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A B S T R A C T   

The collection of accurate fisheries catch data is critical to ensuring sustainable management of tuna fisheries, 
mitigating their environmental impacts and for managing transboundary fish stocks. These challenges are 
exemplified by the western Pacific tuna longline fishery, who’s management includes >26 nations, but is 
informed by critically low coverage of fishing activities by scientific observers. The gap in observer data could be 
filled by electronic monitoring (EM), but there are few trials that span multiple nations. A large-scale trial of EM 
systems on tuna longliners based in Palau, Federated States of Micronesia and the Republic of the Marshall 
Islands, is reported on. Comparisons are made of catch rates of market and bycatch species in corresponding EM, 
logbook and human observer data. Retained species were under-reported in logbooks by up to three times and 
discards of many species were not reported in logbooks. Discards identified in the EM data included threatened 
species such as marine turtles. Catch rate estimates from EM data were comparable to those estimated by human 
observers. EM data recorded a higher species diversity of catches than logbook data. Analysis of the EM data 
indicated clusters of bycatch that were associated with specific fishing practices. These results suggest further 
expansion of EM could inform improved management of both target and bycatch species. Ultimately greater 
coverage of EM data could contribute to reconciling debates in international stock allocation schemes and 
support actions to reduce the impacts of the fishery on threatened bycatch species.   

1. Introduction 

Fisheries management authorities rely on accurate catch records to 
determine controls on fishing effort, determine appropriate license fees, 
and to manage environmental impacts on bycatch species. Catch data 
recorded by scientific observers who are employed independent from 
the fishery operation provide more complete and accurate data than 
vessel-reported logsheet data [1–3]. Collecting accurate catch data for 
the highly migratory species caught in tuna fisheries poses additional 
challenges, because tuna fisheries operate over large areas, are at sea for 
long durations and often fish across multiple exclusive economic zones 

(EEZ). The multi-national longline fleet operating in the tropical waters 
of the western and central Pacific Ocean region exemplifies the complex 
catch monitoring issues: it has a footprint covering nearly half the Pa-
cific Ocean, includes both local and distant water fleets, targets a diverse 
range of taxa with a multitude of fishing practices, and its management 
by the Western and Central Pacific Fisheries Commission (WCPFC) in-
cludes 26 jurisdictions as members and seven participating territories. 
Longline fleets typically have low observer coverage [4] and many fleets 
are not meeting the 5% minimum observer coverage rate recommended 
by the WCPFC [5,6]. There is therefore little fisheries independent data 
to validate self-reported logbook records. Consequently, regional 
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assessments of endangered, threatened and protected species (e.g., [7, 
8]) are not representative of all fleets and geographies, so their findings 
may be misled by biased data inputs [9]. It is also unknown how much 
catch is discarded, whether the catch locations reported in logbooks are 
accurate, or how much catch is transhipped at sea [10]. Insufficient 
catch data is impeding environmentally sustainable management of the 
fishery and may compromise the management of stocks that are rapidly 
adapting their distributions in response to a changing climate [11]. 

Catch data for longline vessels is recorded in logbooks by ship cap-
tains, by human observers and recently by electronic monitoring (EM) 
systems. EM systems are increasingly being integrated into longline 
fishery monitoring [12], but there are few comparisons of their efficacy 
compared to other types of monitoring [13]. Evidence for their useful-
ness for science and compliance is needed to convince governments and 
regional fisheries management organisations to scale-up EM programs to 
cover entire fleets [10,12]. EM systems have been trialled in several 
locations [14], including on western Pacific tuna longline vessels [10, 
15,16]. Trials on tuna pelagic longliners suggest that EM is able to 
collect most data fields that are needed for fishery monitoring [10,15], 
but the cost of the systems and data review, the logistics of installation 
and remote diagnostics and maintenance have hindered further expan-
sion of EM programs. Analysis of data from multiple fleets is needed to 
evaluate their usefulness to management and inform governments on 
whether these systems should be adopted for catch data collection. But 
to date, comparisons of EM and logbook data on Pacific longliners have 
been limited to a few trips, and cross-nation comparisons are lacking. 

This study analysed data from a large-scale EM trial that commenced 
in 2016 and is ongoing: The Nature Conservancy-Pacific Islands Coop-
erative Longline EM trial [12]. The trial collected data from 98 longline 
fishing trips that ranged from weeks to months in length and across the 
EEZs of three Western-Pacific island nations: Republic of Palau, Re-
public of the Marshall Islands and the Federated States of Micronesia. 
Conventional human observer coverage rates on longline vessels 
licensed to fish in these countries are extremely low, and little is known 
about catches beyond what is recorded in mandatory self-reported log-
books and the sparse observer data collected to date [17]. Previous 
technical reports have indicated EM detects higher rates of discards, 
market species and greater species diversity than logbook data [18], but 
these trials were limited to a few trips. Further most longline trials in the 
Pacific have used <10 vessels and have not compared across different 
EEZs [13]. The new data analysed here includes 98 trips across 15 
vessels and 3 EEZs. The aims were to (1) estimate differences between 
EM and logbook reporting rates for the main market tuna species (yel-
lowfin, bigeye and albacore) and key bycatch groups (all species other 
than the main targeted tuna species, including sharks, turtles, billfish 
and other fish species), (2) compare catch rates in EM to human observer 
data, (3) compare EM and logbooks for species composition, (4) inves-
tigate whether EM can inform bycatch mitigation by looking at how 
fishing practices affect clustering of bycatch within sets, and (5) explore 
the representativeness of the current EM trials, to make suggestions for 
the utility of EM to improve monitoring coverage of different fleet 
components. 

2. Methods 

2.1. Data collection 

Data were collected by EM analysts working for national fisheries 
agencies with funding support from the TNC Pacific Islands Cooperative 
Longline EM project. The TNC-Pacific Islands Cooperative Longline EM 
Project initiated in 2016 for pelagic tuna longline fisheries operating in 
the Republic of the Marshall Islands (RMI), Republic of Palau and the 
Federated States of Micronesia (FSM) exclusive economic zones (EEZ). 
Fleet characteristics varied across the EEZs. In Palau EM systems were 
deployed on Taiwanese flagged vessels based in Koror, Palau and on 
Japanese flagged vessels based in Naha, Japan. Both Palau EM fleets 

serviced the fresh fish market and fished in the Palau EEZ and adjacent 
high-seas zones. The Japanese data set only included information from 
fishing that occurred within the Palau EEZ per licensing agreement with 
Japan. In FSM, only large vessels with ultra-low temperature freezer 
capacity that were undertaking long trips had EM installed. Smaller 
locally based vessels operating in FSM that service fresh fish markets 
were not covered. In RMI, vessels were of similar capacity to FSM, but 
fishing for the fresh tuna market (generally making trips of ~2 weeks). 
The EM annotated data and the associated logbook data for the trips 
under review were authorized for release by the country’s Fisheries 
Authorities. The Pacific Community (SPC) then provided data for EM, 
log sheet and observer data from their regional databases. 

The EM equipment, supporting software, and remote diagnostics and 
maintenance were provided by Satlink LLC and consisted of their Sea 
Tube Lite EM system (Fig. 1) with central processing unit and monitor 
located in the vessel wheelhouse, 3–4 high resolution digital video 
cameras, and a standalone VMS/GPS antennae that provided indepen-
dent watermarked stamps of date, time, and location on each video 
frame. The cameras were configured to cover the areas of normal fishing 
activities and record continuously (24/7) with fields of view including: 
(i) the setting station at the stern, (ii) the processing station in front of 
the wheelhouse looking towards the bow, and (iii) hauling station astern 
of the bow bulkhead. A fourth camera mounted at a high vantage point 
could capture transhipment and rendezvous events, though those data 
were not analysed here. The raw videos and associated meta-data files 
were stored on mechanical hard disk drives. Videos were converted to 
annotated data sheets in country by EM analysts. These EM analysts 
were experienced fisheries observers certified by the Pacific Islands 
Regional Fisheries Observer Programme and who were trained by the 
Digital Observer Service (a subsidiary of Satlink) in the Sat View Man-
ager Review Software. 

For each fishery, all available set-level EM data was matched to 
logbook data obtained from SPC using the vessel name, trip start date 
and set start time (Table 1). For RMI there were also human observer 
data, (566 sets, with 474 human observed sets matching logbooks data 
and 92 sets having EM, logbooks and human observer collected data). 
Fishing sets were matched by the commencement of the setting opera-
tion being initiated on the same day. Occasionally there were two sets 
which commenced on the same day, in this case they were matched 
using the time of day they were initiated. Sets that could not be reliably 
matched were excluded from the analysis that compared logbook, 
human observer and EM catch rates. All EM data were used in the 
analysis of bycatch species clusters. 

Both the depth of sets and the time of day can influence catch rates of 
different taxa [17,19]. There were no data on fishing depth, however 
hooks between floats is often used as a proxy for depth. Only Palau 
showed variation in hooks between floats, having two clusters of sets 
with either <7 or >15 hooks between floats. Therefore, deep sets were 
defined in Palau as having more than 15 hooks between floats [17], 
though hooks between floats is an imperfect proxy of fishing depth (e.g., 
[20]). In Palau 33 of 110 sets had <7 hooks between floats, all other sets 
had more than 15 hooks between floats. In Palau, deep sets were 
generally initiated in daytime, shallow sets at night-time. Time of day of 
initiating the set varied across the other EEZs. The majority of sets were 
initiated in the early morning for vessels fishing in the FSM and Palau 
EEZs, and initiated in late afternoon for the RMI EEZ. 

2.2. Aims 1 and 2: comparison of EM, human observer and logbook 
reporting rates 

Differences in reporting of retained catch of target market tuna 
species (hereafter main target species) and differences in bycatch taxa 
for the matched logbook and EM data were analysed. The RMI com-
parisons, additionally included any sets that had matched logbook and 
human at-sea observations. The main tuna species retained were bigeye 
tuna, yellowfin tuna and albacore. Bycatch was aggregated into four 
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groups; billfish, sharks, turtles and other bycatch, because the sample 
size of the EM data was not sufficient to estimate species-specific dif-
ferences in catch rates. For each bycatch group rates of retained and non- 
retained (escaped or discarded) catch were estimated. 

Models for catch rates were estimated with Bayesian generalized 
linear mixed effects models fitted for each species and EEZ. The models 
had as a response the catch of each species group per set per observation 
method (EM, human or logbook). A fixed effect for observation method 
was included, to enable a direct estimate of the difference in reporting 
rate. For Palau, a fixed effect for set depth (deep versus shallow) was also 
included. The data were not balanced enough across times of day in any 
EEZ to include an effect of time of day. 

The models had an offset for the number of hooks per set, so esti-
mates were presented as catch rates (per 1000 hooks). Sets and trips 
were modelled as independent identically distributed random effects, to 
account for clusters of catch by sets and trips. The final model had the 
form: 

ln(Catch per set) = hooks + b1 * method[EM or logbook] + b2 
* depth + zset + ztrip. 

The models used either Poisson or Negative Binomial error distri-
butions for their residuals. Weakly informative priors for the fixed ef-
fects were used (normal mean 0, SD = 10). Student-t prior (with 
parameters 10, 0, 1) was used for the standard deviations of random 
effects. Model fits were verified with plots of Dunn-Smyth residuals [21] 
and empirical semi-variograms were used to verify there was no spatial 
autocorrelation. The best model for each taxa and EEZ was selected as 
the model with the lowest WAIC [22]. 

Models were fitted using the Bayesian Regression Models using Stan 
R package (‘brms’ [23]). Bayesian estimation was performed with the 

Hamiltonian Markov chain no U-turn sampler, fitting each model with 
four chains, performing 3000 samples as the burn-in and then 3000 
samples for estimation. Convergence was checked using standard visual 
diagnostics and by confirming the Rhat statistic was <1.01 for all 
parameters. 

2.3. Aim 3: species identification 

Patterns in species level identifications were comparing graphically 
for matched logbook and EM sets. To summarize this analysis, graphs 
were made of the total number of species in logbooks and EM and also 
the difference in number of species seen on matched sets. 

2.4. Aim 4: clustering of bycatch 

The fourth aim sought to identify whether the EM data could support 
bycatch mitigation measures, like spatial or temporal closures or 
changes to fishing practices. Multivariate models were constructed to 
identify clusters of bycatch and market species catch. Ideally the 
modelling would include covariates relating to drivers of bycatch (e.g., 
[17,19]), however for most EEZs there was not sufficient data on fishing 
practices to do this. Therefore, correlations among catches of species 
groups were estimated, where strong positive correlations among groups 
indicate clustering of catches for those groups on particular sets. Such 
clustering may be indicative of fishing certain practices. All EM data 
were used in this analysis (Table 1), as opposed to Aim 1 where only 
matched sets were used. This larger sample size meant it was possible to 
model a finer taxonomic resolution than for Aims 1 and 2. Species level 
data were used where possible, but species were combined by higher 
order taxonomic groups if there were less than 20, 40 and 80 individuals 
for Palau, FSM and RMI respectively. This aggregation was done to 
ensure reliable model parameter estimates, but resulted in differences in 
species grouping among countries. The species or groups of discards 
were: blue shark (Prionace glauca), silky shark (Carcharhinus falciformis), 
thresher sharks (Alopias spp.), mako sharks (Isurus spp.), other sharks, 
marine turtles, billfish and other groups (whales, birds, fish, etc.). 
Included market catch consisted of yellowfin (Thunnus albacares), bigeye 
(T. obesus), skipjack (Katsuwonus pelamis), albacore (T. alalunga), oilfish 
(Ruvettus pretiosus), swordfish (Xiphias gladius), shortbill spearfish (Tet-
rapturus angustirostris), black marlin (Makaira indica), blue marlin 
(Makaira nigricans), striped marlin (Kajikia audax), wahoo 

Fig. 1. The Satlink Seatube Lite EM System (A); example images of the EM system: Working deck camera, showing catch of opah (B); working deck camera showing 
catch of marine turtle (C); and catch of a yellowfin tuna (D). 

Table 1 
Sample sizes for matched logbook and EM sets. Values in brackets indicate total 
EM sample size, including sets that could not be matched to logbook records.  

Exclusive economic zone Vessels Trips 
(total) 

Sets 
(total) 

Dates 

Palau  5  13 (13)  108 (110) Sep 2016 - 
Apr 2017 

Federated States of 
Micronesia (FSM)  

4  5 (8)  195 (363) Nov 2016 - 
Apr 2017 

Republic of the Marshall 
Islands (RMI)  

6  73 (77)  749 (782) Feb 2017 - Sep 
2018  
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(Acanthocybium solandri), snake mackerel (Gempylus serpens), dolphin 
fish (Coryphaena hippurus), great barracuda (Sphyraena barracuda), 
Indo-Pacific sailfish (Istiophorus platypterus), Sickle pomfret (Tar-
actichthys steindachneri), opah (Lampris guttatus) and escolar (Lep-
idocybium flavobrunneum). Marine turtles were grouped for analysis, 
rather than reporting individual species, because turtle catches were 
rare and it can be difficult to identify species if the shell is not presented 
to the camera. 

Correlations among catch of taxa were estimated by fitting multi-
variate generalized linear models to all EM data for each country. Esti-
mation was performed with Bayesian ordination and regression models 
[24]. These models construct multivariate ordinations that represent 
correlations among catch of different taxa. For each EEZ, multiple 
models were fitted with all combinations of 2–5 latent variables and 
Poisson and negative binomial distributions for the catch data. The 
Palau models also included fixed effects for set depth (77 deep versus 33 
shallow sets) and initiating time, where time was classified into two 
categories: morning/daytime (5:00 – 15:00, 85 sets) versus after-
noon/night (15:00 – 05:00, 25 sets). The set times were for initiation 
time only, and do not reflect different soak times, for which there was no 
data in the logbooks. Together, set times and depths may reflect 
different fishing practices, because most deep sets were in the mor-
ning/day category (69 sets) and most shallow sets were in the after-
noon/night category (17 sets). For FSM and RMI the sets all had similar 
initiation times and hooks between floats, so there was not enough 
variation in the data to include fixed effects for fishing practices. 

All models included trip as a random effect. Estimation was per-
formed with a Gibbs Sampler [25], using a burn-in of 10,000 samples, 
followed by 80,000 iterations, thinning for every 30th sample. The 
optimal model for each EEZ was selected based on two considerations: 
(1) visual inspection of each model’s Dunn-Smyth residuals to verify 
model fits; (2) model complexity, where simpler models were preferred 
to more complex models if the differences in Dunn-Smyth residuals were 
minor. Results for the correlations among catches not attributable to 
fixed effects were visualized with ordination plots [26]. The magnitude 
of the fixed effects was plotted with medians and 95% credible intervals. 

2.5. Aim 5: representativeness of EM data 

The catch rate estimates and bycatch estimates using EM were 
contingent on several assumptions. Importantly, they assume that the 
EM trials are a representative sample of all sets and trips. To check for 
representation bias, hooks and trip duration as reported in logbook data 
by trips with and without EM were compared. Vessel length was also 
compared between all logbook data and EM data, for vessels that had 

this data available, because vessel length is one indicator of fishing 
practices for which data are widely available [27]. 

3. Results 

3.1. Aims 1 and 2: comparison of EM, human observer and logbook 
reporting rates 

Overall catch rates for retained market species (albacore, bigeye and 
yellowfin tunas), and retained bycatch of billfishes and sharks were 
similar across the three EEZ’s (Fig. S1). For all EEZ’s the primary tuna 
species retained were yellowfin and bigeye, with 2–4 fish per 1000 
hooks on average (Fig. S1). The higher catch rates of these tuna when 
compared to other species indicated that they were the main target 
species, for example, retained billfish catches were <1 fish per 1000 
hooks and albacore catches were <1 fish per 10,000 hooks (Fig. S1). 

Set-level analyses revealed considerable discrepancies between 
logbook and EM catch rates on a per-set basis (Fig. 2). The highest rate of 
under-reporting for the presumed target tuna was for yellowfin in Palau 
and RMI (up to 1.3 times higher in EM than logbooks). Reporting of 
retained billfish was generally close between logbooks and EM, except 
for Palau where EM had 2 times as much billfish as logbooks. 

Discards of tuna, billfish and turtles were almost never reported in 
logbooks, though EM and human observers did observe discards for 
these taxa (Fig.S2). Discard rates were comparable to rates of retained 
catch, for instance rates of shark discards in the Palau fishery were up to 
2 sharks per 1000 hooks on average. Turtle discards were also higher in 
Palau than the other EEZs (up to 0.5 turtles per 1000 hooks on average). 
When comparing Palau’s EM and logbook data, the shark discard rate 
was estimated to be 7.7 times higher (Fig. 2). Shark discards were re-
ported in the FSM and RMI logbooks, and the rates were not different 
from those estimated by EM. A single shark was reported retained by EM 
and human observers in RMI (Fig. S1). 

Catch rates estimated from human observers in RMI were similar or 
slightly lower than estimates from EM data (Figs. 2, S1, S2). Human 
observers reported lower catch of yellowfin relative to logbooks (0.87 of 
logbook catch rates, compared to EM which reported higher catch at 
1.22 times logbook catch rates). Human observers also had lower esti-
mates of catch rates of the ‘other’ bycatch category compared to EM 
(Fig. 2). 

3.2. Aim 3: species richness and diversity 

Logbooks consistently reported fewer species and species groups 
than EM data (Fig. 3A). EM data averaged 8–10 species per set by EEZ, 

Fig. 2. Differences in catch rates of market and bycatch species groups for matched EM and logbook sets (multiples). Points show median, bars show 95% credible 
intervals. Note, y-axis changes between panels. 
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whereas logbooks always reported less than eight species and typically 
reported only five species. Across the entire dataset for each EEZ, log-
books reported at most five different shark groups, whereas EM reported 
up to 12 (Fig. 3B). EM records included catches of oceanic whitetip shark 
that were not in the logbook data, though catches of this species were 
rare (Table S1). Counts of individuals per species suggested that log-
books were reporting most shark catch as blue shark and most billfish 
catch as blue marlin, because there were higher rates of catch of these 
species in logbooks than EM, but lower rates of other species in logbook 
than EM (Fig. S3). Logbooks generally did not report catches of lancet-
fish, pomfrets, escolar and pelagic stingray. 

Turtle species observed in the EM data included leatherback, 
hawksbill, olive ridley and green turtles (Table S1). There were two 
recordings of false killer whale entanglement, both cut free and released 
alive (Table S1). 

3.3. Aim 4: clustering of bycatch 

The multivariate models selected for analysing patterns of EM catch 
had three latent variables in each of the EEZs (Table S1). Models for RMI 
and Palau included fixed effects for the initiation time of sets and the 
Palau model additionally included a fixed effect for set depth. 

For Palau set depth and time of day together explained 33% of 
variation in catch patterns. Shallow sets had higher catch rates of turtles 
and escolar (LEC) (Fig. 4A). Deep sets had higher catch rates of blue 
shark, bigeye tuna and a weak trend towards catching more thresher 
sharks when compared to shallow sets. Time of day was less important 
for explaining differences in catch in Palau than set depth, but there 
were trends towards catching more skipjack and thresher sharks on sets 
initiated in the morning/daytime (which tended to be deeper) and more 
oilfish and silky sharks on sets initiated in the afternoon evening (which 
also tended to be shallower) (Fig. 4B). 

For Palau, there were residual patterns in catch after the fixed effects 
were accounted for, with thresher sharks and swordfish clustering 
together, against skipjack, oilfish and escolar (Fig. 5A). Yellowfin catch 
had a weak negative correlation with blue shark and silky shark catch. 
Swordfish, bigeye tuna and thresher sharks tended to co-occur on the 
same sets. For RMI, there was clustering of albacore and bigeye on some 
sets versus silky and other shark catch on other sets (Fig. 5B). Blue shark 
and pomfret (TST) catch were strongly positively correlated, and 
negatively correlated with turtle catch. Turtle catch was not correlated 
with catch of the main target tuna species. FSM had highest catch rates 
of billfish when compared to the other EEZs (Figs. S1 and S2), enabling 
the model to distinguish a positive correlation between blue and black 
marlin catch rates and a negatively correlation with those groups and 
swordfish (Fig. 5C). Bigeye tuna catch rates were negatively correlated 
with silky shark catch rates. 

3.4. Aim 5: representativeness of EM data 

Trips with EM systems were broadly representative of all trips when 
comparing variables recorded in logbooks, including average hooks per 
set, hooks between floats and trip duration (Fig.S4–7). One exception 
was for FSM, where the duration of trips with EM was on average much 
longer than the 75th quantile for trip duration of non-EM trips. The EM 
trips were representative of the range of vessel lengths in all EEZs except 
for RMI. In RMI, EM trips were exclusively on large vessels, but all 
vessels were in the 20–30 m length range (Fig. S4). 

4. Discussion 

Large differences were identified in reporting of market species catch 
and bycatch between logbook and EM data. For example, estimates of 
yellowfin catches calculated from EM were up to 1.3 (30%) times higher 

Fig. 3. Boxplot of average species richness per set (A) and total number of shark species per EEZ (B). In (A) boxes show median and interquartile range for average 
species richness across different sets within a trip. 

Fig. 4. Effect of set type on catch rates for 
Palau deep versus shallow sets (A) and time of 
the start of the set (B). Positive values indicate 
greater catch rates on shallow sets versus deep 
sets (A) and, afternoon/night versus morning 
(B). Points show median estimates and bars 
95% C.I.s. Species codes: SKJ: skipjack tuna, 
ALB: albacore tuna, YFT: yellowfin tuna, BET: 
bigeye tuna, DOL: dolphinfish, SWO: swordfish, 
BUM: blue marlin, BLM: black marlin, BIL: 
other billfish, MLS: striped marlin, OIL: oilfish, 
LEC: escolar, TST: sickle pomfret, GES: snake 
mackerel.   
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than catch estimates calculated from logbooks. This pattern was even 
more pronounced for discarded bycatch in some EEZs. In Palau esti-
mates of shark discards calculated from EM were almost 8 times higher 
than estimates obtained from logbooks. EM observations from all EEZs 
also had much higher species diversity. These results are consistent with 
some earlier studies that found logbooks under-report discards and 
retained catch, relative to EM or human observer data [2,3,28]. 

The congruence between logbook and EM estimates of catch rates 
varied across species and geographies and notably, catch rates of sharks 
in FSM and RMI were similar between EM and logbooks. The higher 
congruence in FSM and RMI than Palau may reflect better attention paid 
to noting catch in the logbooks as part of the Marine Stewardship 
Council certification criteria for these fleets. Palau may also have lower 
rates of reporting sharks, because catch rates of sharks were much higher 
there (therefore it is more work for the fishing master to report the 
greater catch). Other EM studies have also reported variation in 
congruence between EM and logbooks across species. In Australia’s 
Eastern Tuna and Billfish fishery, logbooks tended to report greater 
catches and interactions with threatened species than EM data, sug-
gesting that logbook records were more accurate than EM [29]. The 
difference between the present study and the Australian case may relate 
to the auditing of logbook catches with EM data in Australia and strict 
penalties if reporting standards are not met. It could also relate to dif-
ferences in training of vessel captains to properly complete logbooks. In 
Australia it was also found that changes to the positioning of cameras 
and the experience of EM analysts improved catch detection and species 
identification by EM over time [29]. As similar experience gains are 
made in the analysis of EM data from Palau, RMI and FSM one could 
therefore expect an increasingly large discrepancy between EM and 
logbook catch rates. The magnitude of underreporting reported here 
highlights existing knowledge gaps that may impact the sustainability 
and well-informed management of western pacific longline fisheries, 
and provides further support for increased electronic or human moni-
toring of longliner catch. 

The extent of underreporting of the main target species landings has 
implication for stock assessments that use logbook data. The magnitude 
of underreporting in logbooks may be an issue if discards mean species 
managed with catch limits are underreported, in particular bigeye tuna 
which has a catch limit [30]. Under-reporting can also bias estimation of 
trends and stock status if certain conditions are met, in particular that 
there are temporal trends in the proportion of unreported catch [31]. 
The bigeye tuna stock assessment findings could be vulnerable to such 
trends if they exist, because it relies on fisheries-dependent datasets 
[32]. Stock assessments for shark species have also suffered from data 
quality constraints. For instance, a main finding from the Pacific-wide 
silky shark assessment was that the available data sources were too 
inconsistent for a complete assessment of stock status [33]. A stan-
dardized observer or EM data source could help overcome this issue. 
Expanding EM coverage across regions and importantly, across years, 
would enable more accurate estimation of multiyear trends in catch and 
CPUE. This could thus support more accurate reporting of catch against 
sustainable stock management targets and support more precise catch 
regulations. EM could also bring economic benefits to countries through 
more accurate charging of revenues for access rights, quotas and 
effort-based fees. 

(caption on next column) 

Fig. 5. Ordinations showing residual correlations among of catch of taxa for 
Palau (A), RMI (B), FSM (C). Vectors pointing in the same direction indicate 
positive correlations between groups, orthogonal vectors have no correlation 
and vectors in opposite directions show negative correlation between groups. 
The length of the vector indicates the amount of variation in that direction. 
Dark grey arrows show retained catch, light grey arrows discarded catch. 
Species codes: SKJ: skipjack tuna, ALB: albacore, YFT: yellowfin, BET: bigeye 
tuna, DOL: dolphinfish, SWO: swordfish, BUM: blue marlin, BLM: black marlin, 
BIL: other billfish, MLS: striped marlin, OIL: oilfish, LEC: escolar, TST: 
sickle pomfret. 
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Global concern has been raised on impacts of longline tuna fisheries 
on vulnerable and threatened bycatch species [34]. In this study the EM 
data provided much more detailed information on species composition 
of bycatch than logbooks, and greater detail on species composition 
could be used to inform ecological risk assessments (e.g., [35]) and 
monitor regional conservation measures. For instance, discarded catch 
of oceanic whitetip shark and silky shark was observed. Oceanic 
whitetip sharks are critically endangered in the Pacific Ocean [7,36] and 
the WCPFC has declared a non-retention Conservation Management 
Measure for both species [6]. Further action to prevent catch of species 
of conservation concern requires detailed data on catch rates for 
different fishing practices, locations and times [35]. For instance, 
shallow sets in Palau were more likely to catch turtles, information that 
could be used to inform conservation management measures for turtles. 
Such analyses are supported in places with high observer coverage rates, 
but such high coverage is often difficult to achieve because of the pro-
grammatic and operational complexities of deploying scientific ob-
servers [37]. Thus, EM may be the only feasible way of obtaining more 
accurate bycatch estimates that can be used to inform mitigation and 
management measures. 

This study can only provide limited information to inform catch 
mitigation measures, but these early results are encouraging. For 
instance, in RMI and FSM the EM data on hooks between floats did not 
suggest much variation in fishing depth, so we could not conduct com-
parisons of how fishing depth affected bycatch rates. The multivariate 
model used to analyse the EM data did allow detecting clustering of 
species catches on sets. This clustering indicated that there are envi-
ronmental or fishery factors that could predict catch patterns. Future EM 
trials could be improved by expanding the fields collected by EM, for 
instance by collecting data on bait types [10,15], or through technology 
that measures additional environmental variables like sea temperature 
[38]. This would allow more precise estimation of how fishing practices 
affect catch rates and species compositions, such as how fishing daylight 
versus night-time hours affects shark catches. 

Electronic monitoring data also enables more comprehensive moni-
toring of conservation actions within national waters. For example, in 
this study considerable discards of sharks were observed within the 
three EEZs, which are all shark sanctuary areas in which targeting and 
retention of sharks is prohibited [39]. Furthermore, retention bans have 
been shown to reduce catch rates of sharks but, as expected, increase 
discarding [40]. Greater EM coverage could provide the data needed to 
monitor the long term impacts of shark sanctuary policies in meeting the 
objective of reducing shark fishing mortality, and inform on further 
actions that could be taken, such as trade bans or prescribed use of 
fishing gear practices that reduce shark catch [39]. For example, the 
clustering of shark catches on some sets indicates that gear, spatial or 
temporal restrictions could prevent clusters of shark catch. The large 
area of Pacific Island Nation EEZs also means enforcement of sanctuaries 
is difficult. The granular level data that results from EM, when combined 
with new technologies, including broader based satellite monitoring 
data, could aid in more efficient enforcement of shark sanctuaries [41]. 
Longer term data could also be used to track repeat offenders, and 
perhaps consider exclusion of those vessels from future fishing oppor-
tunities in the EEZ [41], or to identify how handling practices could be 
improved to increase discard survival rates. Expanded coverage that is 
representative of fleet characteristics (particularly in FSM) and the 
spatial distribution of fishing is needed to investigate the effectiveness of 
alternative policy options for reducing shark capture. 

The catch rates of key taxa were compared between human observers 
and EM data in RMI. It was found that EM tended to have much higher 
catch rates of yellowfin tuna than the human observer data. The reason 
for this difference is not clear. It may be that species identification of 
tuna was more accurate on EM than for observers, because the EM can 
review and re-review the image from multiple angles. Alternatively, EM 
analysts could be misidentifying small bigeye tuna as yellowfin, because 
the two species look similar as juveniles. Differences in the ease of 

counting hooks could also influence catch rate estimates. The misiden-
tification of species that look similar has been an issue in other EM trials 
on longliners and it can be particularly difficult to identify species that 
are discarded from video images alone [29]. For instance, the EM data 
studied here reported hawksbill turtles. It is possible that the hawksbill 
observations are misidentification of juvenile green or olive ridley tur-
tles. An advantage of the EM data over human observer data is that 
videos can be reviewed to check species identification and audited to 
standardize training of EM analysts. Future studies should prioritise the 
collection of paired EM-human observer data, so that biases in the two 
data sources can be more accurately characterized. 

The presence of EM or human observers on vessels may modify 
fishers’ behaviour [1,41,42], and bias EM catch records. It did not 
appear that vessel behaviour was significantly affected by the presence 
of cameras, because there was no evidence for any systematic patterns in 
comparisons of trip length and fishing practices across trips with and 
without EM systems. Further, in RMI and FSM, vessels already have 
CCTV cameras on-board, so crews are used to being recorded while 
working. Anecdotal evidence from the Nature Conservancy-Pacific 
Islands Cooperative Longline EM trial team suggests the crews change 
their behaviour for the first few weeks of EM deployment, then revert to 
‘normal’ practices. However, the data available in this study cannot 
determine if crew behaviour was changed by the EM, for instance, crews 
may have been less likely to retain sharks when cameras were on board. 
Further, the agreements in trial meant there were no legal ramifications 
for non-compliance identified by the EM. Crew and fisher behaviour 
may change if there were legal ramifications. Issues with EM biasing 
behaviour could be overcome with 100% EM coverage and random 
sampling of EM imagery [15]. An advantage of EM over human ob-
servers is that it is feasible to reach 100% monitoring coverage and so 
overcome the bias that observer presence may have on fisher behaviour. 

A primary impediment to expanding EM coverage in the Pacific is the 
cost of the system, its installation, maintenance and EM data review. 
Further, component failures can be challenging to repair in the western 
Pacific, because replacement parts or maintenance teams may not be 
available when and where vessels call to port. Thus, system failure can 
result in EM systems being non-operational for extended periods of time. 
Further work is needed to find ways to reduce the cost of EM data 
collection and analysis and streamline the logistics of system diagnostics 
and maintenance. For instance, maintaining high coverage would 
require local EM service providers to be stationed in key western Pacific 
ports. Cost savings can also be found in the review of EM data. Human 
observer coverage can be optimized to management objectives with the 
highest coverage levels required for detection and analysis of rare spe-
cies catch rates [14,43]. Automated video analysis with machine 
learning tools can also reduce the cost of analysing EM video by 
selecting for catch or monitoring events of interest for careful video 
review and skipping imagery of no management interest [13]. 

The present study analysed EM data from three Pacific EEZs and 
found that EM systems have significant potential to improve monitoring 
and inform management of target and bycatch species on western Pacific 
longline vessels. The EM systems provided data that was complementary 
to human observers, had more detailed identification of species than 
logbook data and reported higher catch rates of market and bycatch 
species than logbook data. EM could support the enhanced observer 
coverage that is needed to inform international fishery agreements, 
especially as highly migratory fish stocks shift distribution under climate 
change [11]. Given the recognized constraints in substantially 
increasing current observer coverage rates, an increased use and reli-
ance on EM seems like the prudent path to pursue. 
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