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SUMMARY 

 
Bayesian State-Space Surplus Production Models were fitted to Northeastern Atlantic porbeagle 
shark (Lamna nasus) catch and relative abundance indices using the ‘JABBA’ R package. This 
document presents details on the model diagnostics and stock status estimates for preliminary 
scenarios. A ref model was fitted to three indices reviewed by the ICES WKELASMO in 2022 
and the full model also included a fourth historical index applied in 2009 stock assessment. The 
prior assumptions in the surplus production function were kept consistent with the ICES 
WKELASMO assessment presented in 2022. We evaluated model plausibility using four objective 
model diagnostics: (1) model convergence, (2) fits to the data, (3) consistency (e.g. retrospective 
patterns) and (4) prediction skill. Our results suggest that the full model represents the most 
plausible candidate model that incorporates all available relative indices of abundance. Results 
are consistent with the SPiCT model runs, indicating that the stock is currently overfished (0.45 
B/BMSY) but no experiencing overfishing (0.01 F/FMSY). Additional sensitivity runs indicated that 
the full model was robust to alternative productivity and variance assumptions.  

 
RÉSUMÉ 

Les modèles de production excédentaire état-espace de type bayésien ont été ajustés aux données 
de capture et aux indices d’abondance relative du requin-taupe commun (Lamna nasus) de 
l’Atlantique Nord-Est en utilisant le progiciel « JABBA » R. Ce document présente des détails 
sur les diagnostics du modèle et les estimations de l'état des stocks pour des scénarios 
préliminaires. Un modèle de référence a été ajusté à trois indices examinés par le WKELASMO 
du CIEM en 2022 et le modèle complet comprenait également un quatrième indice historique 
appliqué à l'évaluation du stock de 2009. Les postulats a priori dans la fonction de production 
excédentaire correspondaient à la dernière évaluation du WKELASMO du CIEM présentée en 
2022. Nous avons évalué la plausibilité des modèles en utilisant quatre diagnostics de modèle 
objectifs : (1) la convergence des modèles, (2) les ajustements aux données, (3) la cohérence 
(p.ex. les schémas rétrospectifs) et (4) la capacité de prédiction. Nos résultats suggèrent que le 
modèle complet représente le modèle potentiel le plus plausible qui incorpore tous les indices 
d'abondance relative disponibles. Les résultats concordent avec les scénarios du modèle SPiCT, 
indiquant que le stock est actuellement surexploité (0,45 B/BPME) mais ne fait l’objet de 
surpêche (0,01 F/FPME). Des analyses de sensibilité supplémentaires indiquaient que le modèle 
complet était robuste aux postulats alternatifs de productivité et de variance.  

 

RESUMEN 

Se ajustaron modelos bayesianos de producción excedente estado-espacio a los índices de 
captura y abundancia relativa del marrajo sardinero (Lamna nasus) del Atlántico nororiental 
utilizando el paquete R "JABBA". Este documento presenta detalles sobre los diagnósticos del 
modelo y las estimaciones del estado del stock para los escenarios preliminares. Se ajustó un 
modelo de referencia a tres índices revisados por el WKELASMO de ICES en 2022 y el modelo 
completo también incluyó un cuarto índice histórico aplicado en la evaluación de stock de 2009. 
Los supuestos previos en la función de producción excedente se mantuvieron coherentes con la 
última evaluación del WKELASMO de ICES, presentada en 2022. La plausibilidad de estos 
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modelos se evaluó mediante cuatro diagnósticos objetivos del modelo: (1) la convergencia del 
modelo, (2) el ajuste a los datos, (3) la coherencia (por ejemplo, patrones retrospectivos) y (4) 
la capacidad de predicción. Nuestros resultados sugieren que el modelo completo representa el 
modelo candidato más plausible que incorpora todos los índices de abundancia relativa 
disponibles. Los resultados son coherentes con los ensayos del modelo SPiCT, e indican que e 
stock está actualmente sobrepescado /0,45 B/BRMS) pero no experimentando sobrepesca (0,01 
F/FRMS). Los ensayos de sensibilidad adicionales indicaron que el modelo completo era robusto 
ante las hipótesis alternativas de productividad y varianza.  
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1. Introduction 

 
The porbeagle (Lamna nasus) is a widely distributed shark in cold and temperate waters of the Atlantic Ocean, 
including the Mediterranean Sea (Castro 1983, Compagno 1984 and 2001). Porbeagle inhabits the open ocean 
and continental shelves but is also found close to the coast. For management purposes, the International 
Commission for the Conservation of Atlantic Tunas (ICCAT) considers there to be four stocks, northeast and 
northwest Atlantic, and a South Atlantic east and west stocks.  
 
The previous stock assessment for the Northeastern Atlantic porbeagle stock was carried out by ICES/ICCAT in 
2009 (Anon., 2010). The 2009 assessment presented the stock status estimates using a version of the Bayesian 
surplus production model BSP (Winker et al., 2018). The model was fitted to a catch series (1926 to 2008) and 
two CPUE indices that started in 1972 (French longline) and 1986 (Spanish longline).  
 
This document presents the stock assessment results for Northeastern Atlantic porbeagle stock based on the 
Bayesian State-Space Surplus Production Model software, Just Another Bayesian Biomass Assessment (JABBA, 
Winker 2018), using updated catch (1926 to 2020) and four standardized indices of abundance, three of them 
reviewed at the Benchmark Workshop for selected elasmobranch stocks (WKELASMO) data preparatory 
meeting; i) a French longline CPUE series (1972 – 2009) (Biais 2022a, ii) a Norway longline CPUE (1950-1964, 
1968-1972) (Biais 2022b), and iii) a longline survey index (2018-2019) that has been extended back in time with 
commercial longline data (2000-2009) (Biais 2022). The fourth index included in this analysis is the historical 
Spanish longline index (1986-2007) that was reviewed and applied in the 2009 stock assessment (Mejuto et al., 
2010). The main improvements compared to the 2009 assessment include new historical indices back in 1950, 
just after the main catches of this stock, a composite survey index that although limited to two years has been 
extended back in time (2000 to 2009) by combining with an index from a single commercial longline vessel by 
set fishing operations (Biais 2022). 
 
2. Material and Methods 
 
This preliminary stock assessment is implemented using the Bayesian state-space surplus production model 
framework JABBA (Winker et al., 2018). JABBA’s built-in options include: automatic fitting of multiple CPUE 
time series and associated standard errors; estimating or fixing the process variance, optional estimation of 
additional observation variance for individual or grouped CPUE time series, and specifying a Fox, Schaefer or 
Pella-Tomlinson production function by setting the inflection point BMSY/K and converting this ratio into shape a 
parameter m. JABBA also provides a comprehensive toolbox to conduct model diagnostics to objectively evaluate 
the four model plausible criteria recommended in Carvalho et al. (2021): (1) model convergence (2) fit to the data, 
(3) model consistency (retrospective pattern) and (4) prediction skill through hindcast cross-validation (Kell et al. 
2016; 2021). The full JABBA model description, including formulation and state-space implementation, prior 
specification options, and diagnostic tools is available in Winker et al. (2018). Following its first application to 
Mediterranean albacore in 2017 based on an early development version in 2017 (ICCAT, 2017a), JABBA has 
evolved into a fully documented, open-source R package (https://github.com/JABBAmodel/JABBA), which has 
been included in the ICCAT stock catalogue (https://github.com/ICCAT/software/wiki/2.8-JABBA). JABBA has 
subsequently been applied in a number of recent ICCAT stock assessments south Atlantic swordfish (ICCAT, 
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2017b; Winker et al., 2018), Atlantic shortfin mako shark stocks (south and north) (ICCAT, 2017c; Winker et al., 
2020, 2017), Atlantic blue marlin (Mourato et al., 2019), Atlantic bigeye tuna (Winker et al., 2019), Atlantic 
White marlin (Mourato et al., 2020), Atlantic yellowfin tuna (Sant’Ana et al., 2020), Mediterranean swordfish 
(Winker et al. 2020a), South Atlantic albacore (Winker et al. 2020b), and Mediterranean albacore (Winker et al. 
2021). 
 
2.1. Fishery data 
 
Fishery catch data for northeastern porbeagle were made available by ICES/ICCAT and reviewed by 
WKELASMO during the data preparatory meeting (ICES 2022 WKELASMO, Ortiz et al., 2022) for the period 
1926-2020 (Figure 1). During the data preparatory meeting, the Group reviewed three indices of abundance, 
including two new series, the Norway historic longline series from 1950 to 1972 (missing 3 years 1965-67) that 
covers a wider spatial area of the stock and the main fishery during this period, just after the major peak of catches 
of porbeagle in 1947 (Figure 2). And a longline survey carry out in 2018 and 2019, the only index of abundance 
available after the full no-retention management policy implemented after 2010. And the third index reviewed 
was the updated French longline CPUE that targets porbeagle from 1972 – 2009 and covers the Bay of Biscay 
and the Celtic Sea, this index was available also at the 2009 stock assessment.  
 
For this preliminary assessment evaluation, it was included also the Spanish longline index as it was used in the 
2009 assessment with a larger geographical coverture, but for which porbeagle is a non-target species (Mejuto et 
al., 2010). For a reference scenario (ref), the CPUEs reviewed by the WKELASMO group at the data preparatory 
meeting were included the French longline (FRA-LL), the Norway longline (NOR-LL), and the Survey composite 
index (Survey), all converted to biomass units as agreed by the Group. The corresponding standard errors and 
coefficient of variance from the standardization of the index in biomass units were also included.  
 
In addition, we considered an alternative scenario (Scenario 2 Full), where JABBA was fitted to the additional 
historical Spanish longline index as presented in 2009. The indices used in this assessment were provided in mass 
per unit effort and assumed to be proportional to biomass.  
 
2.2. Model specifications and sensitivity runs 
 
Initially, two candidate model scenarios were considered:  
 

● Ref: a reference scenario, fitted to the three indices (FRA-LL, Survey-Index, and NOR-LL) reviewed in 
the data preparatory meeting. 
 

● Full: a model, fitted to all four available indices including the SPA-LL index from the 2009 stock 
assessment.  
 

For the unfished equilibrium biomass K, we used default settings of the JABBA R package in the form of vaguely 
informative lognormal prior with a large CV of 100% and a central value that corresponds to eight times the 
maximum total catch which is consistent with other platforms, such as Catch-MSY (Martell and Froese, 2013) or 
the initial value for K in SPiCT (Pederson and Berg 2017). We assumed a Fox production function setting the 
inflection point at BMSY/K = 0.37, a lognormal prior distribution for r with mean of 0.059 and a standard deviation 
for log(r) of 0.457 and initial beta prior for the relative biomass (φ= B1926/K) with mean = 0.90 and CV of 10% 
(or alpha = 9.1, beta = 1.011). All catchability parameters were formulated as uninformative uniform priors, while 
the process error of log(By) in year y was estimated “freely” by the model using an uninformative inverse-gamma 
distribution with both scaling parameters set at 0.001. The prior for r (0.059) is the same as used in the SPiCT 
model and agreed by the WKELASMO group, however, the standard deviation for log(r) is greater than the one 
used in the SPiCT model, providing a less restrictive r prior in the JABBA runs.  
 
Initial trials indicated that it was challenging to reliably estimate observation errors using an additional variance 
approach for model internal weighting (e.g. Winker et al. 2020), because several of the indices covered only a 
few years and were subject to missing values and irregular spacing. To address this, it was initially considered a 
fixed observation error approach by assuming a standard error for log(CPUE) of 0.25 for all indices. Thereafter, 
this restriction was relaxed and the model used the coefficient of variance of the indices as provided in the biomass 
units. To explore sensitivity, additional tests were conducted for alternative observation and process error variance 
settings (Table 1) as well sensitivity analyses exploring alternative weighting for the indices of abundance, as is 
common practice in many age-structured tuna assessments. The sensitivity tests also included an alternative 
assumption of a higher prior mean for r (3*0.059) (Table 1). To examine the sensitivity of the assessment results 
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to the inclusion of individual CPUE indices, we iteratively re-fitted the models while excluding one index at the 
time and refitting the model (i.e. Jackknife index analysis). 
 
2.3. Model diagnostics  
 
The evaluation of model diagnostics follows the principles in Carvalho et al. (2021), who recommended 
objectively evaluating the base-case candidate model based on the following four model plausible criteria: (1) 
model convergence (2) fit to the data, (3) model consistency (retrospective pattern) and (4) prediction skill through 
hindcast cross-validation (Kell et al., 2017; 2021). 
 
JABBA is implemented in R (R Development Core Team, https://www.r-project.org/) with JAGS interface 
(Plummer, 2003) to estimate the Bayesian posterior distributions of all quantities of interest using a Markov 
Chains Monte Carlo (MCMC) simulation. In this study, three MCMC chains were used. Each model was run for 
30,000 iterations, sampled with a burn-in period of 5,000 for each chain and thinning rate of five iterations. Basic 
diagnostics of model convergence included visualization of the MCMC chains using MCMC trace-plots as well 
as Heidelberger and Welch (Heidelberger and Welch, 1992) and Geweke (1992) and Gelman and Rubin (1992) 
diagnostics as implemented in the coda package (Plummer et al., 2006).  
 
To evaluate the JABBA fit to the abundance index data, the model predicted values were compared to the observed 
indices. JABBA-residual plots were used to examine (1) color-coded lognormal residuals of observed versus 
predicted CPUE indices by fleet together with (2) boxplots indicating the median and quantiles of all residuals 
available for any given year; the area of each box indicates the strength of the discrepancy between CPUE series 
(larger box means higher degree of conflicting information) and (3) a loess smoother through all residuals which 
highlights systematically auto-correlated residual patterns to evaluate the randomness of model residuals. In 
addition, it provides the root-mean-squared-error (RMSE) as a goodness-of-fit statistic. We conducted run tests 
to quantitatively evaluate the randomness of residuals (Carvalho et al., 2017). The runs test diagnostic was applied 
to residuals of the CPUE fit on log-scale using the function runs.test in the R package tseries, considering the 1-
sided p-value of the Wald-Wolfowitz runs test (Carvalho et al. 2021). The run test results can be visualized within 
JABBA using a specifically designed plot function that illustrates which time series passed or failed the runs test 
and highlights individual time-series data points that fall outside the three-sigma limits (Anhøj and Olesen, 2014). 
 
To check for model consistency with respect to the stock status estimates, it was also performed a retrospective 
analysis by removing one year of data at a time sequentially (n = 5), refitting the model and comparing quantities 
of interest (i.e., biomass, fishing mortality, B/BMSY, F/FMSY, B/B0 and MSY) to the reference model that is fitted to 
full time series. To compare the bias between the models, we computed Mohn’s (Mohn, 1999) rho (ρ) statistic 
and specifically the commonly used formulation Hurtado-Ferro et al. (2015).  
 
Although the above model diagnostics are important to evaluate model convergence, the fit to the data and 
retrospective consistency, providing scientific advice should also involve checking that the model has prediction 
skill of future states under alternative management scenarios (Carvalho et al., 2021). To validate a model’s 
prediction skill requires that the system be observable and measurable (Kell et al., 2021). Therefore, we applied 
a hindcasting cross-validation (HCXval) technique (Kell et al., 2016), where observations are compared to their 
predicted future values. HCxval is a form of cross-validation where, like retrospective analysis, recent data are 
removed, and the model is refitted with the remaining data, but HCXval involves the additional steps of projecting 
ahead over the missing years and then cross-validating these forecasts against observations to assess the model’s 
prediction skill. A robust statistic for evaluating prediction skill is the Mean Absolute Scaled Error (MASE), 
which scales the mean absolute error of prediction residuals to a naïve baseline prediction, where a ‘prediction’ is 
said to have ‘skill’ if it improves the model forecast when compared to the naïve baseline (Kell et al. 2021). A 
widely used baseline forecast for time series is the ‘persistence algorithm’ that takes the value at the previous time 
step to predict the expected outcome at the next time step as a naïve in-sample prediction, e.g., tomorrow’s weather 
will be the same as today’s. The MASE score scales the mean absolute error of the prediction residuals to the 
mean absolute error of a naïve in-sample prediction. A MASE score higher than one can then be interpreted such 
that the average model forecasts are no better than a random walk. Conversely, a MASE score of 0.5 indicates 
that the model forecasts twice as accurately as a naïve baseline prediction; thus, the model has prediction skill. 
Unfortunately, in the case of northeastern porbeagle there is only one index of abundance in the last decade, the 
survey index conducted in 2018 and 2019, therefore the hindcasting cross-validation has limited used when 
evaluating the model with the end year of 2020.  
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3. Results and Discussion  
 

The MCMC convergence tests by Heidelberger and Welch (Heidelberger and Welch, 1992) and Geweke (1992) 
and Gelman and Rubin (1992) were passed for all key parameters for both the reference run and the full model. 
Adequate convergence of the MCMC chains was also corroborated by visual inspection of trace plots (results 
available on request), which showed good mixing in general (i.e., moving around the parameter space).  
 
The model fits to each of the relative abundance indices, comprising the standardized CPUE indices FRA-LL, 
NOR-LL, and SPA-LL, and the composite Survey-Index, are shown for the Ref and full models in Figure 3 and 
Figure 4, respectively. Both models appeared to fit the abundance trends reasonably well for the FRA-LL, for the 
other indices, the plots show some patterns of mostly positive residuals, although the statistical of normality 
distribution was not rejected (e.g. green color in residual plots). It was noticable the large residuals for the SPA_LL 
index, which were expected due to the large variance of this index as the average CV is about 89%, roughly twice 
the variance compared to the other indices. Nonetheless, run tests conducted on the log-residuals provided no 
evidence to reject the hypothesis of randomly distributed residual patterns for the three indices used in the ref and 
full models (Figures 3 and 4). The overall goodness-of-fit indicated a moderate precision of the fits from the 
reference runs (RMSE = 38.1%), which degraded for the “full” model (RMSE = 73.6%), that incorporated the 
historical SPA-LL index (Figure 5). The residual patterns of the years 1987-2009 indicated a conflict between 
residuals from the FRA-LL and the Survey-Index plus the SPA-LL indices (Figure 5). This still resulted in an, 
on average, a negative trend in the residual pattern for most recent years, which is probably due only two years 
with observations in 2018 and 2019 and the contradictory pattern of the FRA-LL and SPA-LL at the end of 2008. 
The estimated process error deviations had a similar trend for the ref and full models, showing particularly 
negative variations in the last decade, likely associated with the almost null catches after 2010. The process 
deviations for the terminal year are close to zero and therefore to average expectation (Figure 6). 
 
The median of marginal posteriors for r was estimated to be lower for the full model at 0.052 than for the ref 
model at 0.054 (Table 2). The scale of absolute estimates for K and BMSY was similar for both scenarios (Table 
2), which was also associated with a comparable posterior to the prior ratio of variance for K (PPRV = 0.116) of 
the ref model compared to the full model (PPRV = 0.064) as shown in Figures 6-7. This indicates that the indices 
may hold information about the total biomass to effectively update the posterior of K given the relatively vague 
prior. Estimates of the median MSY of 1286 (t) and 1166 (t) were close between the ref and full models. The 
posterior median of B2020/BMSY was slightly higher for the full model (0.511) compared to the ref model (0.397), 
while the posterior medians of F2020/FMSY (Table 2) were similar at about 1% for the current fishing mortality 
about the fishing mortality at MSY. The most notable differences between the two scenarios were therefore the 
increased uncertainty about the fit to the historical SPA-LL index and the slightly lower total surplus biomass 
scale for the full model (1,166 t) but the confidence bounds overlap completely between model scenarios 
(Figure 8).  
 
The sensitivity runs indicated that the full model was largely robust to alternative assumptions about r, the terminal 
year (2020 or 2015), and the observation and process errors (Figures 9 and 10). Assuming a higher prior mean 
for r showed a limited effect on the current stock status in terms of B2020/BMSY and F2020/FMSY, and resulted in 
similar estimates of MSY (Figure 10). The only effects on stock status estimates were observed when the terminal 
year of the model was changed to 2010 or 2015, however, the confidence bounds of the estimates of MSY, BMSY, 
and K have substantial overlap. Decreasing the process error to 0.1 resulted in a slightly higher r.  
 
The Jackknife index analysis, applied to the full model by removing one index at a time, showed that removing 
the ‘FRA-LL’ was the most influential with regard to the stock status trajectories and fishing mortality trend 
particularly in the period 1970 to 2000. (Figure 11). Next, the NOR-LL index exclusion also had an intermediate 
effect on the trajectories of biomass and fishing mortality. If the survey index is excluded, the trend of biomass 
since 2010 changes, with a perception of a more rapid biomass increase in recent years (Figure 11).  
 
The retrospective analysis applied over a horizon of five years to the ref and full models (Figures 12-13) indicated 
a better retrospective pattern for the ref model (Figure 12), however, Mohn’s estimates for both models fell within 
the acceptable threshold of -0.15 and 0.2 for long live species (Huerto-Ferro et al., 2015). Except for Mohn’s 
estimate of F/FMSY, which was slightly lower than -0.15 in the full model (Table 3, Figure 12).  
 
Hindcasting cross-validation results were limited as there is only one index in the last decade (the composite 
survey-index 2018/19) and suggested that the Survey-Index has some prediction skill for both the ref and full 
model scenarios as judged by the MASE scores < 1 (Figure 14), which provides a means to validate that short-
term forecast are consistent with the ‘future’ observations that were unknown to the model (Kell et al., 2021). The 
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MASE scores for the Survey index were close to 0.8 the prediction residuals appeared relatively small. Generally, 
MASE scores were marginally better in the ref model.  
 
The surplus production phase plots show similar trends for both the ref and full scenarios, suggesting that the 
stock has been in an overfished state since the 1950s, but with fishing pressure dropping below FMSY in the last 
decade (Figures 8 and 15). Catches have exceeded MSY for several years while biomass remained below BMSY 
and from 1946 onwards and these high catches were no longer sustainable and decreased to less than 400 t at the 
beginning of the 1960s, however, new fisheries were developed, and by the mid-1970s catches were close to 2000 
t, however, catches decreased even more and since the 1980s they oscillating around 500 t until 2010 when due 
to the ban on porbeagle retention, the catch has almost disappeared. The northeast porbeagle stock was overfished 
and experience overfishing (e.g. red quadrant) for most of the time series (1960-2010), which brought the biomass 
to very low levels (0.14 B/BMSY in 2005). After 2010, with the implementation of strong measures, fishing pressure 
had substantially decreased, and the stock biomass has been able to increase albeit at a slow pace given the 
biological characteristics of the porbeagle. At present (2020), the probability that the stock is overfished and that 
overfishing is currently occurring (e.g. red quadrant) is estimated to be 0% for both the ref and full models (Figure 
15). However, both scenarios indicate that the stock is still overfished (~ 0.45 B/BMSY) but fishing mortality is 
currently well below FMSY, (~ 0.01 F/FMSY ) (e.g. yellow quadrant) with a 98% probability. Given that in the last 
decade commercial catches stopped hence no fishery-dependent indices of abundance are available, and only 2 
observations (2018/19) are available from a Survey in the Bay of Biscay area, there is high uncertainty in the 
recovery trend of this stock. Nonetheless, the sensitivity runs with terminal years of 2010 and 2015, showed 
consistent trends of biomass and fishing mortality compared to the ref and full model runs, as well the estimated 
reference points, indirectly supporting the stock status determination and conclusions in 2020.  
 
In line with the recommendations by the 2021 ICCAT Working Group of Stock Assessment Methods (WGSAM), 
we evaluated the plausibility of two alternative JABBA model scenarios for the northeast porbeagle based on best 
practices in using model diagnostics (Carvalho et al., 2021). These criteria are: (1) model convergence, (2) fits to 
the data, (3) model consistency (e.g. retrospective patterns), and (4) prediction skill. Our results suggest that full 
represents the most plausible candidate model for the northeast porbeagle stock status. Specifically, the full model 
converged adequately, provided a robust fit to the data, and is largely consistent retrospectively, while including 
all available information on indices of abundance. However, due to the limited number of indices in the last 
decade, the hindcasting cross-validation test was limited, and no conclusion was reached about desirable 
prediction skill.  
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Table 1. Model specifications of alternative productivity and variance parameters used in the sensitivity analysis 
for the full model. r-prior: mean value of the prior for r, σobs_index: observation error assumption for the indices, 
σproc: process error assumption. 

Run  r-prior  σobs_index σproc Description 

End year 2000 0.059 CV indx est Catch and index final year 2000 

End year 2015 0.059 CV indx est Catch and index final year 2015 

Fixed Process 
error 0.059 CV indx 0.1 Fixed process error 

High r prior 0.177 CV indx est Increased r prior mean by factor of 3 

low se Survey  0.059 CV indx est lower fixed observation error Survey  

 

Table 2. Summary of posterior quantiles presented in the form of marginal posterior medians and associated the 
95% credibility intervals of parameters for the Bayesian state-space surplus production models for northeast 
porbeagle reference and the “full” (all 4 indices of abundance) model runs. 

  Reference   Full 

Estimates Median 2.50% 97.50%   Median 2.50% 97.50% 

K  64,247   40,803   108,337    61,275   38,247   126,950  

r 0.05434 0.03218 0.08449  0.05169 0.02883 0.07972 

ψ (psi) 0.92452 0.67969 0.99702  0.92869 0.68636 0.99724 

σproc 0.11800 0.05200 0.19400  0.11800 0.05600 0.19300 

FMSY 0.054 0.032 0.083  0.051 0.028 0.079 

BMSY  23,776   15,100   40,093    22,676   14,154   46,981  

MSY  1,286.4   825.6   1,849.4    1,166.0   721.9   1,870.0  

B1926/K 0.901 0.629 1.162  0.91 0.64 1.16 

B2020/K 0.147 0.063 0.309  0.189 0.074 0.391 

B2020/BMSY 0.397 0.17 0.836  0.511 0.201 1.057 

F2020/FMSY 0.014 0.007 0.033   0.012 0.006 0.028 
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Table 3. Summary Mohn’s rho statistic for the reference (Ref) and full models, computed for a retrospective 
evaluation period of five years. Estimates in green are within the suggested range of acceptable values for long 
live species (-0.15 to 0.20, Hurtado-Ferro et al., 2015).  

  Stock Quantity 

Scenario B F B/BMSY F/FMSY B/K MSY 
Ref  0.096 -0.086 0.144 -0.147 0.144 0.033 
Full 0.120 -0.105 0.139 -0.173 0.139 0.060 

 
 
 

 

Figure 1. Catch time series 1926 – 2020 in metric tons (t) for the northeast Atlantic porbeagle. 

 

Figure 2. Time-series of relative indices of abundance scaled to their mean considered in the JABBA stock 
assessment for northeast porbeagle. Error bars represent the + one standard error of the annual index estimates.  
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Figure 3. Time-series of observed (circle) with error 95% CIs (error bars) and predicted (solid line) CPUE (top) 
and Runs tests to quantitatively evaluate the randomness of the time series of CPUE residuals (bottom) for the 
northeast porbeagle reference scenario (Ref). On the top panel, the Dark shaded grey areas show 95% credibility 
intervals of the expected mean CPUE and light-shaded grey areas denote the 95% posterior predictive distribution 
intervals. On the bottom panel, green areas indicate no evidence of lack of randomness of time-series residuals 
(p>0.05) while red panels would indicate the opposite. The inner shaded area shows three standard errors from 
the overall mean and red circles identify a specific year with residuals greater than this threshold value (3- sigma 
rule). 

  



155 

 

Figure 4. Time-series of observed (circle) with error 95% CIs (error bars) and predicted (solid line) CPUE (top) 
and Runs tests to quantitatively evaluate the randomness of the time series of CPUE residuals (bottom) for the 
northeast porbeagle “full” model. On the top panel, the Dark shaded grey areas show 95% credibility intervals of 
the expected mean CPUE and light-shaded grey areas denote the 95% posterior predictive distribution intervals. 
On the bottom panel, green areas indicate no evidence of lack of randomness of time-series residuals (p>0.05) 
while red panels would indicate the opposite. The inner shaded area shows three standard errors from the overall 
mean and red circles identify a specific year with residuals greater than this threshold value (3- sigma rule). 
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Figure 5. JABBA residual diagnostic plots for alternative sets of relative abundance indices examined for each 
scenario (Left column: reference scenario Ref; Right: “full” model) for northeast porbeagle. Top panels: Boxplots 
indicating the median and quantiles of all residuals available for any given year, and solid black line show the 
loess smoother through all residuals. Bottom panels: Process error deviates (median: solid line) with shaded grey 
area indicating 95% credibility intervals. 
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Figure 6. Prior and posterior distributions of various models and management parameters for the reference 
scenario for northeast porbeagle. PPRM: Posterior to Prior ratio of means; PPRV: Posterior to Prior ratio of 
variances. 
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Figure 7. Prior and posterior distributions of various models and management parameters for the full model for 
northeast porbeagle. PPRM: Posterior to Prior ratio of means; PPRV: Posterior to Prior ratio of variances. 
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Figure 8. Comparison stock trajectory estimates for the northeast porbeagle reference scenario Ref (red) and Full 
model (green), showing trends in biomass and fishing mortality (upper panels), biomass relative to BMSY (B/BMSY), 
and fishing mortality relative to FMSY (F/FMSY) (middle panels) and biomass relative to K (B/K) and the surplus 
production curve (bottom panels).  
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Figure 9. Sensitivity analysis performed on the “full” model for the terminal year, alternative productivity (r), 
and variance parameter assumptions described in Table 2. E2010, E2015: terminal year 2010 and 2015 
respectively, high-r: increased r prior mean by a factor of 3, fixed.pe: process error fixed to 0.1, and low.se.Surv: 
lower fixed observation error for the Survey-Index. For comparison values of the reference (ref) model are also 
plotted.  
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Figure 10. Sensitivity analysis done on the full model, plotted estimates of final year biomass over BMSY (B/BMSY), 
final year fishing mortality over FMSY (F/FMSY), Carrying capacity (K), Biomass at MSY (BMSY), MSY, and r for 
the northeast porbeagle (see Table 2 for details). Markers indicate the estimated median of the posterior with the 
upper and lower 95% confidence bounds. E2010, E2015: terminal year 2010 and 2015 respectively, high-r: 
increased r prior mean by a factor of 3, fixed.pe: process error fixed to 0.1, and low.se.Surv: lower fixed 
observation error for the Survey-Index. For comparison values of the reference (ref) model are also plotted 
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Figure 11. Jackknife index analysis performed on the full model, by removing one CPUE index at a time and 
predicting the trends in biomass and fishing mortality (top row), biomass relative to BMSY (B/BMSY), and 
fishing mortality relative to FMSY (F/FMSY) (middle row) and biomass relative to K (B/B0) and surplus production 
curve (bottom row) from the Bayesian state-space surplus production model fitting to the northeast porbeagle 
catch and index series. 
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Figure 12. Retrospective analysis performed for the reference scenario, by removing one year at a time 
sequentially (n=5) and predicting the trends in biomass and fishing mortality (upper panels), biomass relative to 
BMSY (B/BMSY) and fishing mortality relative to FMSY (F/FMSY) (middle panels) and biomass relative to K (B/K) 
and surplus production curve (bottom panels) for each scenario from the Bayesian state-space surplus production 
model fits to northeast porbeagle. 
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Figure 13. Retrospective analysis performed for the “full” model, by removing one year at a time sequentially 
(n=5) and predicting the trends in biomass and fishing mortality (upper panels), biomass relative to BMSY (B/BMSY) 
and fishing mortality relative to FMSY (F/FMSY) (middle panels) and biomass relative to K (B/K) and surplus 
production curve (bottom panels) for each scenario from the Bayesian state-space surplus production model fits 
to northeast porbeagle. 
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Figure 14. Hindcasting cross-validation results (HCxval) for the reference scenario (top) and the “full” model 
(bottom) for northeast porbeagle, showing one-year-ahead forecasts of the Survey CPUE values (2018-2019), 
performed with five model hindcast runs. The CPUE observations, used for cross-validation as prediction 
residuals, are highlighted as color-coded solid circles with associated light-grey shaded 95% confidence interval. 
The model reference year refers to the end points of each one-year-ahead forecast and the corresponding 
observation (i.e. year of peel + 1). 
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Figure 15. JABBA surplus production phase plot for the reference run (top row) and the “full” model (bottom 
row) showing trajectories of the catches in relation to the BMSY and MSY (left column) and Kobe phase plot showing 
estimated trajectories (1926-2020) of B/BMSY and F/FMSY for the Bayesian state-space surplus production model 
for the northeast porbeagle (right column). The probability of terminal year points falling within each quadrant is 
indicated in the figure legend. 

 


