assessment (Figures 2

and 3). Participants with little or no experience with Bayesian

statistics were quickly able to interpret posterior distributions

of percentage change, based on the median, category with

the greatest probability, and how the balance of probability

(the posterior distribution) was divided between LC and the

threatened categories. For example, the workshop partici-

pants could easily discriminate the reliability of the mod-

eled trends for the North Atlantic Dusky Shark (56 years of

stock assessment output) versus the Eastern Indian Ocean

(10 years of CPUE data, cf. Figures S12 and S13). They took

this uncertainty on board and spent considerable time debat-

ing a recommendation, with discussions on life-history char-

acteristics, geographic range, habitat preferences, catchabil-

ity, degree of overlap with fisheries, and positive impacts of

management evident in slow recovery used to reach consen-

sus in a process similar to previous elasmobranch assessments

(Dulvy et al., 2014).

A key challenge of undertaking Red List assessments of

widely distributed marine taxa has been objectively com-

bining different regional or subpopulation assessments into

a global reduction estimate (Godfrey & Godley, 2008;

Reynolds, Dulvy, Goodwin, & Hutchings, 2005). The guide-

lines recommend calculating a global average, weighted by

the number of mature individuals in each subpopulation 3GL

ago (IUCN Standards and Petitions Subcommittee, 2019).

Detailed abundance data are occasionally available for marine

mammals and seabirds. However, for fishes, it is more com-

mon to have population reconstructions from stock assess-

ments or indices of abundance, like CPUE (e.g., Carvalho

et al., 2018). A key feature of JARA is the ability to store and

combine posterior distributions by proportional weighting to

generate a representative global posterior (see Supplemen-

tary Information). After much consideration, workshop par-

ticipants choose to use IUCN distribution maps to calculate

proportional areas as an indirect approximation of the num-

ber of mature individuals 3GL ago, but this approach could

be further refined using species distribution models (Ready

et al., 2010).

The IUCN Criterion A population reduction—the rate of

decline scaled by generation length—is a robust method of

assessing extinction risk of exploited marine fishes (e.g.,

d’Eon-Eggertson et al., 2015), which tends to align well with

stock assessments statuses (e.g., Dulvy, Jennings, Goodwin,

Grant, & Reynolds, 2005; Davies & Baum, 2012). The pro-

posed listing of Shortfin Mako Shark on Appendix II of the

Convention on the International Trade in Endangered Species

(CITES) was not supported by the United Nations Food and

Agriculture Expert Panel, who “found no evidence that pop-

ulations meet the CITES criteria, whether based on histori-

cal extent of decline or recent rates of decline” (FAO, 2019).

Here, we have shown, using all available data (while incor-

porating uncertainty), that the recent rate of decline (over the

last 3GL) is steep, particularly in the North Atlantic (Figures 1

and 3A). Consequently, this species is globally Endangered

with “a very high risk of extinction” due to insufficiently reg-

ulated fisheries and absence of international trade regulation

(www.iucnredlist.org/species/39341/2903170). These results

http://www.iucnredlist.org/species/39341/2903170
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contributed to the IUCN/TRAFFIC analyses of the proposal

and were presented to the Parties intersessionally (IUCN

and TRAFFIC, 2019). As such our findings have immediate

application to policy decisions, for example at future CITES

Convention of Parties.

The need for robust decision-support tools to facilitate

management and evidence-based policy making in the face of

uncertainty has never been greater (Polasky, Carpenter, Folke,

& Keeler, 2011). Misclassification on the IUCN Red List

can have real consequences for species conservation; coupling

BSSM with expert oversight has great capacity to ensure more

robust, consistent, and transparent assessments. Although still

being refined, JARA is widely applicable and using it to sup-

port expert decision making would benefit the assessment

of other long-lived, wide-ranging marine taxa, including sea

turtles, seabirds, fishes, and marine mammals (Boyd, 2010;

Godfrey & Godley, 2008).
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