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Abstract 

Endangered mobulid rays have a conservative life history associated with long 

reproductive cycles and subsequent low population growth rates. Targeted fisheries 

as well as bycatch threaten the survival of mobulid rays. Although attempts have 

been made to reduce overlap between mobulid rays habitat and fisheries, the lack of 

robust knowledge surrounding rays distribution and basic ecology remains a 

hindrance to effective protection. This thesis investigated the spatio-temporal 

distribution and habitat use of the only two mobulid rays that are known to occur in 

the northeastern (NE) coast of Te Ika-a-Māui North Island of Aotearoa New Zealand: 

Spinetail devil ray (Mobula mobular) and Oceanic manta ray (Mobula birostris), 

with the overarching aim to contribute this information to conservation and 

management. Fisheries and citizen science occurrence data were used in a Boosted 

Regression Tree (BRT) model to investigate mobulid rays’ habitat suitability in 

Aotearoa. Along with a spatial model, using long-term averages of environmental 

conditions (i.e., static model), this study assessed temporal changes in habitat 

suitability by considering different years separately (i.e., dynamic model). For both 

species, the 200m depth contour line outlining the continental shelf edge was 

predicted to be an important feature – for Spinetail devil rays demarcating their 

inshore extent and for Oceanic manta rays, their offshore extent. As large filter 

feeders, this is likely related to prey availability and potential evidence of trophic 

separation, in that despite presumed similar habitat requirements, there is clear 

segregation in their distribution. For both static and dynamic models, sea surface 

temperature and chlorophyll-a concentrations were consistently prevalent. Although 

the dynamic models demonstrated that there was a change in habitat suitability 

occurring over time, some of this change was unable to be captured by the variables 

in the model, especially for Oceanic manta rays. Through this study, important 

baseline information has been identified in the NE coast. The high coupling of prey 

availability and distribution for both species poses questions on how their 

distribution may change with climate change and proposed poleward movement of 

prey. Further, the contraction of trophic separation with predicted reductions in prey 

availability create further uncertainties in the future that require additional 

investigation. Increased data availability and deeper understandings of the processes 
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that drive mobulid distribution and habitat use are required for their protection and 

conservation in the wake of current and future threats.  
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1.1 INTRODUCTION 

 

Mobulid rays (family Mobulidae) are large, filter-feeding elasmobranchs in which 

two species: Spinetail devil ray (Mobula mobular) and Oceanic manta rays (Mobula 

birostris) are known to occur in Aotearoa New Zealand waters (Paulin et al., 1982). 

Slow life histories including low reproductive rates, late maturation and slow growth 

has prevented population growth (Myers & Worm, 2003; Stevens et al., 2000; Ward-

Paige et al., 2013) under the pressure of directed and indirect (i.e., bycatch) fisheries 

(Croll et al., 2016; Francis & Jones, 2016). Combinations of biological traits, 

presumed declining numbers and unsustainable interaction with fisheries, have 

resulted in the addition of both mobulid species to be classified as “Endangered” in 

the IUCN Red List (Marshall et al., 2022a; Marshall et al., 2022b). However, a 

perennial hindrance to their conservation continues to be the scarcity of data and 

knowledge, namely on their biology, distribution, habitat preference and abundance 

(Canese et al., 2011; Hacohen-Domené et al., 2017). In Aotearoa New Zealand, the 

Department of Conservation has classified both species as “data deficient” (Duffy & 

Tindale, 2018). Without baseline information, the effectiveness of conservation, and 

management initiatives is limited. Currently, research associated with dedicated 

survey effort is limited globally and most studies are based on opportunistic 

observations (Fortuna et al., 2014). With inferred depletion of mobulid populations 

worldwide and increasing fishing pressure, the collection of baseline information is 

urgently required (Couturier et al., 2012).  

 

Understanding the relationship between environmental conditions and a species’ 

distribution is essential when investigating the habitat requirements of species’ and 

predicting where they are likely to occur (Guisan & Zimmermann, 2000). Although 

scarcity of data remains a central issue to both species, the interaction with fisheries 

and charismatic nature of mobulid rays has meant that observational records do 

exist, albeit with varying reliability (Fortuna et al., 2014). These observations along 

with environmental variable layers can be combined in a species distribution model 

(SDM) (also known as ecological niche models and habitat suitability models) to 

predict the potential spatial distribution of the species (Hacohen-Domené et al., 

2017). SDMs have become widely used in conservation biology to identify priority 

conservation areas and diversity hot-spots, serving as a critical tool in supporting 
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conservation and management (Chavez-Rosales et al., 2019). The relevance and 

application of SDMs have grown rapidly in the wake of increasing anthropogenic and 

climate impacts in the hopes of understanding how this may affect the distribution 

and survival of future biological communities (Dormann, 2007).  

 

The rest of this Chapter outlines the key concepts behind species distribution, 

habitat-use and habitat suitability used in this thesis, as well as an introduction to 

static and dynamic modelling. Study site and study species are introduced and 

modelling framework and introduction to the methodology used is preliminarily 

discussed. Thesis aims and rationales are outlined at the end of the Chapter. No 

published study to date has looked at the distribution and habitat-use of both species 

in Aotearoa New Zealand.  

 

 

1.1.1 Species distribution, habitat use and ecological niches 

 

The quantification of species-environment relationships is a key component to 

marine conservation biology especially for assessing the overlap of distributions 

within areas with high human activity and presence (e.g., shipping, fishing) (Fiedler 

et al., 2018). The extent and impact of these human hazards on species and 

ecosystems can be understood and mitigated. For apex marine predators, key factors 

impacting their distribution are abundance of prey, driven primarily by dynamic 

oceanographic conditions (e.g., sea surface temperature), physiologic constraints, as 

well as physiographic features (e.g., depth, slope) (Ramírez-León et al., 2021).  

 

Species distribution describes the whereabouts of a species in space and time and 

in this thesis is defined as the geographic range of such species. The investigation of 

environmental conditions and factors that influence a species’ distribution can 

support insight of ecological processes or physiological constraints that create and 

affect these patterns (Fiedler et al., 2018). What fundamentally drives distribution of 

a species is the prevalence of their habitat which Hall et al. (1997) describe as, “the 

resources and conditions present in an area that produce occupancy – including 

survival and reproduction – by a given organism…it is the sum of the specific 

resources that are needed by organisms.” Habitat-use is defined as the way in 
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which an organism uses their habitat to meet its life history needs (Jones, 2001). By 

contrast, habitat suitability refers to the probability of habitat use by an animal, 

based on their resource requirements (Manly et al., 2002). This thesis will largely be 

discussing themes of habitat suitability and habitat characterisation and these terms 

will be used in the context to quantify and characterise habitat-use (Giannoulaki et 

al., 2014) and identify environmental factors that are conditioning the occurrence of 

the study species.  

 

It is important to note the differentiation between fundamental and ecological 

(realised) niche. A species’ fundamental niche is defined as the area where the 

physiological performance and ecosystem characteristics are within the species’ 

optimum range, characterised by abiotic conditions (Guisan & Zimmermann, 2000). 

In contrast, the ecological niche additionally includes biotic interactions, competitive 

exclusion and predation which often results in the fundamental niche being a lot 

larger in area than the latter (Malanson et al., 1992; Malanson, 1997). Predictive 

modelling in areas where environmental factors are known but species occurrence is 

unknown provides a cost-effective and optimal method in understanding species’ 

distributions over large areas (Brotons et al., 2004) however, it is crucial to 

acknowledge that without field observations which may include more details 

surrounding associated species, evidence of predation (e.g., markings, scars), the 

model is unable to provide the full picture and is limited to understanding the 

fundamental niche and associated theoretical physiological and biological restraints.  

1.2 STATIC AND DYNAMIC SDM 

 

Oceans are in constant flux and motion, with movement of marine animals 

influenced by dynamic environmental and biological variables that change over 

multiple spatial and temporal scales (Niella et al., 2022). Complex interactions exist 

between the physical and biological environment including many centred around 

animals moving to locate prey patches that are unevenly distributed in space and 

time (Lima, 2002). However, responses of species to dynamic changes in 

environmental conditions are seldom studied (e.g., seasonal, interannual, long-

term). The use of long-term averages (hereafter, “static”) remains the dominant form 
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of species distribution modelling within the literature (Guisan & Zimmermann, 

2000). The disadvantage of using a static SDM is that it assumes equilibrium, or 

pseudo-equilibrium, between observed species’ patterns and the environment 

surrounding. This means the model cannot distinguish between the transient or 

equilibrium response of species to a constantly changing environment and is unable 

to account for migration, adaptation, and plasticity inherent in individual behaviours 

(Guisan & Zimmermann, 2000). associated with seasonal or annual events (i.e., 

breeding) (Robinson et al., 2011). Migratory species may benefit especially from 

SDMs that take temporal changes into account (hereafter, “dynamic”) as they are 

known to rely on highly productive areas including upwelling zones or temperate 

regions that tend to change seasonally (Cropper et al., 2014). Sources of interannual 

variability including El Niño Southern Oscillation (ENSO) are also critical factors of 

species distribution and have been shown to influence mobulids with a poleward 

shift away from warmer waters during a strong El Niño event (eastern Pacific) (Feely 

et al., 1987; Chavez et al., 1999; Lea & Rosenblatt, 2000; Burgess, 2017), which can 

be investigated further with dynamic SDMs. Dynamic SDMs are becoming more 

common with the need to incorporate time to investigate the impacts of climate 

change (Franklin, 2010; Vergés et al., 2016).  

 

Thus, understanding not only static species distributions but distribution shifts 

associated with changing climates has become an increasing field of study and point 

of discussion (Milanovich et al., 2010). Furthermore, adequately identifying past and 

current distributions and how patterns may be shifting over time is critical to 

assessing how future distributions may change in response to climate change and 

may reflect the species’ vulnerability to such changes (Sequeira et al., 2013).  

1.3 STUDY SITE  

 

1.3.1 Region of Study 

 

The study area is in the northeastern (NE) continental shelf of the Te Ika-a-Māui 

North Island of Aotearoa New Zealand (Fig 1.1). The shelf in this region is 

characterised by low salinity, high nutrient waters (Zeldis et al., 2010) which are 

bounded seaward by subtropical, oligotrophic water from the East Auckland Current 
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(EAUC) (Fig 1.2) (Sharples, 1997; Stanton et al., 1997; Zeldis, 2004). The NE 

continental shelf is highly sensitive to wind direction with prevalent westerly winds 

in late winter and spring bringing upwelling favourable conditions (Fig 1.3a) 

(Sharples & Greig, 1998; Zeldis et al., 2004), associated with an abundance of 

nutrients to the surface (Chang et al., 2003) and high primary productivity (Stevens 

et al., 2021). By contrast, easterly winds that increase during late summer and 

autumn elicit downwelling conditions where warmer nutrient-poor water is brought 

to the surface, causing a decrease in productivity (Fig 1.3b) (Zeldis et al., 2004). The 

study site includes Ko te Pataka kai o Tīkapa Moana Te Moananui a Toi Hauraki Gulf 

Marine Park (hereafter referred to as Tīkapa Moana Hauraki Gulf), a large, semi-

enclosed, relatively shallow (< 60m depth) embayment (Fig 1.1) (Wiseman et al., 

2011) with one of the highest shelf primary biomass in the country (Murphy et al., 

2001). The Tīkapa Moana Hauraki Gulf is a critical habitat for many animals 

including cetaceans (Constantine et al., 2015; Hupman et al., 2015; O’Callaghan & 

Baker, 2002; Petrella et al., 2012; Stockin et al., 2008), fish (Campbell et al., 2022; 

Clearwater, 1994; Colman, 1972) as well as a global seabird biodiversity hotspot 

(Rayner et al., 2021).  
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The EAUC is a subtropical (i.e., warm, nutrient-poor, high salinity) current travelling 

from the east coast of Australia, across the Southern Pacific Ocean and down the 

eastern coastline of Aotearoa New Zealand (Fig 1.2) (Jillet, 1971; Sharples, 1997; 

Stanton & Sutton, 2003; Zeldis et al., 2004). Semi-permanent eddies near Otou 

North Cape and East Cape bound the northern and southern extent of the EAUC 

(Roemmich & Sutton, 1998; Stanton et al., 1997) and it is approximately two degrees 

warmer than water around the continental shelf (Sharples, 1997).The NE shelf acts 

as a barrier to this system, causing the EAUC to temporarily intrude across the 

narrow shelf in late summer, impacting the coastal ecology, with immigration of 

offshore tropical species and the alteration of phytoplankton and zooplankton 

assemblages (Francis, 1999; Zeldis et al., 1995). The migration of tropical species in 

response to these intrusion events suggests that such species could be taking 

Figure 1.1 Map of the Ko te Pataka kai o Tīkapa Moana Te Moananui a Toi Hauraki Gulf Marine Park and 
continental shelf region. Green boxes indicate marine reserves and labels indicate islands within the region. 
Isobath lines are shown in grey. The boundary starts just past the Mokohinau Islands, around Aotea and down 
to Ruamaahu Islands. 

 



Chapter 1: General Introduction 

 8 

advantage of bordering coastal waters (cold, nutrient-rich, low salinity) while 

remaining in their optimal temperature ranges (Sharples, 1997; Zeldis et al., 1995). 

In early summer (Dec) with prevailing westerly winds, the EAUC surface water is 

located offshore and past the shelf however, in late summer (Feb), along with the 

shift to easterly winds, the subtropical water moves to the outer shelf, creating a clear 

boundary between the low salinity water of the inner Gulf and the higher salinity 

water of the outer shelf (Sharples, 1997). Thus, the influence of the EAUC on the 

coastal ecology is exacerbated in the late summer with the intrusion of oligotrophic 

water.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 Map of study site showing the generalised path of the East Auckland Current 
(EAUC) and Tasman Front it originates from. 200m, 500m, 1000m isobars are shown.  East 
Cape Eddy is shown at the southern extent of the EAUC. Adapted from Stevens et al. (2019). 
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1.3.2 Drivers of inter-annual variability  
 

1.3.2.1           El Niño Southern Oscillation (ENSO) 

 

The wind-dependence of nutrient supply to the shelf suggests that new nutrient 

supply and productivity will ultimately covary with wind patterns, which are in turn 

forced by large-scale processes such as El Niño Southern Oscillation (ENSO) 

(Broekhuizen et al., 2002; Gordon, 1985). In a typical year, trade winds blow 

westwards over the Equatorial Pacific, causing increased SST and rainfall over the 

Western Pacific (e.g., Indonesia), and decreased SST and increased productivity in 

the Eastern Pacific (e.g., Peru) (Philander, 1983). El Niño events are characterised by 

a weakening in the trade winds causing the West Pacific Warm Pool to disperse east. 

La Niña events are the opposite: trade winds strengthen forcing the West Pacific 

Warm Pool to remain in the south-west Pacific (Hill et al., 2016) (Fig 1.4). These 

Figure 1.6 a) Diagram of downwelling on the eastern coast of the North Island b) diagram illustrating upwelling at the 
eastern coast of the Te Ika-a-Māui North Island. 

 

Figure 1.4 Schematic illustrations of normal (top), El Niño (middle) and La Niña conditions. White circles with a dot 
indicate areas with upwelling conditions. Red arrow represents the movement of warm water.Figure 1.7 a) Diagram of 
downwelling on the eastern coast of the North Island b) diagram illustrating upwelling at the eastern coast of the Te Ika-a-
Māui North Island. 

 

Figure 1.4 Schematic illustrations of normal (top), El Niño (middle) and La Niña conditions. White circles with a dot 
indicate areas with upwelling conditions. Red arrow represents the movement of warm water. 

 

Figure 1.4 Schematic illustrations of normal (top), El Niño (middle) and La Niña conditions. White circles with a dot 
indicate areas with upwelling conditions. Red arrow represents the movement of warm water.Figure 1.8 a) Diagram of 
downwelling on the eastern coast of the North Island b) diagram illustrating upwelling at the eastern coast of the Te Ika-a-
Māui North Island. 

 

Figure 1.4 Schematic illustrations of normal (top), El Niño (middle) and La Niña conditions. White circles with a dot 
indicate areas with upwelling conditions. Red arrow represents the movement of warm water.Figure 1.9 a) Diagram of 
downwelling on the eastern coast of the North Island b) diagram illustrating upwelling at the eastern coast of the Te Ika-a-
Māui North Island. 
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variations at the scale of the Pacific basin affect the local circulation of the NE of 

Aotearoa New Zealand and in particular, of the Tīkapa Moana Hauraki Gulf. The 

interannual variability in physical conditions, nutrient supply and productivity is 

attributed to shifting cycles of ENSO and subsequently, it affects phytoplankton 

abundance, prey availability and ultimately, the distribution of animal communities 

within the Gulf (Mann & Lazier, 1991). During El Niño conditions, there is an 

increased prevalence of north-westerly winds causing upwelling around the shelf and 

a subsequent reduction in sea surface temperature. Conversely, La Niña conditions 

bring south-easterly winds towards to coast, causing downwelling at the shelf and 

higher sea surface temperatures (Broekhuizen et al., 2002; Gordon, 1985; Rhodes et 

al., 1993; Srinivasan et al., 2015). In the Tīkapa Moana Hauraki Gulf, studies 

investigating the impact of ENSO on mammals (Neumann, 2001) and birds 

(Srinivasan et al., 2015) have been conducted however, there is a lack of 

understanding on how it may affect ectothermic (i.e., cold-blooded) fish.  
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Figure 1.4 Schematic illustrations of normal (top), El Niño (middle) and La Niña conditions. 
White circles with a dot indicate areas with upwelling conditions. Red arrow represents the 
movement of warm water. 

 

Figure 1.4 Schematic illustrations of normal (top), El Niño (middle) and La Niña conditions. 
White circles with a dot indicate areas with upwelling conditions. Red arrow represents the 
movement of warm water. 
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The Southern Oscillation Index (SOI), a measure of surface air pressure difference 

between Tahiti and Darwin, is often used as an indication of the development or 

intensity of a El Niño or La Niña event (Srinivasan et al., 2015). A negative SOI 

indicates a El Niño event, and a positive SOI indicates a La Niña, with the intensity 

indicated by the value of the SOI. When neither La Niña nor El Niño event occurs, 

the conditions are considered to be neutral.  

 

 

Figure 1.5 Annual Southern Oscillation Index (SOI) values from 2004 to 2022. Values greater than 0.5 
indicate La Niña conditions (blue), while values less than -0.5 indicate the presence of El Niño conditions (red). 
Data source: NOAA. 

 

During the study years 2004 to 2022, most years have been dominated by La Niña 

conditions, especially 2008, 2010, 2011, 2021 and 2022 (Fig 1.5). Although the 

presence of El Niño conditions is relatively rare in comparison, there is a signal for a 

moderate event in 2015 (Fig 1.5). Variability associated with the EAUC during ENSO 

conditions is still relatively unknown and understudied (Willis et al., 2007).  
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1.3.2.2                Climate change  

 

On top of the uncertainty in how natural variability in oceanographic features are 

affecting animal movement, there is a long-term shift that is being forced by 

anthropogenic climate change. The combination of various climate influences such as 

these are creating immense uncertainty and variability in the understanding of how 

species’ distributions are responding to these changes (Hill et al., 2016). Further, the 

rate of change in response to climate change is nuanced and species specific, with 

some species showing no response (i.e., potential evolutionary adaptation) and some 

showing evidence of range shifts (Poloczanska et al., 2013). Thus, in amongst 

unprecedented uncertainty, it is ever more critical to identify mobulids’ distributions 

and understand how it may have changed overtime to infer how it may continue to 

change into the future.   

 

1.4 STUDY SPECIES 

 

This thesis focusses on two species of elasmobranchs that are seldom studied within 

the study region and the only known mobulid species to occur in Aotearoa New 

Zealand waters: Spinetail devil rays (Mobula mobular) and Oceanic manta rays 

(Mobula birostris).   

 

1.4.1             Spinetail devil ray (Mobula mobular)  
 

1.4.1.1           Taxonomic description  

 

The Mobuilidae family consists of two manta (Manta spp.) species and nine devil 

(Mobula spp.) ray species (Couturier et al., 2012). Spinetail devil rays (Mobula 

mobular) (Bonnaterre, 1788) are pelagic marine fish. Although there are nine 

recognised species within the genus Mobula, to date there is only confirmed 

occurrence of one, Spinetail devil ray, in Aotearoa New Zealand waters (Francis & 

Lyon, 2012). The correct taxonomy of this species has remained challenging due to 

the observational similarities between the Oceanic manta ray, with many 
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descriptions not being taken into the wider taxonomic context, resulting in several 

different names for this species  (Notarbartolo di Sciara, 2020). Notably, it was 

believed to be two separate species: Spinetail devil ray (Mobula japonica) and Giant 

devil ray (Mobula mobular). Due to the misconception that Oceanic manta rays were 

not habitants of the Mediterranean Sea and the misidentification of Spinetail devil 

rays with Oceanic manta rays this resulted in the name, Giant devil ray (Mobula 

mobular) (Notarbartolo di Sciara, 1987). Only recently has molecular methods 

provided strong evidence that these two species are in fact one, which has resulted in 

the revised taxonomic renaming of the Spinetail devil ray as Mobula mobular and 

discontinuation of the Giant devil ray (Notarbartolo di Sciara, 2020).  

 

Spinetail devil rays have a disc width of 2 to 4 metres with a dark stripe stretching 

across the head, with two cephalic fins on either side, giving the species the iconic 

“devil horns” that the name devil ray originates from (Fig 1.6) (Francis & Jones, 

2016). When observed dorsally, the species appears to be a brown to black colour 

with a distinctive purple and blue iridescent shimmer (Fig 1.8) (Fortuna et al., 2014).  

Compared to other Mobula species, they have a spine on the base of their long tail 

which describes their forename, “Spinetail” (Notarbartolo-di-Sciara, 1988). Pectoral 

fins extend outwards, and the species locomotion is driven by the flapping of these 

fins in a wing-like manner, with a sub-terminal or inferior mouth to assist with 

water-column filter feeding (Bradaii & Capapé, 2001; Gill, 1910).  
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1.4.1.2            Distribution 

 

 

Spinetail devil rays have a worldwide distribution in tropical and warm-temperate 

waters with sightings in the Atlantic, Pacific and Indian Ocean (Fig 1.7) (Last & 

Stevens, 1994; Lawson et al., 2017; White et al., 2006). However, most of the studies 

within the literature are focussed only a few locations: Mediterranean Sea (Bradaii 

and Capapé, 2001; Canese et al., 2011; Fortuna et al., 2014; Holcer et al., 2013; 

Notarbartolo di Sciara & Serena, 1988; Notarbartolo di Sciara et al., 2015; Scacco et 

al., 2009) and in the Eastern Pacific Ocean (Croll et al., 2012; Griffiths & Lezama-

Ochoa, 2021; Lezama-Ochoa et al., 2019a; Lezama-Ochoa et al., 2019b; Lezama-

Ochoa et al., 2020a; Lezama-Ochoa et al., 2020b; Notarbartolo di Sciara, 1988), and 

based on a literature review by Lawson et al. (2017) found that there were 2.5 times 

less publications with the name “devil ray” compared to “manta”.  

 

Figure 1.6 Schematic illustration of the physical and visual characteristics of Spinetail devil rays (Mobula mobular). 
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Figure 1.7 Global distribution of Spinetail devil ray (Mobula mobular). Darker blue areas indicating 
confirmed range while lighter areas indicate expected range. Source: Manta Trust. 

 

Although migration routes of Spinetail devil rays have not yet been identified, it is 

hypothesised that individuals take part in seasonal latitudinal migrations to exploit 

productive waters towards the temperate areas in summer, and warmer waters 

towards the equator in winter (Notarbartolo di Sciara et al., 2015). For example, two 

satellite tagged individuals in Aotearoa New Zealand migrated 1400-1800km 

northward to tropical waters around Vanuatu and Fiji near the end of summer 

(Francis & Jones, 2016).  

 

There have been recorded sightings of Spinetail devil rays in Aotearoa New Zealand 

since the late 1950s (first known as manta rays and later identified as Spinetail devil 

ray) (Muller & Henle, 1841). In Aotearoa New Zealand, the distribution of Spinetail 

devil rays is known to be spatially and temporally localised. Observations are mainly 

restricted to the northern Te Ika-a-Māui North Island along the eastern shelf edge 

between Aotea Great Barrier Island and Rākaumangamanga Cape Brett and 

temporally constrained between January and March (Francis & Jones, 2016).  

 

Studies on Spinetail devil rays in Aotearoa New Zealand have been intimately linked 

to fisheries, namely the skipjack tuna (Katsuwonus pelamis) purse seine fisheries, 

which is operational since the mid 1970s, especially around January to March (West, 
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1975; Kendrick, 2006; Langley, 2011). Therefore, the lack of thorough investigation 

on their distribution across the whole country has resulted in apparent gaps in their 

occurrence and may be true absences or a manifestation of detection bias (Francis & 

Jones, 2016). However, Francis and Lyon (2012) point out that their distribution 

should not be an artefact of the effort or distribution of purse seine operations as the 

latter is operational over a wider geographic extent, namely around the northern Te 

Ika-a-Māui North Island (east and west coast), Te Moana a Toi-te-Huatahi Bay of 

Plenty and North Taranaki Bight, whereas the observations of Spinetail devi rays are 

more locally constrained in the NE shelf of the Te Ika-a-Māui North Island (Jones & 

Francis, 2012). Spinetail devil rays breed within Aotearoa New Zealand waters with 

the occurrence of late-term pregnant females, mating behaviour and near-term 

embryos off the eastern coast of the northern Te Ika-a-Māui North Island (Duffy & 

Tindale, 2018; Paulin et al., 1982; Stewart, 2002). 

 

1.4.1.3   Habitat use  

 

Spinetail devil rays occupy pelagic habitats with a preference for warmer waters 

between 18 and 29 °C (Canese et al., 2011; Francis & Jones, 2016). As a filter feeder, 

Spinetail devil rays strain and trap food from the water column with specialised gill 

plates and in the Mediterranean, have a highly specialised diet of macro-

zooplankton, specifically euphasiids (also known as krill) (Meganyctuphanes 

norvegica) (Abudaya et al., 2018; Canese et al., 2011; Fortuna et al., 2014; Francis & 

Jones, 2016; Holcer et al., 2013), in the Philippines they feed on a different species of 

euphasiid (Pseudeuphausia latifrons) and in the Gulf of California, a different 

euphasiid species called Nyctiphanes simplex (Sampson et al., 2010), suggesting 

subtle geographical foraging differences. Spinetail devil rays have also been observed 

consuming small mesopelagic and clupeid fishes (Celona, 2004; Thorrold et al., 

2014). Their highly specialised diet is assumed to explain their well-documented 

ability to dive deep to forage and exploit significant mesopelagic fish and euphasiid 

populations concentrated in deep scattering layers up to 1000m deep (Sardou et al., 

1996; Sutton et al., 2008). Spinetail devil rays undergo diel vertical migration, 

making deep dives during the day and spending more time at the surface during 

night. This behaviour is most likely to follow the movement of their main prey, 

euphausiids, who exhibit diel vertical migration behaviour in response to changing 
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light intensity and to avoid visual predators (Canese et al., 2011; Francis & Jones, 

2016; Shirlamaine et al., 2018). However, time spent deeper than 200m during dives 

is low and most time is spent in the upper 50m, especially at the surface, possibly 

linked to physiological constraints and thermoregulation (Alexander, 1996; 

Andrzejaczek et al., 2022).  

 

Locations which Spinetail devil rays are known to frequent are synonymous with 

upwelling zones such as the Angolan upwelling system and coast of Ghana (Lezama-

Ochoa et al., 2020a), Gulf of California (Croll et al., 2012; Notarbartolo di Sciara, 

1988; Sampson et al., 2010), northern Peru and area close to the Costa Rica Dome 

(Lezama-Ochoa et al., 2019a). This is further corroborated by modelling results by 

Lezama-Ochoa et al. (2019b) that identified chlorophyll (Chl-a) (proxy of 

phytoplankton abundance) and sea surface height (proxy of upwelling), as the most 

important variables for variation in the seasonal distribution of Spinetail devil rays. 

The prevalence of these variables makes sense as for all filter feeding vertebrates 

(Croll et al., 2012).  

 

In Aotearoa New Zealand, Spinetail devil rays occur in SST ranging from 18 to 22 °C 

and their preferred diet is still unknown (Francis & Jones, 2016). Results from a 

satellite tagging study showed that tagged Spinetail devil rays reached depths of 

1112m and the occurrence of Spinetail devil rays peaked at a bathymetric range of 

300 to 350m (Francis & Jones, 2016).  

 

 

1.4.2 Oceanic manta ray (Mobula birostris)  
 

1.4.2.1   Taxonomic description  

 

Oceanic manta rays (Mobula birostris) (Walbaum, 1792), are one of the largest 

known elasmobranchs globally. They are known to be one of the last additions to the 

chondrichthyan family (including all sharks, rays, and skates), with their first 

recorded appearance in the fossil record only five million years ago (Bourdon, 1999) 

and regarded as one of the most evolved and highly derived of all living 

elasmobranchs (Compagno, 1999). Oceanic manta rays have a circumtropical 
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distribution with their range extending from tropical waters to semi-temperate 

waters of the Atlantic, Pacific and Indian Oceans (Fig 1.8) (Bigelow and Schroeder, 

1953; 2009; Ebert, 2003; Gordon & Vierus, 2022; Last and Stevens, 1994; Marshall 

et al., 2009).  

 

 

Figure 1.8 Global distribution of Oceanic manta ray (Mobula birostris). Darker blue areas indicating 
confirmed range while lighter areas indicate expected range. Source: Manta Trust. 

 

Observations in Aotearoa New Zealand waters are restricted to the larger, migratory, 

and more pelagic Manta spp. species, Oceanic manta rays (Manta birostris) (Fig 1.9; 

Compagno, 1999; White et al., 2006; Marshall et al., 2009).  Oceanic manta rays 

have a disc width exceeding 7.1m (Last & Stevens, 2009) with some anecdotal reports 

of up to 9.1m (Compagno, 1999) and weigh more than 1360kg (Bigelow & Schroeder, 

1953). Compared to their close relative stingrays, they have a terminal mouth and a 

broad head (Bigelow & Schroeder, 1953), paddle-like lobes that extend in front of 

their mouth called “cephalic lobes”, that unravel when individuals are feeding with 

their mouth open wide (Fig 1.9) (Girondot et al., 2015; Sanderson & Wassersug, 

1990). Like all planktivorous elasmobranchs, they have gill plates that are adapted to 

filter plankton out of the water column (Bigelow & Schroeder, 1953) where cephalic 

lobes guide water into their mouth and prey gets sieved out before water exists 

through gill slits (Coles, 1916; Paige-Tran et al., 2011). The black diamond-shaped 

dorsal surface has white shoulder patches and distinctive patterns on the dorsal 

surface however, spot patterns on the ventral side have been used to identify 
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individual manta rays (Kitchen-Wheeler, 2010). These patterns are unique to each 

manta and change little over a period of 20 years allowing researchers to distinguish 

between individuals and easily track population dynamics (Ishihara & Homma, 1995; 

White et al., 2006) (Homma, 1999; Kitchen-Wheeler, 2010; Yano et al., 1999). 

Further, observations of a black morph or melanistic form of the species have been 

made worldwide (Barton, 1948; Homma, 1999;; Ebert, 2003) where the dorsal 

surface of the individual is completely black with no white colouration and the 

ventral surface is largely white.  

 

1.4.2.2   Distribution  

 

Oceanic manta rays are often sighted around offshore islands, oceanic seamounts, 

and submarine ridge systems (Homma, 1999; 1999; Kashiwagi et al., 2011; Kitchen-

Wheeler, 2010; Marshall et al., 2009; Yano et al., 1999). Rare and seasonal sightings 

of Oceanic manta rays in southern Brazil (Luiz et al., 2009), the Azores and Similan 

Islands (Couturier et al., 2012), Gulf of Mexico (Graham et al., 2012), Komodo 

National Park in Indonesia (Dewar et al., 2008), Venezuela (Notarbartolo di Sciara & 

Figure 1.9 Schematic illustration of the physical and visual characteristics of Oceanic manta rays (Mobula birostris). 
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Hillyer, 1989), Yucatan Peninsula (Hacohen-Domené et al., 2017), eastern Australia 

(Couturier et al., 2011) and northern Aotearoa New Zealand (Duffy & Abbott, 2003) 

suggest that this species may be highly migratory, with evidence of migrations of 

more than 1400km recorded (Dewar et al., 2008; Hearn et al., 2014; Homma, 1997; 

Marshall et al., 2010). However, recent studies have demonstrated that although they 

are capable of long-distance migration, Oceanic manta rays remain in restricted 

geographic locations and show high site fidelity worldwide (Graham et al., 2012; 

Hearn et al., 2014; Homma et al., 1997; Stewart et al., 2016a). Further, stable isotope 

and genetic data show that long-distance migration is rare and does not generate 

substantial gene flow or interpopulation interaction, demonstrating that Oceanic 

manta rays may form unique and distinct sub-populations in areas they occur, with 

movements only describing areas from coastal aggregation sites to offshore habitats 

(i.e., shorter distance migrations) (Stewart et al., 2016a).  

 

In Aotearoa New Zealand, seasonal sightings of Oceanic manta rays in summer 

(December to April) have been made around the NE shelf of the Te Ika-a-Māui North 

Island around Tawhiti Rahi Poor Knight’s Islands, outer Tīkapa Moana Hauraki Gulf, 

and the Ruamaahu Alderman Islands (Duffy & Abbott, 2003). The temporal window 

within which Oceanic manta rays are observed suggest that they migrate to Aotearoa 

New Zealand waters in summer and move further north toward tropical waters 

during winter (Duffy & Abbott, 2003). Whether they are a resident population is 

unknown however, observations of heavily pregnant individuals, courting behaviour 

and a resighting of an individual (Lydia Green pers comm.)  indicate that breeding 

may occur in Aotearoa New Zealand waters making it a location of site fidelity. 

1.4.2.3   Habitat use 

 

Oceanic manta rays are frequent in warmer waters around 20 to 26 °C (Burgess, 

2017; Clark, 2010; Dewar et al., 2008; Marshall et al., 2011) with a high correlation of 

aggregation sites with high productivity, along coastlines, island groups, offshore 

pinnacles, and seamounts with regular upwelling (forcing of deep, cold, nutrient-

dense waters towards the surface) (Dewar et al., 2008; Luiz et al., 2009; Marshall et 

al., 2009).  
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Oceanic manta rays show a sophisticated ability to select favourable habitats in terms 

of their physiology (e.g., temperature) and energetics (e.g., prey density) shown 

through habitat site fidelity and seasonal aggregations (Dewar et al., 2008; Luiz et 

al., 2009; Marshall et al., 2009). As filter feeders, due to the energetic cost of feeding, 

foraging is likely observed only where prey density is above a certain threshold and a 

strong argument for why this species forms relatively predictable aggregations in 

these high productivity zones (Sims & Quayle, 1998; Sims, 1999; Etnoyer et al., 2006; 

Dewar et al., 2008; Marshall et al., 2009; Papastamatiou et al., 2012). Oceanic manta 

rays’ stomachs can hold up to 631,167 kilocalories (kcal) (Rohner et al., 2017), thus, 

given that capacity it is likely that their target zooplankton blooms comprised of 

euphasiids, myctophid fishes, Sakura shrimp (Sergestes lucens) that occur in swarms 

and blooms in high densities to obtain high energy net gain relative to time spent 

foraging (Bigelow & Schroeder, 1953; Homma, 1999; Wilson et al., 2002; Rohner et 

al., 2017). This sophistication also links to their high degree of behavioural plasticity 

as they can change the depths, they access in relation to zooplankton density as well 

as feeding mode (Blackburn et al., 1970; Stewart et al., 2016b). Recent molecular 

evidence demonstrates a large reliance on demersal or mesopelagic zooplankton food 

sources, similar to that of other mobulid rays, particularly Spinetail devil rays 

(Borrell et al., 2011; Burgess, 2017). 

 

 Zooplankton abundance has strong negative correlation with temperature (Wilson et 

al., 2003) thus, temperature is considered an indirect driver of planktivorous 

elasmobranch aggregative behaviour (Rohner et al., 2013; Wilson et al., 2001). 

However, as Oceanic manta rays are ectotherms whose physiology is dependent on 

optimal temperature ranges, it is also considered a direct driver of distribution 

(Wilson et al., 2003). This is evidenced by the strong seasonal patterns in occurrence 

and subsequent aggregative behaviour (Anderson et al., 2011; Graham et al., 2012; 

Hacohen-Domené et al., 2017).  

 

Oceanic manta rays tend to aggregate near cleaning habitats, often called ‘cleaning 

stations’, characterised by shallow coral or rocky reefs that have high abundance of 

cleaner fish (Youngbluth, 1968; O’Shea et al., 2010; Marshall et al., 2011; Jaine et al., 

2012). Due to their dorso-ventrally compressed body, this species has a high surface 

area to volume ratio (Gray, 1953) making them vulnerable to parasitic load (Grutter, 
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1995) which can impact their fitness. This aggregative behaviour which is more 

observed and studied in Reef manta rays potentially due to these habitats being 

easier to access however, cleaner-client interactions have been observed in Oceanic 

manta rays as well (Burgess, 2017). Nonetheless, prevalence of cleaning stations 

remains an understudied potential driver of aggregative behaviour and distribution 

in Oceanic manta rays.  

 

In Aotearoa New Zealand, habitat-use and selection of Oceanic manta rays remains 

elusive however, their sightings appear to coincide with the EAUC (Duffy & Abbott, 

2003). Researchers part of a citizen-science conservation project, Manta Watch New 

Zealand, observe most sightings occur at a falling tide, with SST between 18 and 

24 °C and where dense patches of euphausiids occur in the Tīkapa Moana Hauraki 

Gulf (Lydia Green pers comm.).  

 

1.5 CONSERVATION AND MANAGEMENT 

 

Globally, Oceanic manta rays and Spinetail devil rays (collectively and hereafter, 

mobulids) populations are in decline (Dewar et al., 2008; Marshall et al., 2011). Both 

species have been listed by the International Union for Conservation of Nature 

(IUCN) Red List with a status of “Endangered” for both indicating population decline 

and a high risk of extinction in the wild (Marshall et al., 2022a; Marshall et al., 

2022b) which has been evidenced in aggregation sites in Mozambique (Rohner et al., 

2013), the Philippines, Indonesia and Mexico (Marshall et al., 2011). Although the 

existence of mobulids have been known since at least the 17th century (Willughby, 

1686) and likely earlier due to the cultural significance of rays in indigenous 

communities (Campbell et al., 2022; McDavitt, 2005), there is a lack of baseline 

knowledge on their basic ecology and biology, restricting the efficacy of conservation 

and management efforts (Alava et al., 2002; Dewar et al., 2002; White et al., 2006; 

Couturier et al., 2012).  

 

The affinity of mobulids to occur in productive habitats in epipelagic zones means 

that their distribution often overlaps with commercial species such as skipjack tuna 

(Croll et al., 2012; Croll et al., 2016). Due to this overlap, mobulids (specifically 
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Spinetail devil rays) are often caught as bycatch in the Mediterranean Sea, eastern 

Atlantic Ocean, central western Pacific Ocean, western Indian Ocean and northern 

Aotearoa New Zealand, especially in tuna purse-seine fisheries (Celona, 2004; Croll 

et al., 2016; Paulin et al., 1982; Scacco et al., 2009). Purse-seine nets are trapezoid 

shaped large nets with a steel cable at the bottom of the net to keep it vertical in the 

water column. When a dense school is present within the confines of the net, the 

cable is pulled tight to close the bottom of the net and prevent fish from escaping and 

incidentally, mobulids are trapped within these nets as well.  

 

Further, there is a growing international market for their gill plates which are 

cartilaginous, thin filaments that mobulids use to sieve zooplankton out of the water 

column, commonly traded as Peng Yu Sai (translated as “Fish Gill of Mobulid Ray”) 

(Fig 1.10; Lawson et al., 2017; White et al., 2006), especially popular in Asia (Dewar, 

2002; Rubin, 2002; White et al., 2006; Rajapackiam et al., 2007; Mohanraj et al., 

2009). The gill plates are used in Chinese medicines and tonics that are believed to 

boost the immune system to prevent sickness and increase blood circulation despite 

practitioners providing no evidence of this  (O’Malley et al., 2016). The rise in 

popularity despite many of these health benefits being disproved, is presumed to be 

the responsibility of industry marketing (Whitcraft et al., 2014). A single mature 

mobulid can yield up to 7kg of gill plates, worth up to $680 per kilogram in Chinese 

markets (Heinrichs et al., 2011).  
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Mobulids are also recorded to be incidentally caught in shark-control nets off 

Australian and South African coasts (Paterson, 1990; Dudley & Cliff, 1993; Dudley et 

al., 1999; Young, 2001; Sumpton et al., 2011); entangled in fishing lines (Fig 1.10; 

Marshall & Bennett, 2010; Deakos et al., 2011); ingesting plastic debris and 

microplastics (Boerger et al., 2010; Germanov et al., 2018).  

 

Both species are known to have slow (also known as K-selected) life histories that are 

characterised by low fecundity, late age of maturity and slow growth rates, a 

commonality between all elasmobranch life histories where investment is put into 

juvenile survival and growth (Frisk et al., 2001), rather than fecundity (Cortés, 2002; 

Dulvy et al., 2014; Croll et al., 2015). However, compared to other elasmobranchs, 

mobulids have extremely low fecundity or reproductive output (Dulvy et al., 2014), 

only birthing one pup (very rarely two) (Hoenig, 1990; Stevens et al., 2000) with 

intervals between each birth being estimated at 1-3 years (Compagno & Last, 1999; 

Homma et al., 1999; Marshall & Bennett, 2010; Notarbartolo di Sciara, 1988). Each 

pup is relatively large at birth, around 27-49% of maternal size (Marshall et al., 

2009; Notarbartolo di Sciara, 1988; White et al., 2006) with maximum population 

increase also limited by the presumed late age at maturation, the age at which 

individuals will start to reproduce (Croll et al., 2015).  Although there are no direct 

Figure 1.10 Photograph of mobulid gill plates (left); photograph of an entangled Oceanic manta ray 
(right, top and bottom). Source: Manta Trust. 

 

 

Figure 1.11 Photograph of mobulid gill plates (left); photograph of an entangled Oceanic manta ray 
(right, top and bottom). Source: Manta Trust. 

 

 

Figure 1.11 Photograph of mobulid gill plates (left); photograph of an entangled Oceanic manta ray 
(right, top and bottom). Source: Manta Trust. 
 

 

Figure 1.11 Photograph of mobulid gill plates (left); photograph of an entangled Oceanic manta ray 
(right, top and bottom). Source: Manta Trust. 
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measurements of lifespan, gestation period or age at maturation (Croll et al., 2015), 

mobulids are presumed to be long-lived (up to 40 years for Oceanic manta rays) and 

gestation period is estimated to be just over a year (Ward-Paige et al., 2013). This 

makes them especially vulnerable to overexploitation and the high landing rates of 

mobulids in fisheries and expanding gill plate market raise serious concerns and a 

high risk of destabilising populations worldwide (Croll et al., 2015). A study by 

Dulvey et al. (2014) uncovered that the low productivity of Oceanic manta rays 

means that even a moderate level of fishing mortality would lead to a serial depletion 

of individuals in a short amount of time which solidifies the argument for the need of 

urgent, effective conservation management responses globally.  

 

In Aotearoa New Zealand, Oceanic manta rays and Spinetail devil rays are protected 

under Schedule 7A of the Wildlife Act (1953) since July 2011. This means that they 

receive absolute protection such that unless granted permission, no one may kill or 

have in possession such animal (Francis & Lyon, 2012). Under the New Zealand 

Threat Classification (NZTCS) by the Department of Conservation (DoC), Oceanic 

manta rays and Spinetail devil rays are classified as data-deficient (Duffy et al., 2018) 

indicating that there is a lack of current information on their abundance and 

distribution.   

 

A known threat to mobulid populations in Aotearoa New Zealand waters is the 

domestic skipjack tuna purse-seine fisheries operational since the 1970s, as mobulids 

are reportedly caught as bycatch (Francis & Lyon, 2012). Observational accounts 

from purse-seine fleets estimate 40-50% of skipjack tuna schools have mobulid rays 

within them with some commenting that this association being more frequent in 

Aotearoa New Zealand than anywhere else (Francis & Lyon, 2012). Furthermore, the 

frequency of mobulid occurrence as bycatch in the NE shelf of the Te Ika-a-Māui 

North Island based on observer records are estimated to be as high as 23% of purse-

seine sets (Francis & Lyon, 2012). Most if not all mobulid rays that are caught in 

commercial fisheries are likely to be Spinetail devil rays (Paulin et al., 1982) as no 

Oceanic manta ray have been confirmed to have been caught in Aotearoa New 

Zealand waters (Jones & Francis, 2012). However, correct identification of mobulids 

have been of great debate due to the morphological similarities and unavailability of 

suitable field identification guides on purse-seine fleets thus, it is possible that some 
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individuals caught are Oceanic manta rays (Francis & Lyon, 2012). For Oceanic 

manta rays, entanglement and ship strikes seem to be a more significant source of 

mortality with many individuals seen with fishing line scars and one record of an 

individual dying from a presumed ship strike (Lydia Green pers comm.).  

 

The lack of abundance and distributional information in Aotearoa New Zealand 

prevents the assessment of their current conservation status however, based on 

population declines reported globally (Couturier et al., 2012; Homma et al., 1997; 

Marshall et al., 2006; White et al., 2015), it is probable that populations in Aotearoa 

New Zealand may be facing the same serial depletions.  

 

Currently, there are no systematic international or national management plans in 

place to ensure future of mobulid populations (Canese et al., 2011; Graham et al., 

2012; Holcer et al., 2013; Ward-Paige et al., 2013) and due to their migratory nature 

and potential to move out of domestically protected waters (Bonfil et al., 2005), 

international cooperation is likely to be necessary. Further, a recent publication, the 

Global Devil and Manta Ray Conservation Strategy, outlines goals, aims, objectives 

and actions to guide governmental agencies, scientists and conservationists and 

addresses the apparent “charisma-gap” that exists in that devil rays are significantly 

lesser known than manta rays, creating a barrier for equal conservation (Lawson et 

al., 2017). This gap can be clearly seen in the number of peer-reviewed publications 

for both species: both species are understudied however, the gap between Oceanic 

manta rays and Spinetail devil rays is evident and seems to be increasing (Fig 1.11). 

The need for coordinated action and the closing of the charisma-gap is required for 

successful management and conservation of mobulids for generations to come.  
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1.6      SPECIES DISTRIBUTION MODELLING 

 

1.6.1   Introduction  
 

For centuries, people have noted the relationships between species distributions and 

the physical environment with early scientific writings focussed around qualitative 

and observational accounts (e.g., Grinnell, 1904). Indigenous peoples have been 

observing these relationships and learning which activities such as hunting, fishing, 

and gathering should take place at given times and locations (Chisholm-Hatfield et 

al., 2018). The relationship between the environment and organisms is not a new 

concept however, until recently, only qualitative methods were employed to describe 

these patterns. The study of SDMs is a growing field, owing to the recognised 

importance of understanding the habitat requirements and ecological and 

geographic distribution of species for conservation planning and forecasting and 

Figure 1.11 Number of peer-reviewed publications for Spinetail devil rays (blue) and Oceanic manta rays 
(yellow) on the Web of Science. Spinetail devil ray publications showing results for “mobula mobular”, “spinetail 
devil ray”, “mobula japonica”, “giant devil ray”. Oceanic manta ray publications showing results for “mobula 
birostris”, “manta birostris”, “oceanic manta ray”, “giant manta ray”. 

 

Figure 1.12 Number of peer-reviewed publications for Spinetail devil rays (blue) and Oceanic manta rays 
(yellow) on the Web of Science. Spinetail devil ray publications showing results for “mobula mobular”, “spinetail 
devil ray”, “mobula japonica”, “giant devil ray”. Oceanic manta ray publications showing results for “mobula 
birostris”, “manta birostris”, “oceanic manta ray”, “giant manta ray”. 

 

Figure 1.12 Number of peer-reviewed publications for Spinetail devil rays (blue) and Oceanic manta rays 
(yellow) on the Web of Science. Spinetail devil ray publications showing results for “mobula mobular”, “spinetail 
devil ray”, “mobula japonica”, “giant devil ray”. Oceanic manta ray publications showing results for “mobula 
birostris”, “manta birostris”, “oceanic manta ray”, “giant manta ray”. 

 

Figure 1.12 Number of peer-reviewed publications for Spinetail devil rays (blue) and Oceanic manta rays 
(yellow) on the Web of Science. Spinetail devil ray publications showing results for “mobula mobular”, “spinetail 
devil ray”, “mobula japonica”, “giant devil ray”. Oceanic manta ray publications showing results for “mobula 
birostris”, “manta birostris”, “oceanic manta ray”, “giant manta ray”. 
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understanding evolutionary determinants of spatial patterns that manifest (Brown & 

Lomolino, 1998; Ferrier, 2002; Funk & Richardson, 2002; Graham et al., 2006; 

Ricklefs, 2004; Rosenzweig, 1995; Rushton et al., 2004). SDMs are a tool that allows 

researchers to ask diverse questions in ecology, evolution, and conservation despite 

the often-sparse availability of occurrence datasets for most species (Elith et al., 

2006). Although there are two types of models (mechanistic and correlative), 

mechanistic models require detailed information on the physiological limits for a 

well- understood species to environmental factors (Pearson, 2010). Due to the 

limited knowledge on mobulids, a correlative approach to distribution modelling is 

the focus of this thesis.    

 

Correlative models utilise associations between known species’ occurrence records 

and environmental factors to identify areas where the suite of environmental 

variables deemed to affect the species’ physiology and probability of occurrence is 

favourable or not (Pearson, 2010). Known records provide useful information of the 

environmental requirements of the species and the suitability of conditions between 

each occurrence point can be predicted to fill the gaps or can be predicted to new 

regions (i.e., invasive species’ potential range expansion, e.g., Peterson, 2003) or a 

new time period (i.e., predict potential impact of climate change on species’ 

distribution) (Pearson, 2010). Thus, instead of a species’ actual distribution being 

predicted, the distribution of environmentally suitable areas is being modelled to 

understand where a species’ is likely be (Pearson, 2010). The applicability of these 

models cannot be overstated as information on species distributions is used for 

nearly every conservation decision to conserve a rare species, manage biodiversity, 

identify biodiversity hotspots, and anticipate potential invasions at the governmental 

and policy-making level (Franklin, 2010; Sofaer et al., 2019).  

 

 

1.6.2 History of SDMs   
 

Traditional indigenous knowledge  bases activities and movements around the 

relationship between environmental and/or geographical gradients and the 

distribution of species of cultural, economic, and ecological importance (Berkes, 

1993). However, the first quantification of these relationships occurred during the 
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20th century, with a large focus on the shape of species-habitat associations using 

techniques such as simple geographic envelopes, convex hulls, and environmental 

matching (e.g., Nix, 1986, Austin, 1987),  especially as computing capacity was 

largely limited (Zimmerman et al., 2010). 

 

 Quantitative methods as we know them today emerged in the early 2000s from the 

convergence of field-based studies with new regression methods and geospatial 

environmental layers (Elith & Leathwick, 2009; Turner et al., 2003). New technology 

to measure and model environmental properties with high temporal resolution 

stands in stark contrast to tools available to early researchers where environmental 

conditions (e.g., depth, slope, latitude, and longitude) were all measured as a one-

time measurement on site (Elith & Leathwick, 2009). Generalised Linear Models 

(GLM) were one of the earliest SDM algorithms and were used to deal with presence-

absence data assuming a linear dependency between species’ data and environmental 

variables (Guisan et al., 2002; Hastie & Tibshirani, 1990).  However, the 

acknowledgement of nonlinear species’ responses to the environment necessitated 

alternative algorithms. Generalised Additive Models (GAM) are an extension on 

GLMs where smooth functions are used to fit non-linear responses, making it a more 

flexible option compared to GLMs and suitable when modelling ecological 

relationships albeit, interactions between environmental variables are not easily 

incorporated (Elith & Leathwick, 2009).  

 

Although statistical methods such as GLMs and GAMs have proven useful in ecology 

and are still used today, the shift from using SDMs to understand species-habitat 

associations to predictions of suitable habitats has given rise to alternative methods, 

in particular, machine learning algorithms (Drake et al., 2006; Elith et al., 2008; 

Phillips et al., 2006). In particular, tree-based classification and regression models 

(CARTs) have been gaining popularity in ecology due to the model’s ability to deal 

with complex, unbalanced data with non-linear relationships and higher-order 

interactions between variables (De’ath & Fabricus, 2000). Nonetheless, large 

variations exist between different models based on how distributional response is 

modelled, how the model is fitted, how selection process of important predictor 

variables works, if the model allows interactions and predicts patterns of distribution 

spatially. With the recognition that one model is not superior over the other (Hao et 
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al., 2020; Melo-Merino et al., 2020), it is important to understand study context and 

objectives to select the appropriate model.   

 

At present, due to well-tested algorithms, increasing availability of occurrence and 

environmental data and the continuous advancement of computational resources 

that allow effective model fitting and visualisation, SDMs are considered important 

tools in conservation biology (Thuiller et al., 2009; Guisan et al., 2013; Sofaer et al., 

2019). In settings where an appropriate model is used with reliable data, SDMs can 

provide useful ecological insight especially for species that are ill-understood.  

 

1.6.3 Applications in terrestrial and marine contexts  
 

Early SDMs focussed largely on terrestrial applications, especially on vascular plants 

followed by studies of terrestrial animals (Elith & Leathwick, 2009; Robinson et al., 

2011). The main differences in modelling approaches were based on the animal’s 

mobility with the environment of sessile species being relatively easier to 

characterise compared to mobile species that utilise the uneven distribution of 

resources in space and time (Elith & Leathwick, 2009; Leathwick et al., 2008). In 

comparison, until the past 10-15 years, marine and freshwater applications of SDMs 

were relatively rare (Robinson et al., 2011). This is mainly due to the predictive 

performance and model assumptions being affected by the unique biological and 

physical properties of marine habitats and organisms (Robinson et al., 2011). 

Further, the three-dimensionality of marine habitats remains a challenge largely due 

to many of the environmental layers describing the surface of the ocean 

(Andrzejaczek et al., 2022; Bentlage et al., 2013; Dambach & Rödder, 2011), a critical 

limitation as pelagic species primarily inhabit middle layers of the water column. As 

a result, pelagic organisms’ ecology and behaviour are still seldom understood 

(Bentlage et al., 2013). Models in the marine realm are also required to deal with 

highly temporally dynamic oceanographic features (e.g., fronts) and the animals that 

move in response, with static model’s incapable of preserving these interactions 

(Scales et al., 2014).  This issue is exacerbated as migratory and highly mobile 

animals make observation and survey logistically and financially challenging 

(Redfern et al., 2006; Scales et al., 2017).  
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Fish are the most common taxonomic group that are modelled, reflecting both the 

commercial value and abundance of data available and these models have been used 

to plan marine protected areas and designate critical fish habitats (Robinson et al., 

2011). Marine mammals have received some attention in the SDM space especially 

due to their endangered status, habitat degradation and high fisheries by-catch 

mortality coupled with their charismatic nature (Panigada et al., 2008; Redfern et 

al., 2006; Robinson et al., 2011). SDMs have helped researchers inform habitat 

conservation (Bailey & Thompson, 2009; Embling et al., 2010); understand fisheries 

interactions (Torres et al., 2003; Howell et al., 2008; Howell et al., 2015), and assist 

in determining impacts of climate change (Freitas et al., 2008).  

 

The application of SDMs on marine organisms that are endangered and elusive has 

important implications especially with climate change altering many oceanographic 

and climatic conditions, influencing behaviour, and leading to alterations in 

ecosystem structures (Vergés et al., 2016). With temperatures increasing globally, 

studies have shown that large elasmobranchs have changed dispersion and residency 

patterns in response (Hill et al., 2016; Niella et al., 2020). Further understanding on 

how marine organisms adapt and move as seas warm is necessary to understand 

broader ecosystem impacts of climate change (Niella et al., 2022).  

 

1.6.4 SDM for Spinetail devil rays 

 

The literature on SDMs on Spinetail devil rays has been limited in terms of quantity 

and methodologies employed are consistent with most studies (Lezama-Ochoa et al., 

2019a; Lezama-Ochoa et al., 2019b; Lezama-Ochoa et al., 2020a; Guirhem et al., 

2021) employing a GAM, with the exception of one study which used MaxEnt (Putra 

et al., 2021), a presence-only model only requiring occurrence records and 

environmental variables (Phillips et al., 2006). Oceanic manta ray data largely 

consist of decadal sightings data and survey effort, Spinetail devil ray SDMs have a 

commonly use fisheries-dependent data (Guirhem et al., 2021; Lezama-Ochoa et al., 

2019a; Lezama-Ochoa et al., 2019b; Lezama-Ochoa et al., 2020a; Lezama-Ochoa et 

al., 2020b; Putra et al., 2021). This highlights the clear overlap in distribution of 

fisheries operations with Spinetail devil ray distribution. Previous studies predicted 

high Chl-a concentration, presence of SST fronts and low sea surface height values 
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akin to areas with high suitability (Lezama-Ochoa et al., 2019b, Lezama-Ochoa et al., 

2020a; Guirhem et al., 2021; Putra et al., 2021). Similar to findings from Oceanic 

manta ray SDMs, these results indicate habitat preference for regions with upwelling 

systems, which are synonymous with high productivity.  

 

Previous SDM studies suggest that Spinetail devil rays may inhabit waters that are 

further offshore (< 2000m), with high predicted suitability around the 200m isobath 

(Lezama-Ochoa et al., 2020a; Putra et al., 2022; Stevens et al., 2018). These findings 

hint at a potential trophic separation in preferred prey type or differing utilisation of 

bathymetric features (e.g., seamounts) (Lezama-Ochoa et al., 2020a; Stevens et al., 

2018).  

 

Despite evidence of seasonal migrations, there has been no study to date to 

investigate this in an SDM. Guirhem et al. (2012) explore interannual variability of 

presence using a GAM suggesting no annual trend of year effect in occurrences over 

the study period. However, data paucity issues continue to hamper the ability to 

model and understand how distributions may be changing over various spatial and 

temporal scales.  

 

 

1.6.5 SDM for Oceanic manta rays 
 

A commonality between previous SDM studies on Oceanic manta rays, is the 

prevalence of high concentrations of Chl-a in areas with predicted high suitability. 

Various methodologies (MaxEnt, Hacohen-Domené et al., 2017; GLM, Rohner et al., 

2017; Ensemble (GLM, GAM, GBM, MaxEnt), Garzon et al., 2021; GAM, Farmer et 

al., 2022; MaxEnt, Putra et al., 2021), found this consistency, likely reflecting areas 

of high primary productivity and subsequent prey availability. These studies also 

predicted that suitability is highest in near-shore, shallow waters (< 50m) and along 

the continental shelf edge where strong thermal fronts are present (Farmer et al., 

2022; Garzon et al., 2021; Hacohen-Domené et al., 2017; Putra et al., 2021; Rohner 

et al., 2017), unsurprising considering these habitats are often analogous with 

seasonal upwelling events that circulate colder, nutrient-rich waters to the surface 

and additional sources of nutrients from terrigenous sources (Carter et al., 2005),  
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Due to the seasonality of upwelling events, these SDMs found that Oceanic manta 

rays’ distributions also show seasonal patterns. On the east coast of the United 

States, in response to increases in SST during summer, there is a predicted range 

expansion to northern waters to exploit higher productivity in the colder waters 

(Farmer et al., 2022). By contrast, in the western Central Atlantic around the 

Caribbean and Mexico, the model predicted that during warmer months, there is a 

contraction of ranges and a subsequent expansion during winter months (Garzon et 

al., 2021). Although the response to warmer months varied between these two 

studies despite their proximity, both instances were linked to seasonal upwelling and 

subsequent fluctuations in productivity, highlighting the importance of productivity 

in determining Oceanic manta rays’ distribution. It remains unclear how Oceanic 

manta ray distribution is changing over long-time scales and the investigation of 

these questions over finer spatial scales as most studies mentioned used a 4km 

spatial resolution (Hacohen-Domené et al., 2017; Garzon et al., 2021; Farmer et al., 

2022).  

 

Despite the high presumed importance of SST in directly and indirectly driving 

movement in large elasmobranchs (Wilson et al., 2001), previous SDM studies have 

found unclear relationships between habitat suitability and SST (Farmer et al., 2022; 

Rohner et al., 2013). For ectothermic elasmobranchs such as Oceanic manta rays, 

body temperature is directly dictated by environmental temperature. Physiological 

rates often scale with temperature, with performance increasing with temperature 

until a thermal optimum and then declining to lethal temperatures (Bernal et al., 

2012; Neill & Stevens, 1974). Mobulid rays are known to bask at the surface for long 

periods of time presumably to recover and raise their body temperature following a 

deep dive into colder waters (Alexander, 2008).  It is important to note that studies 

by Rohner et al. (2013) and Farmer et al. (2022) are based in the eastern coast of the 

North American continent, thus the reduced importance of SST despite high 

presumed relevance could be due to the lower variability in SST values closer to the 

equator. Further, the migratory nature of Oceanic manta rays are presumably 

movements between relatively warm waters to reduce the thermal range in which the 

animals move in to ensure energetics remain favourable. Thus, SDM studies that are 
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restricted to a singular study site with intermittent occurrence of Oceanic manta rays 

during the year may find lower prevalence of SST due to the reduced ranges.  

 

However, this ambiguous relationship could also be explained by the fact that the 

most productive areas in the marine context tends to be associated with colder water 

(Quillfeldt et al., 2015), with Chl-a and SST being inversely correlated (Nurdin et al., 

2013). This inverse association exists because the ocean’s waters are horizontally 

stratified and the underlying deep water is unable to be warmed through solar 

heating thus, is cooler than surface waters (Roels et al., 1979). When winds are 

sufficient and generate mixing, this results in upwelling, where cooler, nutrient-rich 

waters rise from the bottom (Nurdin et al., 2013). As a result, the surface layers are 

enriched with nutrient, and SST reduces, resulting in a complex balance between 

nutrients and SST, especially for ectotherms. Therefore, SST can indirectly drive 

elasmobranch distribution and could be producing an unclear signal in habitat 

suitability.  

 

1.7   MODELLING METHOD 

 

1.7.1 Decision Tree Model  

 

Ecological data is complex, unbalanced and characterised with missing values and 

outliers that encompass the stochastic nature of the natural world. This makes it 

challenging for explanatory and statistical models to find meaningful patterns and 

predict to unsampled areas (De’ath & Fabricus, 2000). Further, these models are 

unable to incorporate relationships between variables that are non-linear and involve 

high-order interactions, which is a major limitation in an ecological context. A 

method that has been widely used in ecology to combat these limitations are tree-

based models. Trees can explain the variation in a response variable in relation to 

multiple explanatory (or predictor) variables with response and explanatory 

variables varying from numeric (regression) or categorical (classification), which 

make them particularly advantageous (De’ath & Fabricus, 2000). The base 

mechanism of a tree stems from recursive binary splits defined by a simple rule 

based around an explanatory variable, with classification splits occurring based on 



Chapter 1: General Introduction 

 36 

categories and regression splits occurring based on values being greater than, less 

than or the same as a specific numeric range or given value of the explanatory 

variable. For example, if the simple rule was “sea surface temperature (SST) above or 

below 20°C”, observations will be split into two groups, one with observations of 

mobulids when the SST was below 20°C, and another group of observations for when 

SST was above 20°C (Fig 1.12).  

 

 

 

Decision trees can incorporate and model complex interactions in a simple manner 

and can handle missing values (De’ath, 2007; Friedman & Meulman, 2003). The 

hierarchical structure of a tree results in responses from one explanatory variable 

depending on responses higher up in the tree, so that interactions between multiple 

variables are included in the model automatically (Elith et al., 2008). This is an 

essential component of ecological modelling as the distribution of species is seldom 

driven by a single condition but an intricate mixture of various conditions.  

Figure 1.12 Diagram illustrating an example of the mechanisms of a decision tree 

 

Figure 1.13 Diagram illustrating an example of the mechanisms of a decision tree 

 

Figure 1.13 Diagram illustrating an example of the mechanisms of a decision tree 

 

Figure 1.13 Diagram illustrating an example of the mechanisms of a decision tree 
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Distribution and prediction are often dominated by few explanatory variables, and 

performance of many methods can degrade dramatically when large numbers of 

irrelevant variables are incorporated, impeding the predictive ability and application 

of the model (Friedman & Meulman, 2003). With trees, at each binary split only the 

variable that increases the homogeneity between the resultant groups is selected 

thus, the performance of the model is highly resistant to large numbers or extra 

irrelevant variables, removing the pressure of having to select the correct features.  

Therefore, trees are predictive tools that are easily interpreted and visualised in a 

two-dimensional graphical form (Friedman & Meulman, 2003).  

 

Even so, small changes and adjustments in the data used to train the model can 

vastly change the series of splits, regarding the variable and the value at the split. 

Consequently, this results in a very different model, introducing uncertainty into the 

results, limiting interpretability, and reducing predictive performance (Elith et al., 

2008; Hastie et al., 2001). Disadvantages associated with single decision tree models 

can be combated using multiple trees, for example, averaging across all trees (i.e., 

bagging) or sequentially adding trees to the residuals of the previous tree (i.e., 

boosting).  

 

1.7.2 Boosted Regression Tree (BRT) Model  

 

BRT uses boosting which is a sequential, stagewise procedure where a weak base 

learner is fitted with the data. At each iteration, a new tree is added sequentially on 

the residuals of the previous tree that best reduces the loss function – a measure that 

represents a loss in the predictive performance due to a flaw in the model (Elith et 

al., 2008; Hastie et al., 2001). The focus on the residuals (i.e., the variance not yet 

explained by the model) emphasises the observations that were poorly modelled or 

that were the hardest to predict and improves on the previous trees. Due to the 

stagewise nature of a BRT, trees are sequentially added to previous trees and existing 

trees are left unchanged, with the final model being a linear combination of many 

trees, reducing both bias and variance (Elith et al., 2008). For example, at the second 

step the tree is fitted with the residuals of the first tree. The second tree can contain 

different variables and values at the split nodes compared to the first and the model 
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is updated to include two trees, residuals are calculated for the second tree, and so on 

(Fig 1.13).  

 

Just as the simple decision tree model does, the split occurring at a point based on 

any given predictor variable is ultimately affected by any splits that occurred higher 

up in the tree, preserving any interactions between predictor variables, unlike 

methods such as GAM where an individual tree term is based on one predictor 

variable only where no interaction effects are considered (Leathwick et al., 2006). 

BRT is based on the principle that it is easier to find and average many weak learners 

than to find a single, highly accurate prediction rule (Schapire, 2003). Due to this 

forward and sequential procedure, BRT has high predictive performance and 

accuracy and is able to fit a wide variety of responses (e.g., Gaussian, Poisson, 

Binomial) (Elith et al., 2008).  

 

In comparison, model-averaging methods (i.e., bagging) such that RF uses, 

constructs multiple independent trees using subsamples of the data with 

replacement, and the resultant model takes the average of all trees (Resinger et al., 

2022). These models seek to find a single parsimonious model that best describes the 

relationship between the response and explanatory variables, where model results 

are an averaging of multiple iterations (Leathwick et al., 2006).  Although model-

averaging techniques reduces variance, models with smaller datasets and higher 

instability in predictions suffer from lack of interpretability of the results and 

increased bias (Iverson et al., 2004).  For this reason and the ability for BRT models 

to deal with missing values, complex interactions especially on smaller datasets, BRT 

model was chosen for this thesis.  
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1.7.3 BRT model fitting  

 

In BRT, trees are continuously added until eventually, all observations are fully 

explained by the model. However, this generally causes overfitting to the training 

data and a subsequent reduction in generality and limitation to applying the same 

model to unknown or unsampled areas (Friedman, 2001; Leathwick et al., 2006).  

This is particularly relevant for BRT models as trees can be continuously added 

sequentially until all variance in the training data is explained perfectly and the data 

is completely overfitted (Elith et al., 2008).  Although the fitting of the model 

includes a pruning process whereby the number of trees is reduced at the end based 

on internal cross-validation (i.e., resampling method that tests model on withheld 

portion of data at each iteration) (Elith et al, 2008), there are additional steps that 

modellers can take.  

 

To mitigate overfitting modellers can alter:  

 

1.  Learning rate 

Figure 1.13 Schematic diagram of the mechanisms behind the Boosted Regression Tree (BRT) model and the stagewise nature of the 
method. 
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A value ranging from 0 to 1, and each iteration is scaled by this value, where smaller 

values (closer to zero) reduce the contribution of each tree added to the model, and 

larger values (closer to 1), increase the contribution (Elith et al., 2008). Learning rate 

is inversely proportional to another important model fitting parameter, the number 

of trees.  

 

2. Number of trees  

As the learning rate decreases and the relative weight of each tree decreases as a 

consequence, the number of trees increases. Elith et al. (2008) argues that a smaller 

learning rate and large number of trees are preferable. However, whether this is 

possible dependents on the time and computation resources available.  

 

3. Tree complexity  

The number of nodes in a tree and this directly impacts the number of trees required. 

For a given learning rate, if a highly complex tree is fitted, fewer trees are required to 

minimise the loss to the same extent (Elith et al., 2008). Therefore, if the number of 

trees were to stay static and tree complexity increases, the learning rate would have 

to decrease in response.  

 

Thus, model fitting is the intricate balancing and assessments of trade-offs between 

learning rate, number of trees and tree complexity. A study by Elith et al. (2008) 

demonstrated that with small sample sizes with observations less than 250, the best 

model fitting metrics are to have simple trees (with tree complexity of 2 or 3) and a 

small enough learning rate to allow for at least 1000 trees to be fitted. This thesis will 

be using guidelines from Elith et al. (2008) in the model fitting process (see Chapter 

2).  

 

1.8 THESIS RATIONALE AND STRUCTURE 

 

Observations of mobulid rays are largely restricted to the NE of the Te Ika-a-Māui 

North Island, characterised largely by the Tīkapa Moana Hauraki Gulf. However, 

mobulid rays within this region are exposed to a plethora of anthropogenic factors 

including ship strike and entanglement (Francis & Lyon, 2012) and bycatch (Duffy & 
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Abbott, 2003; Duffy et al., 2018; Francis & Jones, 2012; Francis & Lyon, 2012; Paulin 

et al., 1982). At present, the lack of understanding of their abundance and 

distribution within Aotearoa New Zealand waters is hampering the ability to 

effectively manage and protect populations (Duffy et al., 2018).  

 

This research aims to use observational data collected from platforms of opportunity 

in conjunction with high-resolution environmental data to map the habitat suitability 

of Oceanic manta and Spinetail devil rays in the NE shelf of Aotearoa New Zealand 

and identify how this is changing over time. To address this aim, two models will be 

constructed: static model with long-term averages and a dynamic model that models 

habitat suitability on an annual timescale. Furthermore, two models are used to 

examine the difference in performance of a purely spatial model compared to a 

spatio-temporal model (Fig 1.14).  

 

This thesis presents the first study of the distribution and habitat-use of Spinetail 

devil rays and Oceanic manta rays at a national scale in Aotearoa New Zealand.  The 

overarching goal from these findings is to contribute information on habitat-use and 

distribution to conservation and management to ultimately decrease negative 

anthropogenic interactions.  

 

Research Questions:  

 

1. What environmental conditions do mobulids favour?  

2. Where in the NE coast of the Te Ika-a-Māui North Island is the habitat 

suitability high and is there a hotspot?  

3. How are the environmental conditions and areas of suitability different 

between Spinetail devil rays and Oceanic manta rays?  

4. Does mobulid habitat suitability change over time?  
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Figure 1.14 Illustration of the modelling workflow used in this thesis. 

 

 

Figure 1.15 Illustration of the modelling workflow used in this thesis. 
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This thesis is comprised of three chapters as follows:  

 

Chapter 1 (this chapter) contains background information on the study site and the 

introduction to the focal themes (i.e., distribution, habitat-use) comprised in this 

thesis. A global literature review on the habitat-use, distribution on Oceanic manta 

rays and Spinetail devi rays is followed by a national review of the same nature. 

Modelling methodology that will be used in this thesis is preliminarily introduced 

and discussed. The Chapter concludes with a review on current threats to both 

species and an overview on management and conservation strategies currently taking 

place.  

 

Chapter 2  contains information on species records, environmental data and data 

processing protocols for all data sources. Model details including modelling fitting, 

the difference between the static and dynamic model and model evaluation metrics 

are explained in detail. Environmental variables important for the prediction for 

their distribution and maps illustrating the probability of occurrence are included. 

The Chapter concludes with a description of the results and a discussion of the 

results.  

 

Chapter 3 concludes the thesis by summarising the findings from the two models 

for both species the limitations of this thesis are discussed. The significance of these 

findings are placed into the context of conservation and management in Aotearoa 

New Zealand and recommendations for future studies to build on this thesis are 

explored.  

 

 



 

  

 

 

Chapter 2  

Methods, Results 
and Discussion 

 

 

Cover for chapter:  A survey trip with Manta Watch New Zealand in the Hauraki Gulf Marine Park (photo: 
Rika Ozaki)
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2.1        INTRODUCTION 

 

Highly mobile marine animals are unevenly distributed in space and time (Hanski, 

1999; Bucklin et al., 2010). The high mobility of these animals means that they can 

move between areas with highly favourable environmental conditions. However, the 

affinity for areas with high productivity result in interactions with fisheries and other 

human activities (Croll et al., 2012; Croll et al., 2015; McCauley et al., 2014) . 

Further, the high mobility creates challenges for conservation efforts particularly 

where distributions are not well understood.  

 

Species distribution models (SDMs) are statistical methods that relate      

physiological or chorological (i.e., species location) data to ecogeographical (i.e., 

environmental, topographical, human, or purely spatial) variables to describe or 

predict a species’ distribution and thus define their ecological niche (Franklin, 2010; 

Peterson et al., 2011; Silerro, 2011; Barbosa et al., 2012; Guisan et al., 2017; Sillero et 

al., 2021). SDMs have grown in popularity in conservation biology due to the ability 

to be      projected to geographical space, visualising habitat suitability or the 

probability of species occurrence on a map (Acevedo et al., 2012; Guisan & 

Zimmerman, 2000; Hatten, 2014; Ørsted & Ørsted, 2019), especially in poorly 

sampled areas (Engler et al., 2004). Applications of SDMs include niche 

quantification (Austin et al., 1990; Breiner et al., 2017), testing ecological or      

evolutionary hypotheses (Leathwick 1998), predicting  the effects of global change on 

biodiversity (Thomas et al., 2004; Thuiller et al., 2005), and estimating invasive 

species risk (Peterson & Vieglais, 2001; Petitpierre et al., 2012).  

 

SDMs can be used to provide spatially explicit information on the distribution of the 

species’ habitat such as the location(s), size, and quality of suitable habitat patches 

(Elith & Leathwick, 2009; Franklin, 2010; Sofaer et al., 2019). This is especially 

critical for species such as the Oceanic manta and Spinetail devil ray where SDMs 

can help to overcome the paucity of distributional data. In recent years, there has 

been critique of SDMs for disregarding the temporal variability in environmental 

variables which is argued to hamper the accuracy of the predictions (Franklin, 2010; 
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Robinson et al., 2011). The usage of long-term averages and subsequent assumptions 

of equilibrium may be causing potential underestimations of the real scale or extent 

of the species’ ecological niche (Bateman et al., 2012; Perez-Navarro et al., 2020; 

Zimmermann et al., 2009). Despite substantial implications on the accuracy of the 

model, studies that account for temporal variability remain rare (Zimmermann et al., 

2009; Niehaus et al., 2012; Hannah et al., 2014).  

 

The NE shelf of the Te Ika-a-Māui North Island of Aotearoa New Zealand is 

characterised by a diverse range of environments that supports a plethora of 

biodiversity. It includes the country’s most utilised marine environment; Tīkapa 

Moana Hauraki Gulf, with flows from of the EAUC bringing in tropical immigrants 

from northern, tropical waters, creates a unique environment that supports smaller 

schools of fish to large apex predators (O’Callaghan & Baker, 2002; Wiseman et al., 

2011). Although the NE shelf is relatively well-studied compared to other regions in 

the country, mobulids are seldom studied and resulting lack of baseline information 

limits conservation efforts. Preliminary understanding of the distribution mobulids 

in the Tīkapa Moana Hauraki Gulf come from one-off observational accounts (Duffy 

& Abbott, 2003), behavioural observations (Duffy & Tindale, 2018) or investigations 

of post-release mortality from purse-seine vessels (Francis & Jones, 2016). 

Therefore, larger scale studies on the spatio-temporal distribution and 

environmental factors that describe these locations have not been previously 

assessed.  

 

To understand the spatial and temporal distribution of both Oceanic manta rays and 

Spinetail devil rays in the northeastern shelf of the Te Ika-a-Māui North Island of 

Aotearoa New Zealand, I used species distribution modelling including accounting 

for temporal dynamics in environmental variables (Fig 2.1). The objectives of this 

chapter are to identify important variables or conditions that describe Oceanic manta 

ray and Spinetail devil ray distribution on the northeastern shelf of the Te Ika-a-

Māui North Island of Aotearoa New Zealand using an SDM. Further utilising SDMs 

to make predictions on the habitat suitability of mobulid species and consequently, 

compare the difference in habitat suitability estimates using our annual approach 

(hereafter referred to as “dynamic”) compared to the more commonly used ‘static’ 
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approach of using long term environmental averages (hereafter referred to as 

“static”)     .  
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Figure 2.1 Flowchart of the model flow and differences between processes between static and dynamic models. 
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Figure 2.1 Flowchart of the model flow and differences between processes between static and dynamic models. 
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2.2      MATERIALS AND METHODS 

 
2.2.1 Study area  

 

The study area encompasses the northeastern (NE) continental shelf of the Te Ika-a-

Māui North Island of Aotearoa New Zealand, including the Tīkapa Moana Hauraki 

Gulf Marine Park (≈ 33°–38°S; 172°–178°W; Fig 2.2). This region hosts low salinity, 

nutrient-rich waters that are bounded seaward by a warm, nutrient-poor, sub-

tropical, south-eastward flowing current originating from the EAC and the Tasman 

Front, called the EAUC (Sharples et al., 1997; Stanton & Sutton, 2003; Zeldis et al., 

2004). Terrigenous and riverine outputs to the shelf are relatively low with most of 

the nutrient supply coming from offshore, deep ocean sources during upwelling 

periods (Sharples et al., 1995; Sharples, 1997; Sharples & Greig, 1998; Zeldis et al., 

2004) with additional nutrient supply from sediment remineralisation (Giles et al., 

2007). The narrow continental shelf (< 40km wide) creates favourable conditions for 

upwelling making this region one of the most productive waters in the country (Bury 

et al., 2012; Gaskin, 2021). Wind stress and consequently, mixing of oceanic, shelf 

and Gulf waters in the NE shelf exhibits high seasonal and inter-annual variability 

(Chang et al., 2003). This has implications on light and nutrient availability and 

hence, primary productivity (Sharples et al., 1995; Sharples, 1997; Sharples & Greig, 

1998; Zeldis et al., 2004). Within the year, late winter, spring, and late summer 

bringing prevailing westerly winds, driving upwelling conditions (Sharples & Greig, 

1998; Zeldis et al., 2004). In late summer, there is a marked transition to easterly 

winds, making downwelling the dominant mode, evident in the low chlorophyll-a 

values across the whole shelf (Chang et al., 2003). Simultaneously, oligotrophic 

EAUC surface water intrudes shoreward, across the shelf, introducing warm, 

nutrient-poor waters to the mid- and outer shelf (Fig 2.3; Chang et al., 2003; Zeldis, 

2004; Zeldis & Willis, 2015). Multiple studies have also uncovered not only the 

temporally dynamic nature of the NE shelf but the horizontally spatially variant 

nature. Nutrient and prey availability, water clarity (Gall & Zeldis, 2011), 

phytoplankton community assemblages (Chang et al., 2003; Zeldis et al., 2005) and 

degree of benthic mineralisation are factors that are seen to vary between coastal 
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Gulf waters and offshore shelf waters. The NE shelf consists of waters along various 

environmental gradients on distinct temporal and spatial scales makes it an 

environment unique to this region. For these reasons, this region is recognised for its 

biodiversity, with multiple studies describing the Gulf as important feeding and 

breeding grounds for many species including whales (Carroll et al., 2019; 

Constantine et al., 2015; Wiseman et al., 2011), dolphins (Dwyer et al., 2016; 

Hupman et al., 2015) and seabird (Borrelle et al., 2015; Dunphy et al., 2020; Heswall 

et al., 2022).  

 

 

2.2.2 Data  

2.2.2.1   Species Records 
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Figure 2.2 Map of the northeastern shelf of the Te Ika-a-Māui North Island of Aotearoa New Zealand. The 
gridded lines indicate the extent of the study area, and the colourful labelled boxes are regions of the study 
area that are referred to in this thesis. Red lines are isobath. 
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Spinetail devil ray records (n = 304) were obtained from the Ministry for Primary 

Industries (MPI) Centralised Observer Database (COD) for observer reported 

captures and Non-Fish Protected Species (NFPS) database where commercial 

captures were reported (replog 13952; obtained under a confidentiality deed between 

MPI and the University of Auckland; Fig 2.3). The records variously included 

geographic coordinates, date and time of capture, the length of the vessel and 

spanned 17 years (2004 – 2021). As there have been no dedicated sampling effort for 

Spinetail devil rays in Aotearoa New Zealand, all records were converted to presence 

records. Although there were 13 records (2017 – 2021) from citizen science sources 

(Manta Watch New Zealand), due to the difference in biases associated with the data 

from fisheries data (i.e., selection bias), the benefits to incorporating additional 

records was not deemed profitable in comparison to the added uncertainty and they 

were therefore removed. The final dataset included 285 locations that had no 

duplicates (i.e., unique locations).  

 

Oceanic manta ray records (n = 340) were obtained from the Manta Watch New 

Zealand (MWNZ). MWNZ is a charitable organisation that dedicates research efforts 

and collects citizen science data with the aim to understand more about Oceanic 

manta rays in New Zealand. The collection of citizen science data involved mainly 

social media sources and now with a dedicated website, reporting sightings. The 

MWNZ research team are also involved in surveys over the summer months, 

especially since the purchase of a research vessel, and have dedicated effort within 

the Tīkapa Moana Hauraki Gulf. Citizen science records comprise sightings that have 

variable reliability however, MWNZ advocates for all sightings to be associated with a 

photograph or a video so individuals can be attributed to the correct species and 

prevent misidentification, especially due to the morphological and geographical 

similarities between Oceanic manta rays and Spinetail devil rays. The records 

included geographic coordinates, date and time of encounter and span 16 years 

(2006 – 2022).  Although records were available through MPI, this was deliberately 

left out of the model due to the lack of evidence in the literature regarding Oceanic 

manta rays’ presence as bycatch and the potential misidentification with Spinetail 

devil rays.  
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For both species, there were a few locations on the western coast of the Te Ika-a-

Māui North Island of Aotearoa New Zealand (Spinetail devil ray = 10; Oceanic manta 

ray = 3). However, these have been omitted from the study as this research is 

focussing on the habitat suitability of both species on the NE shelf of the Te Ika-a-

Māui North Island. 

 

This was deliberately done due to the increased research and sightings effort on the 

NE coast and the lack of research on mobulids and relatively unknown oceanography 

on the western coast of the country (Sutton & Bowen, 2011).  The few points on the 

western coast if added, could be a potential cause of overestimation in the model. 

Further, the EAUC, a subtropical current split off at Otou North Cape (i.e., top of the 

country; Fig 2.2.) and travels down the eastern coast of the Te Ika-a-Māui North 

Island, contributing little flow to the west coast (Stevens et al., 2021). This current is 

Figure 2.3 Map with Spinetail devil ray presence records (green) and Oceanic manta ray 
records (orange). The 200m depth contour line (dashed line) indicates the shelf edge and 
approximate path of the subtropical East Auckland Current flowing southeastward. Study area 
is shown within the gridded box. 
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thought to be an important source of subtropical water to the temperate waters of 

Aotearoa New Zealand, and an important driver of Oceanic manta ray and Spinetail 

devil ray distribution in the country (Duffy & Abbott, 2003; Lyons & Francis, 2012).  

 

2.2.2.2 Absence/Pseudo-absence selection  

 

Boosted regression trees (BRTs) require both presence and absence records to 

correlate environmental conditions where species are present and the difference in 

conditions where species are not. However, a limitation of using presence records 

from opportunistic data in comparison to dedicated survey records is the lack of real 

absence records (i.e., points where the species is known to be absent). Although the 

benefit of presence-absence modelling has been tested in the literature, presence-

only modelling is also proven to be robust to sample selection bias when pseudo-

absences used has the same associated bias (Phillips et al., 2009; Stephenson et al., 

2021; Yackulic et al., 2013). Due to the different sources of data for Spinetail devil ray 

and Oceanic manta ray and subsequent differences in sample selection bias 

associated with each, separate absence selection techniques will be used.  

 

I generated Spinetail devil ray absence points using a process called “target group 

background data” (Phillips et al., 2009) where observation points from a closely 

related or associated species is used from the same dataset as absence points 

(Yackulic et al., 2013). Due to the closely related nature of Spinetail devil rays’ 

distribution to purse-seine fisheries, all purse-seine catch locations from the Ministry 

for Primary Industries database (replog 14573; obtained under a confidentiality deed 

between MPI and the University of Auckland; Fig 2.4) from purse-seine vessels were 

used from the same period from 2004 to 2021. Purse-seine records from months that 

Spinetail devil ray was not present were discarded to ensure the same temporal scale 

as well. This will ensure that both presence and absence records are associated with 

the same sampling bias (Milanovich et al., 2010). Although this is not the same as a 

real absence nor does it guarantee the absence of a Spinetail devil ray, such locations 

are expected to be more likely to actual absences compared to absences that are 

randomly generated in the study area and has been shown to improve average 

performance of regression-based models (Phillips et al., 2009; Stephenson et al., 
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2020b). Due to these records being associated with the same bias and over the same 

temporal and spatial scale, these records in the literature are referred to as “absence 

records” and will be referred to as such in this thesis.  

 

 

In contrast, as Oceanic manta ray occurrence records were obtained from various 

sources (i.e., citizen scientist), there was not one source where a different species 

occurrence could be used as target group background data with the same associated 

sampling bias. Hence, a different method was used whereby to preferentially 

generate more background points in areas with more presence records, a two- 

dimensional kernel density estimate (KDE) was produced for all Oceanic manta ray 

presence records using a bandwidth of 100km. This bandwidth was selected after 

testing 400km, 100km and 50km, and was denoted as the best one due to the 

realistic environmental conditions that Oceanic manta rays could be in, but distinct 

Figure 2.4 Map of study area showing locations of absences (blue; purse-seine catches between 
2004 and 2021) with presence records of Spinetail devil rays (green). 
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enough that there are differential elements (see Appendix 2.1 for map of KDE 

probability grid). KDE estimates the underlying density of the data and produces a 

probability grid following the density pattern (Chen, 2017). Five thousand 

background points were sampled using the probability grid generated from the KDE 

according to the probability grid weights (i.e., where KDE was high, the probability of 

selecting as pseudo-absence was also high) (Fig 2.5; Georgian et al., 2019). Pseudo-

absence selection using a KDE was chosen over traditional random selection due to 

the reduction of sampling bias and improvement in model performance that was 

seen in previous studies (Elith et al., 2010; Georgian et al., 2019; Finnuci et al., 

2021). Due to the lack of absence records with the same bias for Oceanic manta rays, 

the absence records will be referred to as “pseudo-absences.”        

 

 

Figure 2.5 Map of study area showing locations of pseudo-absences (purple; randomly generated 
based on KDE probability grid) with presence records of Oceanic manta rays (orange). 
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2.2.2.3 Environmental predictor variables  

 

Environmental predictor variables were chosen from previous work in the global 

literature on mobulids, based on which influenced their distribution and movement 

the most which is as follows: Chl-a, SST , SST and Chl-a gradients, bathymetry, 

distance to the 200m isobath, distance to coast, Slope of the seafloor, SOI, (Table 

2.1). The main prey item for mobulid species is zooplankton, however, this could not 

be collected at locations matching the observations nor were there any available data 

sources with the temporal and spatial coverage appropriate for this study. However, 

satellite Chl-a concentrations are known to be a proxy of the biomass of 

phytoplankton present in surface waters and there is often high zooplankton biomass 

where there is high phytoplankton biomass, although a temporal lag (Flagg et al., 

1994; Plourde & Runge, 1993). Chl-a and SST gradients are layers that represent 

productivity fronts and an estimation of mesozooplankton feeding habitats as well as 

important habitats for mobile marine animals (Scales et al., 2014), as fronts are 

known to persist long enough for this association (Druon et al., 2019).   Therefore, 

despite the recognition of a temporal lag between phytoplankton and zooplankton 

blooms, Chl-a, Chl-a and SST gradients will be used as a proxy of local productivity 

within the model (Druon et al., 2019; Jaine et al., 2012), obtained from Stephenson 

et al. (2020a).  

 

All predictor layers were collated and interpolated to a 1km grid to ensure the same 

resolution and the removal of missing values, especially for layers such as Chl-a in 

which cloud cover impacted the dataset. Bathymetry was obtained from the National 

Institute of Water and Atmosphere (NIWA) bathymetric dataset of the New Zealand 

region, cropped to the study area (Mitchell et al., 2012). Distance to the 200m 

isobath (km) was calculated in R Studio (v. 4.2.1.) and st_distance function from the 

sf package where the Euclidean distance between each centroid of each grid cell and 

a bathymetric buffer of 200-250m. The same methodology was used to calculate the 

closest distance between a centroid of a grid cell and land (obtained from Land 

Information New Zealand), distance to coast (km), as a proxy for the influence of 

coastal elements. Slope was calculated from the bathymetry layer using the Slope tool 

in ArcGIS and SOI, an index for ENSO was obtained from NOAA National Weather 
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Service Climate Prediction Centre (https://www.cpc.ncep.noaa.gov/) as standardised 

monthly values.

https://www.cpc.ncep.noaa.gov/
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Table 2.1 Environmental variables used in habitat suitability model.   

Abbreviation Model type 
Temporal 

Resolution 

Spatial 

Resolution 
Description Units Source 

Bathy Bathymetry Static 250m 

Sea bed depth around New Zealand. Interpolated from 

multi-beam sensors, single beam echo sounders, and 

satellite gravimetric inversion (Mitchell et al., 2012) 

m Mitchell et al. (2012) 

Chl-a 
Chlorophyll-

A 

Mean 

monthly 
1km 

A proxy for biomass of phytoplankton in the near-surface 

water column (to ~ 30m) as the most abundant form of 

chlorophyll in photosynthetic organisms. Blended from 

default open-ocean Chla values from MODIS-Aqua and 

coastal ChlA estimate [quasi-analytic algorithm (QAA), 

aph*(488)]. 

mg m-3 Gall et al. (2022) 

SST 
Sea surface 

temperature 

Mean 

monthly 
1km 

Blended from default SST product from SeaDas 7.2, OI-

SST Ocean product (Reynolds et al., 2002), coastal 

MODIS-Aqua product (Gall et al., 2022). 

°C Gall et al. (2022) 

SSTGRAD 

Sea surface 

temperature 

gradient 

Mean 

monthly 
1km 

Derived by computing the horizontal gradient of SST 

from the blended SST product from SeaDas 7.2, OI-SST 

Ocean product (Reynolds et al., 2002), coastal MODIS-

Aqua product. Averaged to mean monthly layers over the 

study period. 

°C 
Stephenson et al. 

(2020a) 
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CHLGRAD 
Chlorophyll-

A gradient 

Mean 

monthly 
1km 

Derived by computing the horizontal gradient of SST 

from the blended Chl-a product from MODIS-Aqua and 

coastal ChlA estimate [quasi-analytic algorithm (QAA), 

aph*(488)]. Gaussian smoothing function to remove 

potential sensor strips. Averaged to mean monthly layers 

over the study period. 

mg m-3 
Stephenson et al. 

(2020a) 

Slope 
Slope of the 

seafloor 
Static 250m 

Rate of change of elevation from one cell to the next in 

degrees using the bathymetry dataset derived from 

Mitchell et al. (2012) and calculated using Calculate 

Slope in Spatial Analyst toolbox ArcGIS. 

° 

(degrees) 

Calculated from 

Mitchell et al. (2012) 

SOI 

Standardised 

Southern 

Oscillation 

Index 

Monthly non-spatial 

Standardised Southern Oscillation Index calculated 

monthly as the observed sea level pressure difference 

between Tahiti and Darwin, Australia. It represents the 

difference in air pressure between the eastern and 

western equatorical Pacific and can indicate an El Niño 

event when values are negative, and a La Niña event 

when values are positive. The strength of each event is 

represented by the value itself, the larger the number, 

the higher the intensity of the conditions. SOI was 

retrieved from the National Centres of Environmental 

Information (NOAA) from 

https://www.ncei.noaa.gov/access/monitoring/enso/soi. 

no units 

National Centres of 

Environmental 

Information (NOAA) 
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For temporally dynamic variables, monthly mean estimates were derived from 

satellite images (MODIS-AQUA), obtained from NIWA-SCENZ (Gall et al., 2022) for 

each respective study period (Oceanic manta rays: 2006 to 2022; Spinetail devil rays: 

2004 to 2021). Each monthly variable layer was averaged by year to create annual 

layers. When creating the annual layers, months where each species was not present 

in the occurrence data were removed (i.e., September, October, November) to ensure 

the model did not extrapolate into temporal ranges that mobulids were not known to 

be in Aotearoa New Zealand waters for. Although seasonality and impacts to 

distribution on mobulids within the year is proven to be an important point of 

research, the number of observations per month for each respective year for each 

species was not enough to model and was beyond the scope of this study. Hence, the 

model is mainly restricted to predicting habitat suitability in the warmer summer 

months (summer: December – February). However, due to the hypothesised 

migration that mobulids participate in, immigrating to New Zealand during summer, 

this may indicate that the model is incorporating the most important timeframe. In 

contrast, the static model did incorporate the same temporally dynamic variables 

however, these were long-term averages of the same variable over the study period 

length thus, assuming equilibrium in these attributes over that time.  

 

Observations collected from both species did not exceed bathymetric depth of more 

than 2500m thus, a predictions for all environmental predictors were limited to this 

depth. This was to ensure that the model did not extrapolate beyond unsampled 

areas and predict presence in locations where individuals have not been confirmed 

yet which in turn reduces uncertainty in predictions.  

 

Due to the stagewise nature of the selection of variables in BRT, there are no 

penalties for the number of predictors within the model or the order that the 

variables are inputted. Thus, the variables were chosen based on hypothesised 

biological importance on distribution and feasibility of obtaining data. However, 

multicollinearity between variables was examined where a value of over 0.9 was 

considered highly correlated.   
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2.2.3 Data Processing and Preparation 
 

All Spinetail devil ray occurrence data was prepared to ensure that there were no 

duplicate records where an individual was recorded by commercial records as well as 

an observer on board. Further, records from both datasets with missing coordinates 

and an approximate date reference (month and year) were removed from the dataset.  

Both datasets were initially plotted to visually check the validity of points and points 

with positional errors (i.e., on land) were removed. After the data was cleaned, all 

records were reprojected from longitude and latitude coordinates (ESPG: 4326) to 

New Zealand Transverse Mercator (ESPG: 2193). This was to ensure that the 

projection of datapoints matched that of the environmental raster layers and when 

calculating distance metrics, Euclidean distance could be used using metres as the 

unit. All points were subsequently aggregated to a 1km2 grid by specific year and any 

absence point within the same grid as a presence record was removed so there was 

no spatial overlap.  

 

For all observations, environmental values at each spatial point (for static model), 

and at each spatial and temporal point (for dynamic model) was extracted from the 

environmental predictor variable layers. The use of remotely sensed satellite data 

from ocean colour is associated with missing values when cloudy days persist, thus, 

to remove this likelihood of happening, dynamic environmental layers were used at a 

monthly resolution instead of finer temporal scales (i.e., daily).  

 

It is important to note that records are highly likely to be spatially and temporally 

biased; for Spinetail devil ray records, to locations and timeframes where purse seine 

vessels are present, and for Oceanic manta rays, to locations and timeframes 

frequented by people, often in the summer in coastal areas. For these reasons, 

absence/pseudo-absence selection must be done carefully as without this, differences 

between locations of presence and absence may just be a manifestation of these 

biases, and not true differences in environmental conditions. Additional biases that 

need to be accounted for also include detection bias; that is, the observer’s ability to 

detect the animal which can be impacted by the sea state, bad weather, low visibility 

conditions and surfacing-diving behaviour, or failure to observe despite presence 

(Kanaji et al., 2011). This is especially relevant in this context due to the lack of 



Chapter 2: Methods, Results and Discussion 

 62 

surface-breathing requirements for mobulids and subsequent reduction in the ability 

to spot an individual. Morphological similarities between the two species and 

historical misidentification also indicate that the data may be subject to further 

biases.  These biases will be accounted for within the modelling framework through 

absence/pseudo-absence selection (see Section 2.2.2.3. Absence/Pseudo-absence 

selection).  

 

 

2.2.4 Habitat Suitability Modelling  
 

2.2.4.1   BRT model fitting (i.e., regularisation) 

 

 

In all SDMs, model fitting must be done with caution to maximise the ability of the 

model to make accurate predictions by balancing complexity and generality. 

Overfitting a model, i.e., fitting data too closely to the training data, can cause the 

model to misleadingly perform well on training data but lack the generality to 

accurately predict to unseen testing data (Friedman, 2001). On the other hand, when 

the model is overly simple and general, there is not enough complexity to identify 

important patterns, leading to the reduction in predictive accuracy (i.e., underfitting) 

(Friedman, 2001). Regularisation methods attempt to balance generality, complexity 

and predictive performance (Friedman, 2002; Hastie et al., 2001).   

 

A regularisation method used in BRTs to avoid overfitting involves manipulating the 

learning rate, also known as “shrinkage” (Copas, 1983). A learning rate is a value that 

ranges from 0 to 1. Each tree is scaled by this value, where smaller values (closer to 

zero) reduce the contribution of each tree added to the model, and larger values 

(closer to 1), increase this contribution (Friedman, 2001). Learning rate is inversely 

proportional to another important model fitting parameter, the number of trees. As 

the learning rate decreases and the relative weight of each tree decreases 

consequently, the number of trees increases. The final term that is involved in the 

regularisation of BRT is tree complexity; the number of nodes in a tree and this 

directly impacts the number of trees required. For a given learning rate, if a highly 
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complex tree is fitted, fewer trees are required to minimise the loss to the same 

extent (Elith et al., 2008). Therefore, if the number of trees were to stay static and 

tree complexity increases, the learning rate would have to decrease in response. 

Thus, regularisation is the intricate balancing and assessment of trade-offs between 

learning rate, number of trees and tree complexity. A study by Elith et al. (2008) 

found that with small sample sizes with observations less than 250, there was no 

advantage to increasing tree complexity on predictive performance and the best 

model fitting metrics are to have simple trees (with tree complexity of 2 or 3) and a 

small enough learning rate to allow for at least 1000 trees to be fitted.  

 

The data was fit to a BRT in R version 4.2.1 (R Core Team, 2022) using the dismo 

package (Hijmans et al., 2017) to model the presence/absence of mobulid with a 

bernoulli error distribution with the response variable being the presence (positive 

observation) of a mobulid in a grid cell. Based on the recommendation by Elith et al. 

(2008) where smaller sample sizes are best modelled with simple trees and a slow 

learning rate, both static and dynamic models used a learning rate of 0.001 and a 

tree complexity of 2. This was a learning rate that allowed for at least 1000 trees to be 

fitted at each iteration and a tree complexity that was simple enough where 

computing energy and time was not limited.  

      

Each static and dynamic BRT model was bootstrapped 100 times, in that at each 

iteration, a random “training” sample was extracted from the full occurrence dataset 

with replacement. The same number of absences/pseudo-absences was also sampled 

from the full dataset and these presence and absence/pseudo-absence records were 

then used in the model. Presence records that were not selected at random at each 

iteration was combined with a random sample of absence/pseudo-absences and set 

aside for independent assessment of model performance, called evaluation data. At 

each iteration, geographic predictions were made to a 1km grid using environmental 

predictor variables and at the end, predictions were averaged for each grid for the 

final prediction. As this BRT model used absence/pseudo-absences and not true 

absences that incorporate nuances of “sightability” or “catchability”, we refer to our 

outputs as habitat suitability, rather than the probability of occurrence (Anderson et 

al., 2016;). Final outputs of the data were the habitat suitability maps and maps 
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showing the degree of uncertainty (measured as the standard deviation of the mean 

habitat suitability index calculated from 100 bootstrap layers).  

 

2.2.4.2 Static to Dynamic Model  

 

The temporally explicit dynamic model and long-term static model have inherent 

differences in the methods involving aggregation of records and environmental 

variables, predictions and outputs of the model (Table 2.2). For the dynamic model, 

to incorporate time, an additional variable was added which denoted the year that 

the observation was made for the occurrence and absence data, as well as the 

environmental predictor data. Further, geographical predictions were made to a 

three-dimensional matrix where each slice of two-dimensional matrix was a different 

year and each column was a new bootstrap iteration, out of the 100 done. Predictions 

were then averaged for every bootstrap iteration, keeping the slices intact so that in 

the end each year had geographic predictions to a 1km grid. In this way, the model 

was constructed with the nuance of time and presence was predicted for each specific 

year. It is important to note that although “Year” is incorporated into the model, this 

is a singular number denoted the year and is a spatially invariant variable (i.e., not 

linked to spatial processes). Environmental predictors in the model vary over space 

and time and the model estimates how it changes over time using “Year” as a 

differentiating factor between these timeframes. However, high feature importance 

for “Year” does not mean that in that specific year, there was higher habitat 

suitability. Instead, “Year” is a latent variable where the model      estimates a 

relationship of habitat suitability      however, as it is unmeasured, the differences 

cannot be attributed to a specific variable. Thus, the higher contribution of “Year” in 

the model indicates the higher degree of variability over time that is not attributed to 

the environmental variables included in the model.  
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Table 2.2 Differences in methodology and outputs between static and dynamic models. 

 

2.2.4.3 Interpreting the model  

 

One of the most important characteristics of decision trees that BRT forfeits is 

interpretability. BRT models are constructed of hundreds and thousands of trees and 

especially when working with pseudo-absences, this can make it difficult to 

understand outputs of the model. Thus, BRT outputs must be handled and 

understood in different ways and various methods are used to achieve this. Key 

Difference Static Dynamic 

Aggregation 

 

Presence and absence points 

are aggregated to a 1km² grid 

regardless of different 

occurrence times. 
 

 

Presence and absence points are 

aggregated to a 1km² grid based 

on the year of occurrence. 

Environmental Variables 

 

Dynamic environmental 

variables (e.g., Chlorophyll-A) 

are averaged over the entire 

study period to a singular layer. 
 

Dynamic environmental 

variables are averaged from 

monthly estimates to annual 

layers. 

Prediction 

 

No reference to time. 

Predictions are made to a 

single environmental layer that 

is a long-term average of the 

entire study period (Spinetail 

devil rays: 2004 to 2021; 

Oceanic manta rays: 2006 to 

2022). 

Model is constructed by each 

individual year and predictions 

are made to environmental 

layers for the corresponding 

year. 

Output 

One map for habitat suitability 

over entire study period and 

one map for standard 

deviations from bootstrapped 

predictions. 

One predicted habitat suitability 

map for each year from the study 

period and a map of standard 

deviations from bootstrapped 

predictions for each year 

(Spinetail devil rays: 18 maps; 

Oceanic manta rays: 17 maps). 
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ingredients in interpretability are understanding what variables were important to 

prediction (feature importance), and how these variables are affecting the response 

variable (using partial dependence plots, Friedman & Meulman, 2003).  

2.2.4.4 Variable contribution 

 

As discussed above (Section 2.2.2.3), although models are fit with several 

explanatory variables, often, only few have a substantial influence on the response 

variable, in this case the habitat suitability for Spinetail devil rays and Oceanic manta 

rays. Due to the characteristic of BRT models ignoring irrelevant variables when 

fitting trees, the number of times a variable is selected at each binary split is recorded 

and weighted by the squared improvement of the model as a result of the split, 

averaged over all trees then scaled so cumulatively all contributions add up to 100 

(Friedman & Meulman, 2003). Through this, relative contribution to the model is 

examined and ensures easy interpretation which variables contributed to prediction 

the most.  An example is outlined below in Figure 2.6 where Griffen et al. (2021) 

examine habitat selection of multiple shark species – the example outlines two 

species from their analysis: nurse sharks (turquoise) and tiger sharks (gold). 

Through simple visualisation, readers can see that nurse sharks and tiger sharks have 

very similar habitat preferences with depth and distance to land contributing 

significantly to their distributions. Variable contribution can be simply visualised in 

this way to aid with interpretation, even for those that are not well-versed with BRT.  

Figure 2.6 Example of variable contribution plots adapted from Griffen et al. (2021) of nurse sharks (turqoise) 
and tiger sharks (gold). 

 

 

Figure 2.6 Example of variable contribution plots adapted from Griffen et al. (2021) of nurse sharks (turqoise) 
and tiger sharks (gold). 
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2.2.4.5 Partial dependence plots  

 

After most relevant variables are identified, the next step is to assess how these 

variables affect the response variable. Partial dependence plots are graphical 

representations of these relationships. The function of a predicted explanatory 

variable is plotted against each value of the response, holding all other explanatory 

variables at their average value and essentially, conditioned out to examine how a 

single variable affects the response (De’ath, 2007; Friedman, 2001).  

 

For example, a partial dependence plot illustrated below shows the relationship 

between habitat suitability and SST (Fig 2.7). The plot shows habitat suitability on 

the y-axis, with habitat suitability being just under 0.4 at 10 °C compared to over 0.6 

at 20 °C. The increase in habitat suitability with increasing SST can easily tell the 

reader that this species must prefer warmer waters. Confidence intervals can be 

visually represented by an envelope (Fig 2.7) or lines on the plot, describing the 

uncertainty in predictions of the relationship between the habitat suitability at a 

given value. Graphically, the curvilinear nature of the BRT model can be seen where 

explanatory variables with high relative contribution have a more complex and 

curvilinear gradient. This is because as it is selected as the splitter more often, and 

splitting occurs at different values, small steps are added to the graph (step size 

dependent on the learning rate) at different values of the explanatory variable (Elith 

et al., 2008). This is by no means a comprehensive nor perfect representation of how 

each explanatory variable impacts the response especially if there are highly 

correlated variables, high interaction effects however, it gives a good basis for 

interpretation and clues (Friedman, 2001; Friedman & Meulman, 2003).  
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2.2.4.6 Model evaluation   

 

The need for a process or metric to evaluate model performance is widely 

acknowledged as it can help to determine the application of the model, identify areas 

that need to be improved or help to compare various modelling methodologies 

(Allouche et al., 2006; Barry & Elith, 2006; Guisan & Thuiller, 2005). There is a 

plethora of statistical tests of model fit and comparison with existing knowledge to 

address this need (Elith & Leathwick, 2009).  

 

When the response variable is categorical (i.e., presence/absence), confusion 

matrices are made to evaluate the performance of a model (Redfern et al., 2006). A 

confusion matrix is constructed when comparing model predictions to withheld or 

independent data and records the number of true positives (i.e., model predicts 

presence and test data confirms this is true); false positives (i.e., model predicts 

presence but test data shows absence); false negative (i.e., model predicts absence 

Figure 2.7 Example of a partial dependence plot describing the relationship between SST and habitat 
suitability, while holding all other variables at their mean. The y-axis represents habitat suitability from 0 to 
1 on a probability scale. 

 

Figure 2.8 Confusion matrix showing true positives (i.e., model predicts presence and test data confirms 
this is true); false positives (i.e., model predicts presence, but test data shows absence); false negative (i.e., 
model predicts absence but test data shows presence); true negative (i.e., model predicts absence and test 
data confirms this is true)Figure 2.7 Example of a partial dependence plot describing the relationship 
between SST and habitat suitability, while holding all other variables at their mean. The y-axis represents 
habitat suitability from 0 to 1 on a probability scale. 

 

Figure 2.8 Confusion matrix showing true positives (i.e., model predicts presence and test data confirms 
this is true); false positives (i.e., model predicts presence, but test data shows absence); false negative (i.e., 
model predicts absence but test data shows presence); true negative (i.e., model predicts absence and test 
data confirms this is true). 

 

Figure 2.9 Partial dependence plots for the static Spinetail devil ray model. The plot shows the relationship 
between the habitat suitability of Spinetail devil rays against the gradient of a given environmental variable, 
while holding all other variables at a constant. The grey envelope represents the uncertainty in these 
predictions, with a wider envelope indicating higher uncertainty at these ranges. 

Figure 2.8 Confusion matrix showing true positives (i.e., model predicts presence and test data confirms 
this is true); false positives (i.e., model predicts presence, but test data shows absence); false negative (i.e., 
model predicts absence but test data shows presence); true negative (i.e., model predicts absence and test 
data confirms this is true)Figure 2.7 Example of a partial dependence plot describing the relationship 
between SST and habitat suitability, while holding all other variables at their mean. The y-axis represents 
habitat suitability from 0 to 1 on a probability scale. 

 

Figure 2.8 Confusion matrix showing true positives (i.e., model predicts presence and test data confirms 
this is true); false positives (i.e., model predicts presence, but test data shows absence); false negative (i.e., 
model predicts absence but test data shows presence); true negative (i.e., model predicts absence and test 
data confirms this is true)Figure 2.7 Example of a partial dependence plot describing the relationship 
between SST and habitat suitability, while holding all other variables at their mean. The y-axis represents 
habitat suitability from 0 to 1 on a probability scale. 
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but test data shows presence); true negative (i.e., model predicts absence and test 

data confirms this is true) (Fig 2.8; Allouche et al., 2006; Pearson, 2010). However, 

predictions of a model are usually expressed between 0 and 1 hence, a threshold 

must be chosen whereby any value above it will be classified as a presence, and below 

as absence (Redfern et al., 2006). Selection of a threshold is critical to the context 

and application of a study as selection of a low threshold will result in many 

presences, while a high threshold will result in few presences (Pearce & Ferrier, 

2000). This threshold is often viewed as arbitrary and introduces an added 

complication to interpretation (Redfern et al., 2006). However, arguments against 

this state that practical applications of SDMs in conservation planning require 

dichotomous presence-absence maps and predictions therefore, predictive accuracy 

should be evaluated based on a threshold-dependent metric (Allouche et al., 2016).  

Thus, this study will use two quantitative performance metrics: Area under the curve 

(AUC) (threshold-independent) and True Skill Statistic (TSS) (threshold-dependent). 

 

 

AUC is a common metric used in SDM literature and measures the ability of a model 

to distinguish areas where the species is present, to those where they are absent 

Figure 2.8 Confusion matrix showing true positives (i.e., model predicts presence and test data confirms this 
is true); false positives (i.e., model predicts presence, but test data shows absence); false negative (i.e., model 
predicts absence but test data shows presence); true negative (i.e., model predicts absence and test data 
confirms this is true). 

 

Figure 2.9 Partial dependence plots for the static Spinetail devil ray model. The plot shows the relationship 
between the habitat suitability of Spinetail devil rays against the gradient of a given environmental variable, 
while holding all other variables at a constant. The grey envelope represents the uncertainty in these 
predictions, with a wider envelope indicating higher uncertainty at these ranges. 

Figure 2.8 Confusion matrix showing true positives (i.e., model predicts presence and test data confirms this 
is true); false positives (i.e., model predicts presence, but test data shows absence); false negative (i.e., model 
predicts absence but test data shows presence); true negative (i.e., model predicts absence and test data 
confirms this is true). 

 

Figure 2.9 Partial dependence plots for the static Spinetail devil ray model. The plot shows the relationship 
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(Hanley & McNeil, 1982). This is useful as it gives modellers an idea of how good the 

model is at correctly identifying important areas as habitat for a given species (Elith 

et al., 2006). TSS is also gaining popularity within presence-absence models 

compares the number of correctly predicted presences minus those predictions that 

were attributed to random guessing to hypothetical set of perfect predictions 

(Allouche et al., 2006).  

 

Both AUC and TSS deal with concepts of sensitivity, specificity, threshold, and 

confusion matrix. A threshold determines an arbitrary value between 0 and 1 that 

predicts the species as present if their HSI is above the threshold and absent if not 

(Pearson et al., 2010), sensitivity is the proportion of observed presences that are 

correctly classified whereas, specificity is the proportion of observed absences that 

are correctly classified (Allouche et al., 2006).  

 

AUC scores are derived from a ROC curve that plots sensitivity against ‘1 – 

specificity’ across a range of possible thresholds and describes the area under this 

curve (Allouche et al., 2006; Pearson, 2010), to classify scores into confusion 

matrices, producing sensitivity and specificity values for each (Allouche et al., 2006). 

Specificity is subtracted from 1 to ensure that when plotting, specificity and 

sensitvitiy change in the same direction in response the varying thresholds (Pearce & 

Ferrier, 2000). AUC scores range from 0 to 1 with 0.5 indicating that that model 

performance  is equal to random chance, a score of 0.7 indicating good performance 

and a score above 0.8 indicating excellent model performance (Elith et al., 2006; 

Komac et al., 2016). TSS is an alternative metric to AUC and is a threshold-

dependent measure of predictive accuracy and has the advantage of not being 

affected by the size of the validation dataset (Allouche et al., 2006). In contrast to 

AUC, TTS ranges from -1 to +1 where a score of +1 means perfect agreement between 

the distribution of observed presence and predicted presence whereas, a score of -1 

indicates no better than random chance. A score greater than 0.6 is considered good 

to excellent (Allouche et al., 2006; Komac et al., 2016).  Hence, due to the advantages 

of both metrics and their differences related to threshold, both measures were used 

in the evaluation of predictive accuracy. Further, a point of consensus between many 

studies is that no single method should be used alone to assess model accuracy 
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(Allouche et al., 2006; Fielding & Bell, 1997; Franklin, 2010), justifying the use of 

both metrics.  

 

 

2.2.4.7             Measures of Uncertainty  

 

Models are assigned a challenging task of summarising complex ecological and 

distributional patterns with reduced set of predictor variables and observations, 

hence, will inevitably produce mismatches between predicted and actual 

distributions (Barry & Elith, 2006). Therefore, it is important to recognise this within 

the evaluation stage of the model and to consider model uncertainty. This is 

especially crucial when considering the use of SDMs in decision-making for 

conservation planning and biosecurity (Elith & Leathwick, 2009).  

 

As the model within this study exclusively deals with prediction, evaluation must test 

predictive ability/performance and this often includes data resampling (i.e., splitting 

samples, bootstrapping) or more rarely, independent datasets (Elith & Leathwick, 

2009). This is when the model is assessed based on how well the model predicts the 

withheld data, called evaluation data (also known as ‘test data’) (i.e., data not used to 

train the model) (Boyce et al., 2002; Elith et al., 2006, Pearson, 2010). Although 

there are cases where predictive accuracy is measured by how well the model predicts 

to training data (data used to develop model), this creates opportunities for the 

model to be unknowingly overfit, reducing the ability to predict to evaluation data 

and hence, limiting real-life applications of the model (Araújo et al., 2005; Pearson, 

2010). Ideally, the evaluation dataset would consist of observations that are 

independent however, given the small sample sizes of both mobulid species in the 

study, this is not possible. Therefore, bootstrapping was used where 100 models are 

built and at each iteration, the original observed presences were sampled randomly 

with replacement (i.e., same observation can be chosen more than once) and the 

same number of absences were also randomly sampled with replacement (Pearson, 

2010). For each model, the observed presences that were not randomly sampled and 

the same number of absences were set aside evaluation data to assess the model at 

each iteration (i.e., AUC and TSS).       
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In addition, a spatial measure of  uncertainty was generated by calculating the 

standard deviation from all bootstrapped models where larger values are indicative 

of higher uncertainty in the prediction and lower values indicate higher certainty. 

This is the projected spatially to understand at which locations were predictions 

more uncertain than others.   

 

Predictions were not made beyond the range of the original training data used to 

develop the model. Extrapolation can be inherently risky without observed presences 

to confirm the actual occurrence of a species and violates several statistical and 

ecological assumptions of SDMs thus, is not recommended especially without 

independent data to evaluate the accuracy of predictions (Elith & Leathwick, 2009; 

Pearson, 2010). An example of extrapolation can be seen from a hypothetical SDM 

that is developed for a species where the occurrences’ temperature ranges from 10-

20°C and the model is used to predict occurrence in a different region where 

temperatures exceed 25°C (Pearson et al., 2010). The model has no prior information 

on occurrences in that thermal range and therefore, predictions may be useful to 

explore but careful interpretation and a clear acknowledgement of extrapolation 

must be done. Hence, using a prediction horizon, no extrapolations are made to 

ensure the reduction of any preventable sources of uncertainty.   

 

2.2.4.8 Uncertainty discounting 

 

Due to data paucity issues, especially in offshore waters, despite predictions in 

certain areas showing high habitat suitability, these predictions may be associated 

with high uncertainty. Thus, interpreting these locations as ‘hotspots’ or ecologically 

important will be associated with substantial error. Hence, a method called 

uncertainty discounting was used to weight the predictions at each pixel by a degree 

of error. The predictions were weighted with a high α (i.e., horizon of uncertainty), 

indicating that although habitat suitability will decrease, these values will be 

associated with low uncertainty (Moilanen et al., 2006; Stephenson et al., 2021). 

High robustness is required, thus, a high α value is also required. For this study, an α 

value of 1.0 was chosen (representing maximum uncertainty of one standard 
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deviation), and this higher value implies that higher targets must be achieved 

reliably. This ensures that areas with high habitat suitability and high standard 

deviations are penalised and the higher the standard deviation, the larger the 

prediction is discounted by.   

2.3 RESULTS 

 

2.3.1 Spinetail devil ray  

2.3.1.1             Spinetail devil ray records 

 

Records that were included in the model (n = 285) were all obtained from the 

Ministry for Primary Industries. Most Spinetail devil ray records (89%; n = 253) 

occurred in summer months (Dec – Feb) and the final model was constructed to only 

represent their distribution at these times. The most recent occurrence record was on 

March 23rd, 2021, where an individual was captured as bycatch in a purse-seine net 

targeting skipjack tuna. Although some occurrence records (56%; n = 159) included 

the number of individual rays caught, the rest of the data had the weight (in kg) or 

both values were missing. Whilst this could have given insight into abundance of 

Spinetail devil rays in the NE shelf, due to the difficulty associated with converting 

weight to count (or vice versa) without accurate information on the weight of an 

individual ray especially with potential sexual dimorphism, this thesis only deals 

with a habitat suitability model with occurrence data.   

 

2.3.1.2                   Model performance  

 

Model performance was measured through AUC and TSS and these indices indicate 

that this model was useful in predicting Spinetail devil ray habitat suitability using 

long-term averages (AUC: 0.90 and TSS: 0.78; AUC above 0.7 and TSS above 0.5; 

Table 2.3). Similarly, the dynamic model using annual averages also performed well 

(AUC: 0.91 and TSS: 0.73; Table 2.3). The similarity between the indices for the two 

models indicates that although some years in the dynamic model had very few 

occurrence records, this did not seem to hinder the performance of the model. 

Further, the low and consistent standard deviations of both indices suggests that 
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both models are performing consistently across the 100 bootstrap samples. Model 

fits for the dynamic and static model between training data and evaluation or quite 

consistent across both metrics as well, and in both cases the model fit for evaluation 

data being slightly lower than the training data, as expected. However, the similarity 

between the evaluation and training data model fits suggests that both models were 

not overfitted to the training data and performed well.  

 

Table 2.3 AUC and TSS values both on training and evaluation (testing) data is shown for both static and 
dynamic models for Spinetail devil rays. 

Study 

period 

Model 

type 

AUC 

(training 

data) 

AUC (evaluation 

data) 

TSS (training 

data) 

TSS (evaluation 

data) 

2004 - 

2021 

(Spinetail 

Devil 

Ray) 

Static 0.94 ± 0.01 0.89 ± 0.03 0.92 ± 0.01 0.75 ± 0.03 

Dynamic 0.93 ± 0.01 0.90 ± 0.03 0.91 ± 0.02 0.74 ± 0.04 

 

2.3.1.3   Variable contribution  

 

The static model suggests that habitat suitability for Spinetail devil rays is highest in 

shallower waters in around 150m to 500m depth that has moderately high Chl-a 

concentrations (Fig 2.9). There was strong evidence that habitat suitability was 

higher where strong El Niño conditions were present (negative SOI value) in gently 

sloping areas away from the coast. Environmental variables that were frequently 

important in all models was bathymetry (46.1%), Chl-a concentration (18.5%), SOI 

(ENSO index) (9.3%) and distance to coast (8.1%) (Fig 2.10). Interestingly, habitat 

suitability of Spinetail devil rays over the study period did not seem to be influenced 

by fluctuations in sea surface temperature or the distance from the 200m isobath. All 

variables were chosen to be incorporated in the final model, after checking for 

multicollinearity using a Pearson’s correlation test. No variables were highly 

correlated (for BRT models, > 0.9), thus, all variables were included in the final 

model (see correlation matrix of key variables in Appendix 2.2).  
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Figure 2.9 Partial dependence plots for the static Spinetail devil ray model. The plot shows the relationship between the habitat suitability of Spinetail devil rays against 
the gradient of a given environmental variable, while holding all other variables at a constant. The grey envelope represents the uncertainty in these predictions, with a 
wider envelope indicating higher uncertainty at these ranges. 

 

 

Figure 2.9 Partial dependence plots for the static Spinetail devil ray model. The plot shows the relationship between the habitat suitability of Spinetail devil rays against 
the gradient of a given environmental variable, while holding all other variables at a constant. The grey envelope represents the uncertainty in these predictions, with a 
wider envelope indicating higher uncertainty at these ranges. 



Chapter 2: Methods, Results and Discussion 

 76 

 

      

Like the static model, the dynamic model suggests high habitat suitability in the 

same depth range away from the coast. However, in this model there is strong 

evidence that habitat suitability is higher in warmer waters that have low turbidity 

(Fig 2.11). High Chl-a values continue to support areas with high habitat suitability 

especially in gently sloping areas around the 200m isobath (Fig 2.11). There is an 

unclear relationship between SST and Chl-a gradients and habitat suitability 

however, there is a decreasing habitat suitability trends as SST and TSS increase but 

an increase where Chl-a gradient is more pronounced (Fig 2.11). The most influential 

environmental variables in the dynamic model were bathymetry (42.3%), Year 

(16.2%) and distance to coast (8.9%) (Fig 2.12). Year 2022 shows the highest habitat 

suitability based on Year and this indicates that with an increase that cannot be 

attributed to other environmental variables, and this represents a part of the model 

that is unexplained (Fig 2.11). Thus, “Year” represents 16.2% of the changes in 

Figure 2.10 Variable contribution for static Spinetail devil ray model. Green bars indicate variable contribution while grey 
lines depict the error associated with the contribution value. Larger and darker green bars indicate higher relative importance 
while smaller and lighter green bars are indicative of low relative importance to habitat suitability. 

 



Chapter 2: Methods, Results and Discussion 

 77 

habitat suitability that are happening over time that are not explained by the 

environmental variables included in the model – this could include variables such as 

survey effort or prey density (zooplankton specific). Like the static model, no 

variables were highly correlated (for BRT models, > 0.9), thus, all variables were 

included in the final model (see correlation matrix of key variables in Appendix 2.3).  
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Figure 2.11 Partial dependence plots for the dynamic Spinetail devil ray model. The plot shows the relationship between the habitat suitability of Spinetail devil rays against 
the gradient of a given environmental variable, while holding all other variables at a constant. The grey envelope represents the uncertainty in these predictions, with a wider 
envelope indicating higher uncertainty at these ranges. Note that “Year” denotes a latent variable that is not linked to any spatial processes. It represents variability in predicted 
habitat suitability over the years that is not captured by the environmental variables in the model. 

 

 

Figure 2.11 Partial dependence plots for the dynamic Spinetail devil ray model. The plot shows the relationship between the habitat suitability of Spinetail devil rays against 
the gradient of a given environmental variable, while holding all other variables at a constant. The grey envelope represents the uncertainty in these predictions, with a wider 
envelope indicating higher uncertainty at these ranges. Note that “Year” denotes a latent variable that is not linked to any spatial processes. It represents variability in predicted 
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2.3.1.4       Predicted habitat suitability  

 

Static model  

 

Areas of high habitat suitability predicted from the static model for Spinetail devil 

rays in Aotearoa New Zealand occurred along the continental slope, especially along 

the 200m depth contour line around the Te Ika-a-Māui North Island (Fig 2.13a). 

Predictive maps indicated that the highest habitat suitability is seen past Aotea Great 

Barrier Island along the continental shelf at the 200m line. This area is also 

predicted with moderate certainty (SD < 0.2; Fig 2.13b). The inner Tīkapa Moana 

Hauraki Gulf and coastal areas have extremely low habitat suitability values. These 

coastal areas are predicted with high certainty (SD < 0.05) and indicative of the 

Figure 2.12 Variable contribution for dynamic Spinetail devil ray model. Green bars indicate variable contribution 
while grey lines depict the error associated with the contribution value. Larger and darker green bars indicate higher 
relative importance while smaller and lighter green bars are indicative of low relative importance to habitat 
suitability 

 

Figure 2.12 Variable contribution for dynamic Spinetail devil ray model. Green bars indicate variable contribution 
while grey lines depict the error associated with the contribution value. Larger and darker green bars indicate higher 
relative importance while smaller and lighter green bars are indicative of low relative importance to habitat 
suitability 
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Figure 2.12 Variable contribution for dynamic Spinetail devil ray model. Green bars indicate variable contribution 
while grey lines depict the error associated with the contribution value. Larger and darker green bars indicate higher 
relative importance while smaller and lighter green bars are indicative of low relative importance to habitat 
suitability 
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preference for offshore waters. Another pocket of high habitat suitability is seen off 

the coast of the northern tip of the country, past Otou North Cape which is past the 

200m line and adjacent to an area with very low habitat suitability. However, within 

the spatial coverage of the species, areas with moderate to high uncertainty (SD > 

0.2) were most offshore waters, past the 200m contour line especially further south 

in Te Moana a Toi-te-Huatahi Bay of Plenty and further north, off the coast of 

Rākaumangamanga Cape Brett (Fig 2.13b).  
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Figure 2.13 A) Predicted habitat suitability index (HSI) of Spinetail devil rays in the northeastern shelf of the Te Ika-a-Māui 
North Island, New Zealand for each year between 2004 and 2021 using 100 bootstrapped temporally explicit (dynamic) BRT 
model. B) Standard deviation of predicted HS of Spinetail devil rays for every year of the study period (2004-2021) calculated 
from the 100 bootstraps of the model. Higher values in lighter blue indicate higher degree of uncertainty in predictions. 

 

 

Figure 2.13 A) Predicted habitat suitability index (HSI) of Spinetail devil rays in the northeastern shelf of the Te Ika-a-Māui 
North Island, New Zealand for each year between 2004 and 2021 using 100 bootstrapped temporally explicit (dynamic) BRT 
model. B) Standard deviation of predicted HS of Spinetail devil rays for every year of the study period (2004-2021) calculated 
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Due to the few observations further offshore, although these areas show high habitat 

suitability, it is also associated with high uncertainty (Fig 2.13b). Hence, a method 

called uncertainty discounting was used to weight the predictions at each pixel by a 

degree of error. This ensures that areas with high habitat suitability and high 

standard deviations are penalised and the higher the standard deviation, the larger 

the prediction is discounted by. Compared to the prediction map (Fig 2.13a), the 

uncertainty discounted map shows that the highest habitat suitability is solely found 

at the outer shelf by the Tīkapa Moana Hauraki Gulf, tracing the contour of the 

200m isobath, and extending further offshore towards the 500m isobath (Fig 2.14).  

 

Dynamic model  

 

Figure 2.14 Predicted habitat suitability index of Spinetail devil rays in northeastern shelf of the Te Ika-a-
Māui North Island of New Zealand from 2004 to 2021, weighted by degree of error following Moilanen et al. 
(2006) and Stephenson et al. (2020b). Calculated by multiplying standard deviation with α value representing 
horizontal uncertainty then subtracting original predications with this value – called uncertainty discounting. 
Yellow dashed circle representing potential hotspot in outer shelf. 
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North Island of New Zealand from 2004 to 2021, weighted by degree of error following Moilanen et al. (2006) 
and Stephenson et al. (2020b). Calculated by multiplying standard deviation with α value representing horizontal 
uncertainty then subtracting original predications with this value – called uncertainty discounting. Yellow dashed 
circle representing potential hotspot in outer shelf. 
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Figure 2.14 Predicted habitat suitability index of Spinetail devil rays in northeastern shelf of the Te Ika-a-Māui 
North Island of New Zealand from 2004 to 2021, weighted by degree of error following Moilanen et al. (2006) 
and Stephenson et al. (2020b). Calculated by multiplying standard deviation with α value representing horizontal 
uncertainty then subtracting original predications with this value – called uncertainty discounting. Yellow dashed 
circle representing potential hotspot in outer shelf. 
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In contrast to the static model, the dynamic model suggests greater areas of high 

habitat suitability (Fig 2.15). The most consistent predictions for habitat suitability 

remains within the inner- and outer Gulf and borders the coastal areas along the 

edge of the country, where low habitat values are predicted with high certainty for all 

years (SD < 0.05) (Fig 2.16). Areas of high habitat suitability extend further offshore 

especially far off the coast of Rākaumangamanga Cape Brett which is also predicted 

with moderate certainty (SD > 0.15). Over the study period, there is no substantial 

change in habitat suitability. The distribution of habitat suitability remains 

consistent and the only fluctuating differences between the years is the intensity or 

degree of habitat suitability and whether the area moves marginally further inshore. 

Years of higher habitat suitability are 2005, 2007, 2009, 2011, 2013, 2017, 2019 and 

2021. Years where the areas of high suitability appear to move slightly inshore are 

2007, 2009, 2011, 2013, 2017, 2019 and 2021. Areas of high uncertainty (SD > 0.2) 

appear to be further south by Te Moana a Toi-te-Huatahi Bay of Plenty, off the coast 

of the Otou North Cape. Although the static model predicted high habitat suitability 

along the 200m contour line, due to the high values elsewhere, this area does not 

seem to be especially favourable from year to year (Fig 2.15). The distribution of 

uncertainty remains consistent throughout the years and similar to habitat 

suitability, the degree of uncertainty is the only observed changes over the study 

period.  

 

Similarly to the static model, habitat suitability predictions were adjusted by the 

standard deviation to assess whether predictions would change consistent after being 

weighted by uncertainty (Fig 2.17). When accounting for uncertainty, predictions 

reflect that of the static model more and the high habitat suitability predictions along 

the 200m isobath along the outer shelf is highlighted along the whole continental 

shelf. Offshore areas that were predicted with high index values now show low 

adjusted values, indicating that the calculations accounted for the high uncertainty in 

this area in an appropriate manner (Fig 2.17). However, similar to the original 

predictions (Fig 2.15), there seems to be little variation between years, with no 

evidence of a long-term shift in distribution of Spinetail devil rays over the study 

period (Fig 2.17). Further, inter-annual variations seem to manifest in the 

increase/decrease in habitat suitability along the shelf-edge or the increase of 

suitability further offshore (especially notable in 2004, 2006, 2010, and 2020). 



Chapter 2: Methods, Results and Discussion 

 84 

 

Figure 2.15 Predicted habitat suitability index (HSI) of Spinetail devil rays in the northeastern shelf of Te Ika-a-Māui North Island, Aotearoa New Zealand for each year between 2004 and 2021 using 100 bootstrapped temporally explicit (dynamic) BRT 
model. Yellow areas indicate higher habitat suitability, and darker colours are indicative of lower suitability. 

 

 

Figure 2.15 Predicted habitat suitability index (HSI) of Spinetail devil rays in the northeastern shelf of Te Ika-a-Māui North Island, Aotearoa New Zealand for each year between 2004 and 2021 using 100 bootstrapped temporally 
explicit (dynamic) BRT model. Yellow areas indicate higher habitat suitability, and darker colours are indicative of lower suitability. 
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Figure 2.16 Standard deviation of predicted HS of Spinetail devil rays for every year of the study period (2004-2021) calculated from the 100 bootstraps of the model. Higher values indicated by lighter blue represent higher degree of uncertainty in 
predictions. 

 

 

Figure 2.16 Standard deviation of predicted HS of Spinetail devil rays for every year of the study period (2004-2021) calculated from the 100 bootstraps of the model. Higher values indicated by lighter blue represent higher degree of 
uncertainty in predictions. 
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Figure 2.17 Predicted habitat suitability index of Spinetail devil rays in northeastern shelf of the Te Ika-a-Māui North Island of AotearoaNew Zealand for every year of the study period from 2004 to 2021, weighted by degree of error following Moilanen et al. 
(2006) and Stephenson et al. (2020b). Calculated by multiplying standard deviation with α value representing horizontal uncertainty then subtracting original predications with this value – called uncertainty discounting. 

 

 

Figure 2.17 Predicted habitat suitability index of Spinetail devil rays in northeastern shelf of the Te Ika-a-Māui North Island of AotearoaNew Zealand for every year of the study period from 2004 to 2021, weighted by degree of error following 
Moilanen et al. (2006) and Stephenson et al. (2020b). Calculated by multiplying standard deviation with α value representing horizontal uncertainty then subtracting original predications with this value – called uncertainty discounting. 
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2.3.2 Oceanic manta ray  

2.3.2.1     Oceanic manta ray records  

 

The final records that were incorporated in the model (n = 366) were all obtained 

from Manta Watch New Zealand’s database (MWNZ; https://mantawatchnz.org/). 

Oceanic manta rays were observed in all months of the year except July, August and 

October, but most records (89%; n = 327) were in the summer (Dec-Feb). However, 

the model was fitted to incorporate all months that Oceanic manta rays were 

observed in regardless of the number of sightings, thus, depicting a larger part of the 

year instead of a purely summer model. The most recent observation was February 

23rd in 2022. Unlike the data obtained from the Ministry for Primary Industries, the 

only information available was geographical coordinates, possibly reflecting the 

limitation of citizen science data to provide further information on sex and size.   

 

2.3.2.2 Model performance 

 

Based on AUC and TSS indices, model performance for both static (AUC: 0.73 and 

TSS: 0.49; Table 2.4)  and dynamic (AUC: 0.90 and TSS: 0.77; Table 2.4) are deemed 

useful in in predicting Oceanic manta ray habitat suitability. Interestingly the 

dynamic model, despite presumed issues with few occurrence records in some years, 

performed better than the static model. Although this could be indicative of issues 

associated with pseudo-absence selection, the high model performance of the 

dynamic model suggests that this is probably not the case. Further, although the 

model performance for the static model is less than that of the dynamic, the AUC 

value is above 0.7, and the TSS value close to the arbitrary 0.5 threshold for 

usefulness, thus, the model can be deduced to be useful in predictions and better 

than random chance. The low standard deviations across all indices and models are 

indicative of a consistent model across all 100 bootstraps. The similarity in model fits 

between training and evaluation data suggest that the model is not overfitted and the 

evaluation data lower than that of the training, is consistent with what is expected.  
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Table 2.4 AUC and TSS values both on training and evaluation (testing) data is shown for both static and 
dynamic models for Oceanic manta rays. 

Study 

period 

Model 

type 

AUC 

(training 

data) 

AUC 

(evaluation 

data) 

TSS (training 

data) 

TSS (evaluation 

data) 

2006 - 

2022 

(Oceanic 

manta Ray) 

Static 0.86 ± 0.01 0.73 ± 0.04 0.79 ± 0.01 0.49 ± 0.03 

Dynamic 0.95 ± 0.01 0.90 ± 0.03 0.93 ± 0.01 0.77 ± 0.04 

 

2.3.2.3 Variable contribution  

 

The static model suggests that habitat suitability for Oceanic manta rays is higher in 

areas with high Chl-a concentrations, lower SST values in shallower waters close to 

the coast in comparison with Spinetail devil rays (Fig 2.18). Although the impacts of 

seasonality and ENSO would have been insightful and useful to understand, the use 

of pseudo-absences and the random generation of “Year” and “Month” to each point 

meant that the interpretation of such Month and ENSO variables would have been 

difficult with no real relationship to analyse. Environmental variables that were 

frequently important in all models were Chl-a (22.6%), SST (19.5%), bathymetry 

(18.4%) and slope (18.2%) (Fig 2.19). Unlike the static Spinetail devil ray model 

where a singular variable dominated variable contribution, five variables were almost 

all equally important in the habitat suitability, with only one variable (distance to 

200m isobath) relatively unimportant (Fig 2.19). All variables were chosen to be 

incorporated in the final model, after checking for multicollinearity using a Pearson’s 

correlation test. No variables were highly correlated (for BRT models, > 0.9), thus, all 

variables were included in the final model. The correlation matrix of key variables is 

shown in the Appendix 2.3.  
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Figure 2.18 Partial dependence plots for the static Oceanic manta ray model. The plot shows the relationship between the habitat suitability of Oceanic manta rays against 
the gradient of a given environmental variable, while holding all other variables at a constant. The grey envelope represents the uncertainty in these predictions, with a 
wider envelope indicating higher uncertainty at these ranges. 

 

 

Figure 2.18 Partial dependence plots for the static Oceanic manta ray model. The plot shows the relationship between the habitat suitability of Oceanic manta rays against 
the gradient of a given environmental variable, while holding all other variables at a constant. The grey envelope represents the uncertainty in these predictions, with a 
wider envelope indicating higher uncertainty at these ranges. 
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By contrast, the dynamic model suggests high habitat suitability in areas with high 

SST values and moderate Chl-a concentrations (Fig 2.20). As expected, the static 

variables such as bathymetry, distance to coast parameters are remain the same in 

the dynamic model. Dynamic variables such as Chl-a and SST gradient indicate that 

habitat suitability is high in areas with a high SST gradient, perhaps indicative of 

frontal activity, and moderately low Chl-a gradient values (Fig 2.20). The most 

prevalent variables within the dynamic model were Year (48.7%), distance to coast 

(9.7%) and SST (8.8%) (Fig 2.21). Further, the extremely high importance of the 

“Year” suggests that variations in environmental or ecological variables over time, 

that are not captured or incorporated into the model are a large contributor to 

Oceanic manta ray habitat suitability. These variables are attributed to increasing the 

habitat suitability of Oceanic manta rays within the NE shelf over time, with 

suitability increasing exponentially and an eventual peak in 2021 and 2022. Similar 

to the static model, no variables were highly correlated after being tested with the 

Figure 2.19 Variable contribution for static Oceanic manta ray model. Green bars indicate variable contribution while grey 
lines depict the error associated with the contribution value. Larger and darker green bars indicate higher relative importance 
while smaller and lighter green bars are indicative of low relative importance to habitat suitability.   
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while smaller and lighter green bars are indicative of low relative importance to habitat suitability.   
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Figure 2.19 Variable contribution for static Oceanic manta ray model. Green bars indicate variable contribution while grey 
lines depict the error associated with the contribution value. Larger and darker green bars indicate higher relative importance 
while smaller and lighter green bars are indicative of low relative importance to habitat suitability.   
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Pearson’s correlation test; thus, all variables were included in the final model for 

further analysis (see Appendix 2.3 for correlation matrix of key variables). 
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Figure 2.20 Partial dependence plots for the dynamic Oceanic manta model. The plot shows the relationship between the habitat suitability of Oceanic manta rays against the gradient of a 
given environmental variable, while holding all other variables at a constant. The grey envelope represents the uncertainty in these predictions, with a wider envelope indicating higher 
uncertainty at these ranges. Note that “Year” denotes a latent variable that is not linked to any spatial processes. It represents variability in predicted habitat suitability over the years that is 
not captured by the environmental variables in the model. 

 

 

Figure 2.20 Partial dependence plots for the dynamic Oceanic manta model. The plot shows the relationship between the habitat suitability of Oceanic manta rays against the gradient of a 
given environmental variable, while holding all other variables at a constant. The grey envelope represents the uncertainty in these predictions, with a wider envelope indicating higher 
uncertainty at these ranges. Note that “Year” denotes a latent variable that is not linked to any spatial processes. It represents variability in predicted habitat suitability over the years that is 
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2.3.2.4 Predicted habitat suitability 

 

Static model  

 

The static model for Oceanic manta rays suggests that areas of high habitat 

suitability are coastal areas, starting from Otou North Cape, down the eastern 

coastline to the East Cape (Fig 2.22a). In comparison to the Spinetail devil ray static 

model where the 200m isobath marked the inshore extent of high suitability areas, 

for Oceanic manta rays, this contour line depicts the offshore extent of their 

predicted high habitat suitability (Fig 2.22a). In particular, an area with high 

suitability is located within the Tīkapa Moana Hauraki Gulf, in the Cradock Channel      

Figure 2.21 Variable contribution for dynamic Oceanic devil ray model. Green bars indicate variable 
contribution while grey lines depict the error associated with the contribution value. Larger and darker 
green bars indicate higher relative importance while smaller and lighter green bars are indicative of low 
relative importance to habitat suitability.   
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between Aotea Great Barrier Island and Te Hauturu-o-Toi Little Barrier Island, as 

well as the Jellicoe Channel between Te Hauturu-o-Toi Little Barrier Island and 

Rākaumangamanga Cape Brett (Fig 2.22a). Offshore waters past the 200m isobath 

are predicted by the model to be areas of extremely low habitat suitability (HSI < 0.2; 

Fig 2.22b). Inshore coastal waters that show high habitat suitability are predicted 

with the highest uncertainty, however, even then the model predictions seem to be 

associated with relatively low uncertainty (SD < 0.2) in comparison with the 

Spinetail devil ray model output.  

 

The relatively high certainty in predictions can be seen in Figure 2.23 where 

prediction values have been discounted by the degree of error (in this case, standard 

deviation at each cell). Like Spinetail devil ray models, the predictions were weighted 

with a high α (i.e., horizon of uncertainty), indicating that although habitat suitability 

will decrease, these values will be associated with low uncertainty (Moilanen et al., 

2006). High habitat suitability remains close to the coast all down the eastern 

coastline, with a decrease of values further off the coast compared to the original 

map. Areas of the highest suitability remain just at the coast, within the Tīkapa 

Moana Hauraki Gulf through the Jellicoe and Cradock Channel and coastal Te 

Moana a Toi-te-Huatahi Bay of Plenty (Fig 2.23).  
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Figure 2.22 A) Predicted habitat suitability index (HSI) of Oceanic manta rays in the northeastern shelf of 
the Te Ika-a-Māui North Island, Aotearoa New Zealand for each year between 2006 and 2022 using 100 
bootstrapped temporally explicit (dynamic) BRT model. B) Standard deviation of predicted HS of Oceanic 
manta rays for every year of the study period (2006-2022) calculated from the 100 bootstraps of the model. 
Higher values indicate higher degree of uncertainty in predictions. 
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Dynamic model  

 

The dynamic model predicts coastal, inshore waters down the eastern coastline as 

areas with high habitat suitability, similar to the static model. Interestingly, a clear 

difference between each year of the study period can be seen in the maps (Fig 2.24). 

It is evident through the comparison of the maps that 2015, 2017, 2019, 2021 are 

years with the highest habitat suitability, denoted by the higher incidence of yellow 

within the maps. Further, out of these years 2019 and 2021 seem to be particularly 

predicted with high habitat suitability. These differences between the years cannot be 

due to pseudo-absence points, as the same 10,000 points were duplicated for every 

year, before subtracting duplicates. These years with high habitat suitability are also 

predicted with high certainty (SD < 0.2; Fig 2.25), and Figure 2.26 where uncertainty 

in predictions is accounted for. Similar to the Spinetail devil ray dynamic model, 

Figure 2.23 Predicted habitat suitability index of Oceanic manta rays in northeastern shelf of the Te Ika-a-
Māui North Island of Aotearoa New Zealand from 2006 to 2022, weighted by degree of error following 
Moilanen et al. (2006) and Stephenson et al. (2020). Calculated by multiplying standard deviation with α value 
representing horizontal uncertainty then subtracting original predications with this value – called uncertainty 
discounting. Yellow dashed circle represents potential hotspot area in the Jellicoe and Cradock Channel. 
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although there are differences between years in the degree of suitability, there seems 

to be no evidence of a shift in distribution, whether that be short-term in response to 

interannual variability, or a long-term shift in response to shifting environmental 

conditions due to climate change. We note that due to the use of pseudo-absence 

records that were randomly generated within a KDE probability grid and not based 

on biological information, that the inclusion of SOI, could not be included in this 

model. The inclusion of SOI could have given insight into the relationship with ENSO 

events however, such inclusion would have resulted in relationships that were no 

better than random.  
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 Figure 2.24 Predicted habitat suitability index (HSI) of Oceanic manta rays in the northeastern shelf of the Te Ika-a-Māui North Island, Aotearoa New Zealand for each year between 2006 and 2022 using 100 bootstrapped temporally explicit 
(dynamic) BRT model. Yellow areas indicate higher habitat suitability, and darker colours are indicative of lower suitability. 
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 Figure 2.25 Standard deviation of predicted HS of Oceanic manta rays for every year of the study period (2006-2022) calculated from the 100 bootstraps of the model. Higher values indicated by lighter blue represent higher degree of uncertainty 
in predictions. 

 



Chapter 2: Methods and Results 

  

 

 101 

 

Figure 2.26 Predicted habitat suitability index of Oceanic manta rays in northeastern shelf of the Te Ika-a-Māui North Island of AotearoaNew Zealand for every year of the study period from 2006 to 2022, weighted by degree of error following Moilanen et al. 
(2006) and Stephenson et al. (2020b). Calculated by multiplying standard deviation with α value representing horizontal uncertainty then subtracting original predications with this value – called uncertainty discounting. 
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2.4 DISCUSSION 

 

This chapter discusses the first SDM for mobulids in Aotearoa New Zealand. The 

results from the models and predictive mapping contribute to the current 

understanding of mobulids in terms of their habitat selection and distribution in the 

NE continental shelf of the Te Ika-a-Māui North Island. The current advances in the 

SDM literature indicate a movement towards explicitly incorporating time within 

models to agccount for the dynamic nature of marine environments and the 

organisms that live within it. The findings from this model reflect a contribution to 

this by comparing a long-term average model (static) and an annual model 

(dynamic). The most frequently influential variables across both species were 

distance to coast, bathymetry, and Chl-a concentration.   

 

2.4.1 Spinetail devil ray habitat selection  
 

The static model results suggests that habitat suitability for Spinetail devil rays is 

along the outer shelf of the Tīkapa Moana Hauraki Gulf with high Chl-a 

concentrations. Bathymetry was the highest contributor to habitat suitability with 

the highest values found between 150 and 500m for both static and dynamic models. 

The high prevalence of distance to coast suggests that although coastlines show 

favourable conditions, waters further offshore seem to be important. Habitat 

suitability peaks at 100km from the coastline probably around the continental shelf 

where individuals can access deep water prey. Multiple studies have found that devil 

rays are one of the deepest diving elasmobranchs with evidence of individuals 

reaching depths of over 1000m in Aotearoa New Zealand waters (Francis & Jones, 

2016). Diving to these depths is presumably to exploit vertically migrating prey that 

move to deeper depths during the day; a response to avoid visually reliant predators 

(Hays, 2003; Zaret & Suffern, 1976). This behaviour is seen in other large filter 

feeders such as megamouth sharks (Nelson et al., 1997), whale sharks (Wilson et al., 

2006), and basking sharks (Sims et al., 2005), and presents a significant advantage 

especially where nutrient-rich waters lie beneath the overlying euphotic waters 
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(Chang et al., 2003). This deep-diving behaviour is more likely to occur in deeper 

waters explaining the importance of bathymetry and distance from coast. This is 

supported by the high influence of Chl-a, a proxy for primary production, in the static 

model. Habitat suitability models and similar pelagic filter feeders’ distributional 

drivers, suggests that it is highly likely that their distribution in the NE shelf is 

intimately linked with the locations of prey and subsequently, seasonal upwelling 

systems (Celona, 2004; Lezama-Ochoa et al., 2019b).  

 

2.4.1.1 Prey availability  

 

The common main prey item for Spinetail devil rays globally is euphausiids (also 

known as ‘krill’) (Rohner et al., 2017; Sampson et al., 2010; Shirlamaine et al., 2018), 

a crustacean that is known to occur in large swarms and exhibit diel vertical 

migration; migrating to deeper waters during the day and returning to the surface at 

night (Rohner et al., 2017; Tattersall, 1924). The high reliance on euphausiids is 

highlighted in multiple studies where authors found over 90% of Spinetail devil rays’ 

total diet contain a specific euphausiid species (Fortuna et al., 2014; Rohner et al., 

2017; Sampson et al., 2010; Shirlamaine et al., 2018). Although euphausiid species 

differs between studies, the highly specialised diet of Spinetail devil rays is consistent 

between them all. The sole euphausiid species within coastal and shelf waters in New 

Zealand is Nyctiphanes australis (Lagos et al., 2022), thus it is likely that Spinetail 

devil rays are associated with this species. The tendency for N. australis to aggregate 

in large swarms (Mauchline, 1980), makes it an accessible prey for large filter feeders 

such as Spinetail devil rays, where it is likely that prey aggregations must exceed a 

certain abundance threshold for energetics of feeding to be favourable (Bone & 

Moore, 2008; Parker & Boeseman, 1954).  

 

The highest habitat suitability in both static and dynamic models is the Tīkapa 

Moana Hauraki Gulf shelf waters, which can be explained by the known high 

abundance N. australis in this region. Within the Tīkapa Moana Hauraki Gulf, 

abundance of N. australis peaks during January and February (Jillet, 1971). This 

during the late summer months also explains the relationship that shows a high 
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preference for high Chl-a abundance, but a decreasing HSI (habitat suitability index) 

as Chl-a values increase in the static model. In late summer, little phytoplankton 

biomass (Chl-a) is found in shelf surface waters, with higher values found at outer- 

and inner Gulf sites due to downwelling favourable conditions (i.e., easterly winds). 

(Chang et al., 2003; Gall & Zeldis, 2011; Zeldis et al., 2004). The discrepancy in Chl-a 

concentrations between Gulf and shelf waters is likely the difference in terrigenous 

nutrient loading from nearby continental material and river inputs (Wollast, 2003). 

If Spinetail devil rays are thought to be linked to areas of high productivity and prey 

abundance, this begs the question of why their distribution is concentrated on the 

shelf, where productivity seems to be lower than that of the inner- and outer Gulf. 

This is probably highly correlated with the location of N. australis, who occur along 

the continental shelf edge rather than residing inshore (Jillet, 1971). This shelf 

species is known to take extensive migrations to depth during the day to exploit 

mesopelagic prey in deep scattering layers  and avoid predation at the surface (Jillet, 

1971). An explanation could be that N. australis forage not only on phytoplankton 

but are omnivorous, known to feed on copepods and other zooplankton assemblages 

thus, are likely to exhibit temporal and spatial lags in distribution relative to Chl-a 

(Ritz et al., 1990). Hence, the low Chl-a influence may be attributed to time lags and 

the inability for Chl-a to serve as a proxy for N. australis distribution and abundance.  

 

An attempt to include zooplankton (i.e., N. australis) was made by incorporating 

Chl-a gradient in the dynamic model. Chl-gradient represents productivity of fronts 

known to attract and aggregate higher trophic level predators (Scales et al., 2014; 

Woodson & Litvin, 2015), and is often a better indicator of upwelling systems and 

zooplankton occurrence (Druon et al., 2021). This was included in the model in 

conjunction with SST gradients, indicative of areas with mixing of warm, nutrient-

poor, and cold, nutrient-rich waters and are significantly related to upwelling 

intensity (Vazquez-Cuervo et al., 2017). Further, industrialised fisheries are known to 

target persistent fronts (Hartog et al., 2011; Podestá et al., 1993) thus, given the high 

interaction between Spinetail devil rays and fisheries, theoretically is an important 

variable. However, despite the presumed association, a significant relationship 

between habitat suitability and Chl-a and SST gradients was not found. Most likely, 

the temporal scale that the data were analysed at, and the model was run, was 
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problematic. Productivity fronts are known to be active over periods of weeks and 

months, not a full year (Druon et al., 2021). The aggregation of the data to annual 

layers, although only incorporating months that Spinetail devil rays were present 

(i.e., spring and summer), this may have resulted in the loss of temporally finer 

patterns within gradient layers, that annual aggregation may have smoothed over. 

Further, productivity fronts detected from Chl-a and SST gradients are calculated 

from satellites thus, can only capture fronts at or near the surface. Therefore, despite 

an attempt to capture N. australis distribution, this was done unsuccessfully and 

requires investigation using finer temporal scales.  

 

Chl-a included in this model was restricted to surface Chl-a values derived from 

satellite ocean colour measurements, thus, is unlikely to capture productivity in 

deeper layers. Due to the NE shelf exhibiting a deep Chl-a/biomass maxima during 

spring and summer months, this may have caused mismatches in Chl-a 

concentrations (Chiswell et al., 2022). Although in-situ measurements capture deep 

Chl-a maxima better, these measurements are often sparse and logistically 

challenging. Perhaps an investigation into potentially combining these two data 

sources (Chiswell et al., 2022) to capture a fuller image of Chl-a in the whole water 

column would be beneficial.  

 

2.4.1.2               Role of the continental shelf edge  

 

The affinity for both Spinetail devil rays and N. australis species to aggregate along 

the continental shelf edge at around 200m at depth (Jillet, 1971; Blackburn, 1980; 

Gómez, 1995) is consistent with both the static and dynamic model which show high 

habitat suitability along the continental shelf edge, around 100km from the coast. 

This interrelationship between the two species is exhibited in accounts of Spinetail 

devil rays’ being more present at the surface during night, likely foraging at depth 

during the day (Francis & Jones, 2016; Irigoien et al., 2014), possible due to their 

retia mirabilia (i.e., brain heater), despite being ectothermic (Thorrold et al., 2014). 

This is a necessary adaptation considering the significantly colder water at depths 

below 200m and the subsequent reduction in metabolic rates (Bernel et al., 2012).  
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Although distance to coast was a prevalent variable and the preference for areas 

around the 200m isobath is known for Spinetail devil rays in relation to foraging 

(Putra et al., 2020), a significant relationship between distance to 200m and habitat 

suitability could not be detected. This may be explained by a hypothesis by Rohner et 

al. (2017) that Spinetail devil rays go through cycles of starvations and feeding 

events, and individuals within the dataset may have not been observed during 

feeding events, especially as Spinetail devil rays are often at depth during the day.  

 

2.4.1.3   Relationship with SST 

 

Ectothermic organisms’ internal body temperature matches the ambient water 

temperature closely (Brill et al., 1994) which means that these organisms experience 

large fluctuations in temperature (Bernel et al., 2012). The limited relationship 

between SST and HSI within the static model could potentially be due to a failure to 

account for the temporally dynamic nature of SST, in that it changes rapidly over 

hourly and daily resolutions. An 18-year long-term average may not have successfully 

captured the nuances in the SST and HSI relationship due to this. By contrast, the 

dynamic model captures a response profile of increasing SST associated with 

increasing HSI, which is what was expected from previous studies (e.g., Canese et al., 

2011). However, the relative contribution of SST is lower than that of the static 

model. Despite attempting to address the dynamic nature of SST by using an annual 

model, perhaps the temporal resolution chosen was too broad to capture finer 

intricacies of the relationship. Alternatively, the limit of occurrence records and 

hence the model to summer months could be reducing the thermal ranges that 

Spinetail devil rays experience consequently reducing the influence of SST on HSI.  

 

The relationship between SST and HSI in the model may have been captured through 

the lack of presence records further south than the Te Moana a Toi Bay of Plenty, 

despite equal survey effort in areas south (Langley, 2019) and the seasonal patterns 

in occurrence records. The southern limit of the records is likely to represent a 

thermal limit, with this region coinciding with the East Cape; the southern extent of 

the EAUC (Santana et al., 2021). SST in the NE shelf during summer months is 
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around 20 °C whereas southern waters can get as low as 13 °C (Garner, 1969). The 

seasonal occurrence in the NE shelf with no occurrences during winter months may 

also represent a temporal thermal limit as during winter in the NE shelf SST drops to 

around 15 °C (Garner, 1969).  These patterns must be related to a condition separate 

to prey availability as N, australis is present in areas further south such as Cook 

Strait, Kaikoura (Mehl, 1969), Marlborough Sounds, Wellington Harbour and Otago, 

throughout the year (Bartle, 1976). This supports the hypothesis that Spinetail devil 

rays are limited by colder SST, especially in the south and in winter where influences 

from Subantartic flows result in substantial declines in SST (Garner, 1969). Bryde’s 

whales (Balaenoptera edeni), large filter-feeders known to feed on euphausiids 

(Wiseman, 2008), have year-round occurrence within Aotearoa New Zealand waters 

(Wiseman et al., 2011). Although both species may have similar requirements, the 

lack of endothermy (i.e., warm-blooded) for Spinetail devil rays may attribute largely 

to the seasonal departure from Aotearoa New Zealand waters. Thus, Spinetail devil 

rays appear to be temporally and spatially localised in response to SST. 

 

SST may also indirectly influence the distribution of Spinetail devil rays by directly 

impacting their prey. Studies on N. australis have found that reduction in abundance 

is a result of intrusions of subtropical waters and the subsequent decline of nutrients 

and thus, phytoplankton (Ritz et al., 1990; Young et al., 1993). Therefore, the 

intrusion of the EAUC in the Tīkapa Moana Hauraki Gulf over shelf waters in late 

summer must lead to a reduction in the availability of N. australis. This explains the 

lack of Spinetail devil rays occurrence records in late summer to early autumn 

(March-April), despite warmer SST around the NE shelf than in early summer 

months (Paul, 1968).  

 

Spinetail devil rays likely migrate to Aotearoa New Zealand waters during summer 

months when intrusions of the EAUC increase SST to their thermal range and allow 

them to capitalise on the abundant N. australis resource in the shelf waters. The 

eventual departure during late summer to autumn is likely triggered by the 

shoreward intrusion of the EAUC causing the reduction of prey abundance and the 

colder SSTs further south restricting them from further exploiting this resource.  
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2.4.1.4                Potential impacts of ENSO 

 

With temporally dynamic elements that alter environmental conditions such as El 

Niño Southern Oscillation (ENSO) and climate change, the dynamic model is an 

important step towards attempting to understand how Spinetail devil rays’ 

distribution may have changed in response to these drivers in the past.  

 

For Spinetail devil rays, a significant distributional shift cannot be detected and 

visually the changes between the years seems to be limited to changes in the intensity 

and extent of areas of high habitat suitability. However, the strongly positive SOI 

values, indicative of the La Niña phase, is a relatively high component. The higher 

habitat suitability associated with positive SOI values in the static and dynamic 

model are indicative of La Niña conditions, which are associated with increased 

easterly winds, warmer than usual SST, downwelling conditions and thus, reduced 

productivity (Willis et al., 2007). Due to previous studies suggesting that upwelling 

regions was a strong predictor in Spinetail devil ray occurrence, this finding is 

contradictory.  

 

However, a positive relationship between HSI and La Niña might be an artifact of 

elevated SST that La Niña conditions bring which might fit better within Spinetail 

devil rays’ thermal tolerance. Further, warmer waters may allow Spinetail devil rays 

to reside in Aotearoa New Zealand waters for a longer period, increasing overlap and 

possible interactions with fisheries and hence, occurrence records.  

 

 Despite this hypothesis, it is clear that this relationship is highly nuanced and may 

be a fine balancing act between SST and productivity. Although warmer SST that La 

Niña conditions elicit may suit Spinetail devil rays better, increasing easterly winds 

cause a decrease in productivity and especially relevant to this species, reduction in 

N. australis. This was shown in the summer of 1988/89 where a strong La Niña 

event caused increased intrusion of subtropical waters, leading to the depletion of N. 

australis and subsequent collapse of the jack mackerel (Trachurus declivis) fishery 

in Tasmania (Harris et al., 1991; Young et al., 1993). However, skipjack tuna, a 

species that’s distribution is tightly interwoven with Spinetail devil rays’ distribution 
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and feed mainly on N. australis, is seen to increase in abundance in New Zealand 

waters during La Niña events (Langley, 2019).  

 

It is clear that more analysis into the reasonings behind this discrepancy and more 

data collected in El Niño years and normal years is required to understand the 

association between ENSO and Spinetail devil rays as the study years were 

dominated by La Niña years.  

 

2.4.2 Oceanic manta ray habitat selection  
 

Shallow, near-shore regions that have moderate to high sloping seafloor appear to be 

indicative of areas with high habitat suitability for Oceanic manta rays in this study. 

Habitat suitability peaked around 50km from the coastline at depths of around 

100m, suggesting that Oceanic manta rays in the NE coast utilise coastal regions 

close to the land-sea interface, with highest suitability occurring within the Tīkapa 

Moana Hauraki Gulf. These results are analogous with previous studies on manta ray 

habitat preference in shallow, near-shore regions (Couturier et al., 2013; Hacohen-

Domené et al., 2017; Putra & Mustika, 2020).  

 

2.4.2.1            Near-shore coastal regions 

 

The Gulf and shelf regions exhibit differing oceanographic conditions largely due to 

the intrusion of the EAUC shoreward as far as the 150m isobath, which creates a 

physical boundary between these two regions (Zeldis & Willis, 2015). Consequently, 

the lower salinity, nutrient-rich shelf and Gulf waters, support higher primary 

productivity, greater abundance, and diversity in zooplankton assemblages with 

reduced seasonal fluctuations (Chang et al., 2003; Zeldis & Willis, 2015). Increased 

productivity in coastal waters is likely captured by the high importance of Chl-a in 

the static model, with Oceanic manta rays being more prevalent in areas with higher 

Chl-a concentrations. The prevalence of Oceanic manta rays at outer Gulf areas 

where there may be potential mixing of coastal and offshore waters may explain the 

positive relationship of suitability with SST gradients. The importance of fronts for 
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Oceanic manta (Graham et al., 2012; Luiz et al., 2009) are known to use areas with 

high productivity (Acha et al., 2004; Franks, 1992; Le Fèvre, 1986) as are similar 

filter-feeders such as whale sharks (Wilson et al., 2002).  

 

Although coastal regions are analogous with higher productivity due to influx of 

additional nutrients from terrigenous, riverine, and anthropogenic sources (Carter et 

al., 2005; Chang et al., 2003; Mann and Laier, 1991), the reason why Tīkapa Moana 

Hauraki Gulf coastal areas are of particular importance could be due to the role of 

nutrient regeneration.  

 

Late summer in the Hauraki gulf (Jan to Feb) is associated with prevalent easterlies 

and downwelling favourable conditions, resulting in strong stratification and the 

depletion of nutrients (Zeldis, 2004). Despite a reduction in productivity, Oceanic 

manta ray sightings in this study were disproportionately higher from these late 

summer months, especially February.  This could be explained by the potential role 

of alternative sources of nutrients Giles et al. (2007) demonstrated that due to the 

shallow nature of the Gulf, nutrients released through benthic remineralisation were 

able to sustain productivity in late summer. This may explain the longer duration 

that Oceanic manta rays are observed in the NE coast in comparison to Spinetail 

devil rays. Although Chl-a was the most influential variable on the long-term 

distribution of Oceanic manta rays, due to Chl-a values being derived from satellite 

sources that are not representative of deeper Chl-a values, the interrelationship is 

likely underestimated. For Oceanic manta rays that occur within the Gulf where 

benthic remineralisation processes are responsible for 10-13% of the primary 

productivity (Giles et al., 2007), underestimations may be exacerbated. 

Consequently, the ambiguous relationship between Chl-a and distribution in the 

dynamic model may be explained by this as well. For example, specific years with 

particularly high deep Chl-a blooms (e.g., spring 1999, autumn 2000; Gall & Zeldis, 

2011), would be unaccounted for. Deep Chl-a blooms appear to be especially relevant 

to Oceanic manta rays due to the well-documented depth utilisation during foraging, 

and the exploitation of demersal and mesopelagic prey sources (Burgess, 2017; 

Couturier et al., 2013; Fonseca-Ponce et al., 2022).  
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2.4.2.2 Relationship with SST 

 

Oceanic manta rays are ectotherms; thus, SST is likely to directly influence 

physiologically and energetically favourable areas, and thus, migration and 

aggregation (Couturier et al., 2012; Graham et al., 2012). Further, prey availability, 

namely zooplankton abundance is demonstrated to be correlated with SST 

(Richardson, 2008; Wilson et al., 2003) hence, SST is likely to influence Oceanic 

manta ray distribution indirectly as well.  Therefore, it is unsurprising that SST is one 

of the most important drivers of distribution for both static and dynamic models. The 

relationships predicted differ for both models. The static model suggests that habitat 

suitability is higher in colder waters, with a clear peak just above 18 °C. In contrast, 

the dynamic model shows increasing suitability to around 17 °C, a slight reduction 

before a peak at 26 °C is reached.  

 

Higher habitat suitability in colder waters is consistent with high prevalence of 

coastal waters, as these areas are associated with upwelling systems and the absence 

of warmer EAUC waters. However, the increase in suitability with increased SST in 

the dynamic model is also unsurprising as observations have found a correlation 

between aggregation sites and warmer waters (Burgess, 2017). A potential 

discrepancy between the two is that the higher suitability in colder waters is 

associated with a higher degree of uncertainty in comparison to that of the 

association with warmer waters. Therefore, this may be associated with fewer 

presence records available at lower temperature ranges, resulting in extrapolation 

and subsequent uncertainty. Furthermore, long-term averages tend to correspond 

colder waters with high productivity but in finer temporal scales, the relationship 

between SST and productivity is likely to be more nuanced, dependent on factors 

such as the source of water (i.e., deep, riverine, terrigenous). Regardless, Oceanic 

manta rays are known to capitalise on mesopelagic prey at depths where 

temperatures are substantially colder than surface waters (Burgess, 2017), 

highlighting their ability to withstand colder SST, especially a prevalent behaviour 

while foraging. This species is thought to have a more complex and developed rete 

mirabilia than that described for Spinetail devil rays (Schweitzer & Notarbartolo di 

Sciara, 1986) and is a potential adaptation to the larger mouth of the Oceanic manta 
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ray that when feeding and taking in large volumes of water, leads to greater cooling 

of the brain (Alexander, 2008). Cranial adaptations allow the maintenance a 

constant thermal temperature for the brain (Alexander, 2008), a hypothesised 

adaptation to expand thermal ranges (Block & Finnerty, 1994). The large, black 

dorsal surface allows individuals to recover at the surface, building up heat stores 

and thus, metabolic rate, allowing them to stay at depth for longer (Alexander, 2008; 

Cossins, 2012). Therefore, I hypothesise that both relationships in both models are 

true – colder SST represents increased prey availability (and this relationship 

dominates long term averages) however, surface waters need to be warm enough to 

allow for thermal recovery before or after undertaking vertical migrations (and this 

relationship emerges when finer scale analyses are performed).   

 

2.4.2.3 Jellicoe and Cradock Channel  

 

Manta rays are known to aggregate in areas of high productivity (Anderson et al., 

2011; Compagno & Last, 1999; Couturier et al., 2011; Dewar et al., 2008; Homma et 

al., 1999; Luiz et al., 2009). These aggregations often happen at cleaning stations 

(i.e., reefs where cleanerfish remove ectoparasites from body), although a greater 

association is observed with Reef manta rays (Anderson et al., 2011; Homma et al., 

1999; Marshall, 2009).  

 

High habitat suitability found in both static and dynamic models in the Jellicoe and 

Cradock Channel provide insight into a potential aggregation site in Aotearoa New 

Zealand waters. The Cradock Channel separates Te Hauturu-o-Toi Little Barrier 

Island and Aotea Great Barrier Island with the underwater topography resembling 

an underwater saddle (Department of Conservation & Fisheries New Zealand, 2021). 

Reef systems exist in the middle of the channel with high sloping exhibited from 

depths ranging from 20 to 60m and high nutrient levels in surface waters (Sharples, 

1997). The prevalence of moderate to high sloping in coastal regions such as the 

Cradock Channel are ubiquitous with the majority of manta ray aggregation sites or 

cleaning stations (Dewar et al., 2008; Jaine et al., 2012) as it can be indicative of 

complex features at the seabed including pinnacles and oceanic islands (Marshall et 
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al., 2009; Stewart et al., 2016a). Aggregations physical features or areas of complex 

topography are common in migratory pelagic species (Holland & Grubbs, 2007; 

Morato et al., 2008; Tsukamoto, 2006;) and provide conditions with increased 

nutrient availability (Genin et al., 1986; Lueck & Mudge, 1997) and could be 

providing a sheltered environment and subsequent reduction in energy expenditure 

against tides and currents (Genin, 2004; Morato et al., 2009), especially in the 

Jellicoe and Cradock Channel which is characterised by strong tidal currents (Black 

et al., 2000; Department of Conservation & Fisheries New Zealand, 2021). Therefore, 

it could present suitable locations for mating, feeding, nursery grounds for migratory 

pelagic species (Morato et al., 2010), which may be particularly true for the Cradock 

Channel as it is already an important habitat for Bryde’s whales and bottlenose 

dolphins (Dwyer, 2014).  

 

The Jellicoe Channel is located between Leigh Harbour (mainland) and Te Hauturu-

o-Toi Little Barrier Island. This channel resembles a U-shape and is around 30km 

wide with the maximum depth just over 50m (Sharples, 1997). Similar to the 

Cradock Channel, strong tidal currents (Hume et al., 2000) are prevalent with high 

degrees of sloping are present, for example, depth dropping from 20m to 50m in less 

than 8km (Sharples, 1997). Although both Jellicoe and Cradock Channels act as the 

“northern entrance” to the Gulf (Black et al., 2000), previous studies have found that 

intrusions of the EAUC are higher in the surface waters of the Jellicoe Channel 

during summer months (Chang et al., 2008; Sharples, 1997). Thus, the Jellicoe 

Channel is an important region where offshore water (high salinity, low nutrient-

levels) mixes with coastal water (low salinity, high nutrient-levels), resulting in high 

Chl-a values at this thermal boundary (Sharples, 1997). Due to the high productivity 

associated with the Jellicoe Channel, it is no surprise that high habitat suitability for 

Oceanic manta rays was predicted here.  

 

2.4.2.4 Variance in the dynamic model  

 

The dynamic model demonstrates that almost 50% of the variance in habitat 

suitability between years is unquantified by the model. Due to data availability 
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issues, important variables identified from previous studies could not be 

incorporated into this model. In particular, the distribution and movement of 

Oceanic manta rays seems to be strongly linked to moon phases and tidal currents 

(Dewar et al., 2008). Vertically migrating organisms such as zooplankton appear to 

migrate to deeper waters during a full moon resulting in reduced foraging and 

decreased occurrences during these times, compared to half and new moon phases 

(Blaxter, 1974; Hernández-León et al., 2001; Rohner et al., 2013). As this study was 

based on citizen science data for Oceanic manta rays, sightings were likely to be 

collected during the day when the influence of moon phase and zooplankton 

migration in response was relatively low. Therefore, moon phase was left out of the 

study. If night sightings were included in the model, moon phase may become 

important.  

 

Strong tidal currents as well as greater tidal ranges has seen an increase in foraging 

for Oceanic manta rays, due to greater water column mixing (Dewar et al., 2008; 

Fonseca-Ponce et al., 2022). Similar to moon phases, this was left out of the study as 

well due to citizen science records missing the time of observation. Tides are 

temporally dynamic and can change rapidly thus, including it in the model by 

randomly assigning a time would have resulted in misled interpretation. If 

incorporation of sightings with time were to occur, this would be an important 

variable to include. However, the importance of the Jellicoe and Cradock Channel – 

both of which are characterised by strong tidal currents, may highlight this important 

association despite the exclusion of this variable from the model.  

 

A variable that is likely attributed to most of the unexplained variance between the 

study years is ENSO. The primary source of interannual variability is ENSO (Chavez 

et al., 1999; Feely et al., 1987) and previous studies have demonstrated a clear 

relationship between Oceanic manta rays’ distribution and ENSO phase (Burgess, 

2017; Fonseca-Ponce et al., 2022; Lea & Rosenblatt, 2000; White et al., 2015). 

Overall, La Niña (eastern Pacific) events resulted in greater sightings and activity 

(Burgess, 2017; Fonseca-Ponce et al., 2022; White et al., 2015) and during a strong El 

Niño event (eastern Pacific), a poleward shift away from warmer waters was seen for 

several elasmobranch species, including Oceanic manta rays (Lea & Rosenblatt, 
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2000). I note that these studies were all based in the eastern Pacific, and where 

Aotearoa New Zealand is in the western Pacific, where El Niño is associated with 

cooler SST and the opposite for La Niña conditions. Unfortunately, the model could 

not be run with SOI as the “Year” for each absence record was randomly generated 

and thus, interpretation of results of the impact of SOI on habitat suitability would 

have been no better than random. However, based on the strong relationships found 

in previous studies, the potential of this relationship cannot be dismissed, and this 

could explain the large variance in Year, that was not seen in the Spinetail devil ray 

model. Therefore, further investigations using a more sophisticated absence 

methodology (i.e., target background points, real absence records) will allow for a 

greater understanding of the environmental drivers behind Oceanic manta rays over 

time.  

 

 

2.4.3 Evidence of trophic separation 
 

The clear segregation in areas with high habitat suitability for Oceanic manta rays 

and Spinetail devil rays is a possible hint to trophic separation. The 200m isobath 

line acts as a clear demarcation line between the two distributions, with Spinetail 

devil rays the line representing their inshore extent, and with Oceanic manta rays, 

their offshore extent. As filter feeders with morphological similarities, both species 

will likely have similar habitat requirements and preferences, and thus, similar prey 

(Stewart et al., 2017). Trophic separation between those of the same species is 

usually to limit this competition for the same resources (Rohner et al., 2017).  

 

Furthermore, this separation may be due to the difference in size between Spinetail 

devil ray and Oceanic manta ray and corresponding dissimilar energetic 

requirements.  Typically, with teleost fish, the size of their mouth gape dictates the 

maximum size of prey they can target and thus prey items may differ between species 

(Scharf et al., 2000; Stewart et al., 2017). However, with filter feeders where their 

mouth gape is incomparably larger than their prey, the same conclusions may not 

apply.  
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Previous studies have found that regardless of body size, mobulid species have been 

shown to overlap distributions (Notarbartolo di Sciara, 1988; Sampson et al., 2010; 

Stewart et al., 2017), with overlap increasing with depletion of resources (Stewart et 

al., 2017). This refers back to the filter feeders’ energetics where prey density must 

exceed a threshold (Armstrong et al., 2016) and in the wake of reducing prey 

availability, there is likely to be a limited number of prey patches that meets these 

requirements, hence greater trophic overlap. By contrast, in the productive waters of 

the NE coast with only two mobulid species, there is likely to be reduced convergence 

and individuals are likely able to feed on preferred zooplankton prey, increasing 

trophic separation.  

 

Although Stewart et al. (2017) argues that in filter feeders, body size is highly unlikely 

to impact trophic separation, in this case, the relatively larger size of the Oceanic 

manta ray and hence, increased caloric requirements, are probable elements of 

trophic separation in the NE coast. Oceanic manta rays are unlikely to meet their 

caloric needs if individuals primarily consumed one prey type with earlier studies 

demonstrating that their stomach can hold up to 5kg of prey (Rohner et al., 2017).  

 

Further, the coastal waters support a higher variety of zooplankton biomass, with 

high egg, larval and adult copepod abundances during spring and summer months 

within the gulf (Zeldis & Willis, 2015), known prey items of Oceanic manta rays 

(Rohner et al., 2017).  

 

With increasing SST due to climate change, exacerbated by frequent La Niña events, 

this interspecific relationship is likely to change. Based on previous studies in 

oligotrophic, warm waters, it is likely that prey will be available at lower densities, 

with a patchier distribution. This will reduce prey patches that exceed energetic 

thresholds, resulting in the convergence of prey sources and the subsequent increase 

in trophic overlap.  

 

 



Chapter 2: Methods and Results 

  

 

 117 

2.5      LIMITATIONS OF THE STUDY  

 

2.5.1 Limitations of fishery-based data  
 

Spinetail devil ray occurrence records were all obtained from fishery-based data. 

Despite the plethora of strengths associated using this data especially with a species 

that faces data paucity issues, it is also critical to identify the limitations. The first 

major concern with this data is the potential spatial and temporal bias or unequal 

sampling in that fisheries tend to preferentially go to areas that have high densities of 

their target species, driven by economic factors rather than a random and equal 

sampling footprint (Karp et al., 2023). Therefore, the evident trophic separation 

between Spinetail devil rays and Oceanic manta rays could be a manifestation of 

fisheries preference to occur in offshore waters and out of protected habitats (i.e., 

marine reserves). However, through examination of the absence records that were 

also obtained from fisheries purse-seine records, it can clearly be seen that purse-

seine vessel operate further inshore (Fig 2.4). Purse-seine records can be seen all 

along the eastern coastline (Fig 2.4), even within the Jellicoe and Cradock Channel 

where Oceanic manta rays were predicted to have the highest suitability. Thus, 

trophic separation in Aotearoa New Zealand is likely not due to differing data 

collection methods. It should be noted that purse-seine fisheries may also exhibit a 

temporal bias, with skipjack tuna fisheries (i.e., fisheries that is most associated with 

Spinetail devil rays) mainly operational between January and March (Langley, 2019). 

Although occurrences drop dramatically in March, it cannot be dismissed that the 

seasonality of presence could be due to this temporal bias. There is no doubt that 

conducting surveys throughout the year will result in greater ecological insight in 

terms of habitat use in Aotearoa New Zealand however, given physiologically and 

energetic restraints, it is likely that this spring/summer model was able to capture 

much of their temporal range in Aotearoa New Zealand.  

 

The second concern is associated with potential misidentification of Spinetail devil 

rays with Oceanic manta rays. This accurate species level identification is critical for 

identifying the correct habitat use and distribution of a species and could adversely 

impact results. Ongoing review of identifications, photographs to confirm 
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identification, observer training on morphological differences that are easy to spot 

from the surface are principle to effective mobulid conservation. Spinetail devil ray 

data was obtained from MPI from two different databases, COD and NFPS. COD is a 

database comprised of data from an observer on board that is completely 

independent from fisheries whereas NFPS are reported catches from commercial 

fishers (Fisheries New Zealand, 2022). Although data from COD is checked for errors 

and species are verified before published, data from NFPS is not independently 

verified and thus, may be subject to species misidentification (Fisheries New 

Zealand, 2022). Detection bias related to difficulty observing an animal due to turbid 

waters or deep diving behaviours can also increase misidentification (Fortuna et al., 

2014; Torreblanca et al., 2019). However, due to the lack of confirmed captures of 

Oceanic manta rays in Aotearoa New Zealand waters and lack of observations of 

other mobulid species (Ford et al., 2015, 2018; Jones & Francis, 2012; Paulin et al., 

1982), the issue of misidentification is likely to be minimal. In contrast, detection 

bias may be a larger issue as Spinetail devil rays tend to dive deeper and spend less 

time at the surface during the day than at night (i.e., when purse-seine vessels are 

active) (Francis & Jones, 2016). Although the time spent at depth is relatively low, 

likely due to physiological restraints, daytime data collection may be underestimating 

Spinetail devil ray occurrence in Aotearoa New Zealand waters.  

 

2.5.2 Limitations of citizen science data  
 

It is important to address that although the use of data from platforms of opportunity 

create avenues for greater data collection with reduced logistical and financial costs 

(Torreblanca et al., 2019), there are also associated limitations. One of the main 

limitations especially relevant to mobulid species is the potential misidentification of 

the species (Francis, 1999; Pearson et al., 2010). Citizen scientists unlike scientists 

who survey with intent to encounter mobulids, have potentially less information and 

resources to correctly identify an individual, especially due to the morphological 

similarities between Spinetail devil rays and Oceanic manta rays. This is exacerbated 

by the lack of incentive for observers to correctly identify species (Francis, 1999) and 

associated difficulty to spot key morphological features when surface waters are 

turbid (i.e., detection bias) (Fortuna et al., 2014; Torreblanca et al., 2019). Detection 
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bias occurs when observers are unable to detect animals due to their deeper diving 

behaviours or failure to detect an animal at the surface due to various reasons such 

as turbidity (Marsh & Sinclair, 1989) or in the absence of feeding activity (i.e., 

somersault feeding) where there is a lack of disturbance at the surface, it can be 

difficult to identify an animal just below the surface. However, unlike Spinetail devil 

rays, Oceanic manta rays are known to spend more time at the surface during the day 

(Andrzejaczek et al., 2021; Andrzejaczek et al., 2022), thus, detection bias due to 

deep diving behaviours may not be as much of a factor. Nonetheless, it is important 

to interpret the data with caution as a lack of presence does not necessarily indicate 

the lack of the animal but could just be the lack of observation (Torreblanca et al., 

2019).  

 

Opportunistic data is also associated with selection bias, where encounters usually 

occur in environments that are easier to access or have social and/or economic 

significance (i.e., tourism destinations) (Pearson et al., 2010). This can result in 

substantially biased data towards coastal areas, and reduced sightings in remote 

areas, such as offshore and deep ocean regions (Robinson et al., 2011). Although this 

study attempting to reduce this bias through the selection of appropriate pseudo-

absences and the creation of a prediction horizon to reduce extrapolation, it is 

important to address that due to the deep diving capabilities of Oceanic manta rays 

and pelagic nature, these habitats may be equally as important as coastal regions. 

This study demonstrated that for Oceanic manta rays, near-shore, coastal regions are 

especially important in terms of suitability however, the selection bias of encounters 

in these relatively easily accessed areas may be responsible for this association. 

Therefore, despite previous studies in other regions also find high suitability in 

regions with the same environmental conditions, this possibility cannot be dismissed 

without systematic surveys (Fiedler et al., 2018). Opportunistic data potentially 

represents a biased and small fraction of the true distribution of animals (Praca et al., 

2009) given that this study is the first attempt to map the distribution of mobulids in 

Aotearoa New Zealand waters, baseline information and understanding of the 

species has improved, fulfilling the aim of the study. Future studies will focus on 

robust sampling effort and fieldwork to assist with the results from the model (see 

section 3.4).  
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There is no doubt that the increased sophistication of smart-phone technology has 

changed the power that citizen scientists hold. This means that ecologically valuable 

data can be collected in near real-time, with increased confidence in identification as 

a result of increased camera resolution (Cranswick et al., 2022). This may be 

particularly useful to look at ways distributions may overlap with human activities, 

where citizen scientists are probable to be most active (Cranswick et al., 2022). 

Therefore, future studies may look at ways to combine this data in meaningful ways 

to maximise data available for ecological insight into fine-scale movements and 

distribution especially into the impacts of human activities.  

 

2.5.3 Limitations of environmental layers 
 

In this study, biotic interactions such as prey availability were included in the model 

through variables such as Chl-a and gradient layers but the lack of explicit inclusion 

(Wisz et al., 2013) prevented the model from capturing the full realised niche of both 

mobulid species. Temporal lags associated with phytoplankton and zooplankton 

abundance are also known limitations associated with Chl-a and this study used Chl-

a and SST gradients to attempt to capture this. However, these fronts are active over 

temporal resolutions of weeks to months (Druon et al., 2019) instead of annual scales 

thus, the aggregation of monthly layers into annual layers likely led to the 

disappearance of much of these important patterns. The use of satellite and remotely 

sensed environmental data, although in high resolution, were unable to capture 

subsurface processes (Valavanis et al., 2008) such as deep Chl-a maxima that is 

evident in NE shelf waters (Chiswell et al., 2022). Although satellite Chl-a 

measurements have allowed for low-cost and wide spatial and temporal coverage, 

globally, satellite Chl-a values only represent one-fifth of the total Chl-a content 

within the euphotic zone (Morel & Berthon, 1989).  

 

Satellite Chl-a measurements not only serve as a proxy for phytoplankton abundance 

but is a proxy for water clarity as well. Thus, interannual and seasonal fluctuations in 

Chl-a values may not reflect phytoplankton abundance but instead changes in water 

clarity related to river discharge or mixing related to wet seasons (Le et al., 2013). 

Although riverine discharge into the shelf is relatively low in the NE shelf with most 
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nutrient sources coming from offshore waters (~65%) (Zeldis & Smith, 1999), there 

are no measures to quantify the degree into which coastal Chl-a values are being 

under- or overestimated due to this.  

 

Mobulids distribution is largely dictated by areas where foraging energetics are 

favourable (Armstrong et al., 2016; Bone & Moore, 2008; Parker & Boeseman) 

therefore, the limitation associated with being unable to capture prey availability is a 

likely cause of under- or overestimation of suitability in certain regions. Further, 

mobulid distributions are likely sensitive to changes in abundance and distribution 

of their prey (Hays et al., 2005), and with the unprecedented unpredictability 

associated with climate change, mobulids’ distributions are predicted to change 

(Richardson, 2008). It is critical to investigate methods to capture prey to accurately 

predict how mobulid distributions may change into the future with greater certainty.  

 

2.5.4 Modelling limitations  
 

2.5.4.1          Dynamic SDM 

 

This study attempted to address the equilibrium assumption (Guisan & Thuiller, 

2005), whereby static models neglect the dynamism in space and time between 

environmental conditions and species distribution (Skov & Svenning, 2004) and 

assume stable and unchanging niches (Guisan et al., 2017; Pearman et al., 2008). An 

annual model was compared to a static model to investigate whether a dynamic 

model, albeit even on a larger temporal scale such as year, would be able to capture 

differences in distribution over time. However, due to the migratory nature of 

mobulid rays in other parts of the world and potential migration to Aotearoa New 

Zealand during summer months, the limited temporal variability in dynamic 

environmental variables during these restricted months may have reduced the 

capability of this study capture their full niche. However, given the demand for future 

climate scenarios (Coumou & Rahmstorf, 2012) and the error associated with basing 

forecasts on long-term averages (Niehaus et al., 2012), the importance of annual 

models will likely substantially increase. Furthermore, the lack of distributional 
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shifts within the dynamic model may also be attributed to the low number of 

occurrence records in some years, especially in the earlier years as awareness of the 

presence of both mobulids species was relatively low. The increase of systematic 

survey and subsequent occurrence records will ensure the entire environmental 

range of mobulids is captured, especially in areas such as the West Coast of the Te 

Ika-a-Māui North Island where intermittent sightings are present however, survey 

effort is lacking.  

 

Despite the importance of the inclusion of temporal dynamism, studies that 

incorporate this interannual variability are generally rare (Zimmerman et al., 2009). 

Although occurrence data was limited to mostly spring and summer months, with 

future climate scenarios predicting increasing temperatures and subsequent shifts of 

species poleward, there is immense unpredictability in how the distributions of 

mobulids will change going forward. This study was limited to a largely summer-time 

model and the investigation of seasonal suitability was rendered relatively 

unnecessary. Still, as climatic variables tip towards the extreme and animals move 

southward, the potential increase in time of residency in Aotearoa New Zealand 

waters might subsequently increase as well. Greater portion of the year spent in 

Aotearoa New Zealand waters might elicit the necessary investigation of habitat 

suitability with a finer temporal scale (i.e., seasonal), to correctly characterise the 

species geographical distribution and prevent the loss of predictive power (Perez-

Navarro et al., 2021).   

 

 

2.5.4.2 Absence records  

 

Presence-only modelling refers to models that incorporate data that has not been 

collected through systematic surveys and a major implication to this is that proper 

absence records are lacking (Yackulic et al., 2012). However, Phillips et al. (2009) 

demonstrated that these models can be robust to selection bias if the pseudo-

absences selected are associated with the same bias. For Spinetail devil rays, fisheries 

record from all purse-seine vessels within the same region, study years and months 
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were used so the associated bias was consistent (i.e., target-group background data, 

Phillips et al., 2009). Due to this, the records could be referred to as absence records  

and the model perform well indicated by the high AUC and TSS scores. By contrast, 

Oceanic manta ray data was collected by citizen scientists which are highly variable 

in quality and the lack of associated species with this species meant that target-group 

background data could not be used. To reflect the selection bias of the data, random 

points were selected based on a KDE probability grid of the occurrence records, 

called pseudo-absences. Although this has been shown to reduce selection bias and 

increase predictive accuracy (Elith et al., 2010; Fitzpatrick et al., 2013; Georgian et 

al., 2019; Finnuci et al., 2021), pseudo absences, are less informative than true 

absences.  

 

For Oceanic manta rays, despite the relatively high performance and ‘usefulness’, the 

performance is within the constraints of presence-only modelling. Presence-only 

models are more likely to deliver higher incidences of false positives (i.e., mobulid is 

predicted to be present at a location but is absent) rather than the opposite 

(Stephenson et al., 2021; Vierod et al., 2014). For the application of conservation 

management of endangered mobulids, false positives are considered better as the 

implications for underestimating their habitat could result in the continuation of 

harmful interactions (i.e., fisheries) that contributed to their depletion. However, in 

conservation the trade-offs between economic loss must be considered as well thus, 

for potential fishery closures, false positives or overestimations of their habitat is 

likely to have negative implications (Stephenson et al., 2021).  

 

To avoid limitations associated with presence-only modelling, for Oceanic manta 

rays, survey effort data and real absence records must be obtained (Stephenson et al., 

2021). For Spinetail devil rays, although absence records were more reliable as they 

were associated with the same bias, the collection of presence and absence points 

that are removed from fisheries dependency will confirm whether these habitat 

suitability patterns are a manifestation of commercial fisheries interest or real 

distributions. Given the aim of this study for conservation applications, systematic 

surveys, and subsequent collection of observed absence records for both species is 
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necessary to confirm and support these results to avoid negative ramifications to 

relevant stakeholders.  
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3.1 GENERAL SUMMARY OF FINDINGS 

 

Spinetail devil rays were distributed in areas around the continental shelf, especially 

around the outer shelf region by the Tīkapa Moana Hauraki Gulf, with the 200-depth 

contour line demarcating their inshore extent. Their affinity for areas further 

offshore, at depths of 150-500m indicated that vertical depth utilisation may be an 

important criterion for habitat selection and was indicative of foraging at depth. The 

dynamic model revealed that temporal and spatial patterns were generally quite 

consistent across the study years with slight variations in the value of suitability were 

visible but no evidence of a short- or long-term shift in distribution could be seen.  

 

The ambiguous relationship with Chl-a is supportive of their high suitability around 

the outer shelf, where lower values of Chl-a have been reported compared to the 

inner- and outer Hauraki Gulf regions. Despite filter feeders’ affinity towards areas 

with high Chl-a concentrations, the lack of this could be due to a proposed 

interrelationship between Spinetail devil rays and N. australis, the most abundant 

euphausiid species in Aotearoa New Zealand coastal waters. N. australis occur 

around the outer shelf and Spinetail devil ray prevalence to this location could be 

attributed to a highly specialised diet of this species.  

 

Although no annual patterns were identified, there is 16.2% of change in habitat 

suitability over the study period that is not explained by the model – this is 

attributed to variables that are not included in the model such as survey effort, or 

changes over time in dynamic variables such as SST that are not captured in the 

environmental data due to factors such as resolution. However, this unexplained 

variance is substantially less than that of the Oceanic manta rays, possibly attributed 

to the inclusion of SOI. Both static and dynamic model suggested that habitat 

suitability is higher during La Niña years, especially stronger events. Although 

productivity declines during La Niña events, the increase in SST may allow Spinetail 

devil rays to reside in Aotearoa New Zealand for longer, compared to El Niño events, 

increasing the time available for interaction events with fisheries vessels. It is 

important to address that during the study years, La Niña events have been the 
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majority thus, survey effort is required in El Niño years to ensure this relationship is 

not due to a sampling bias.   

 

Oceanic manta rays were predicted to have the highest habitat suitability near-shore, 

all along the eastern coastline, especially in the Tīkapa Moana Hauraki Gulf within 

the Jellicoe and Cradock Channel. Although seasonality could not be assessed, the 

records at face-value suggested that Oceanic manta rays may occur mostly during 

late summer months and reside in Aotearoa New Zealand waters for longer than 

Spinetail devil rays. Predicted habitat preferences suggested areas with high Chl-a 

concentrations with moderate to high sloping, analogous with regions within the 

Gulf. The inconsistent relationship in SST across the static and dynamic model may 

be indicative of the complex relationship between the trade-offs of being an 

ectotherm that requires warmer waters for increased metabolic rate, but the colder 

waters representing areas with higher productivity and prey availability. Spatial and 

temporal patterns over the study period seem to be relatively consistent like Spinetail 

devil rays however, there is a clear increase in suitability in 2017, 2019, 2020 and 

2021.  

 

The lack of a gradual long-term shift and evidence of interannual variability, suggest 

that ENSO or other interannual modes may be influencing their distribution. The 

exclusion of ENSO from the model due to the use of random pseudo-absences could 

explain the reason for 48.7% of variance in habitat suitability over time that is 

unexplained by the model. The high importance of Chl-a and SST for both models 

and the tight coupling between ENSO and these variables suggest that Oceanic 

manta rays’ distribution could be intimately linked with the ENSO phases. 

Nevertheless, habitat suitability appears to be increasing over time according to this 

spatially latent variable thus, requires more attention and further investigation. 

 

 

Although mobulid species appear to be similar in habitat requirements, the findings 

from this study provide evidence for the contrary. The different relationships 

between the environmental variables and the clear separation in predicted 

distributions with the 200m isobath acting as a demarcation line, provide strong 
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support for probable trophic separation in the northeast shelf. There is a clear 

separation in habitat utilisation, potentially linked to their preferred prey or 

energetic requirements (i.e., larger caloric requirements for Oceanic manta rays).  

 

 

3.2 SIGNIFICANCE AND CONTRIBUTION OF RESEARCH FINDINGS  

 

3.2.1 Implications of this study   
 

 

The protection of species and conservation planning processes often require spatially 

explicit information regarding their distribution, habitat use and abundance and 

subsequent information on the quality of these habitats (Akçakaya, 2000; Franklin, 

2010). This thesis presented the investigation of habitat suitability within the NE 

shelf of the Te Ika-a-Māui North Island of Aotearoa New Zealand, using a BRT 

model. Predictive maps over this study region for mobulid species were created for 

the first time and provided the initial conditions of suitable habitats and the 

environmental conditions that are responsible for driving this suitability.  

 

Species distributions tend to shift spatially in response to specific changes in 

environmental conditions (Melo-Merino et al., 2020) thus, by uncovering the 

conditions that are suitable for both species, their distribution can be understood and 

predicted for future scenarios where changes in these conditions are expected. Due to 

these expected shifts, this thesis examined habitat suitability over time on an annual 

scale to investigate whether shifts were already occurring. Dynamic models for both 

species  indicated that habitat suitability increased over time which could be 

attributed to increasing SST, and a greater portion of the year that rests within their 

thermal range. Fine-scale environmental data was used within the BRT models and 

revealed high habitat suitability for both species around the Tīkapa Moana Hauraki 

Gulf region, highlighting the importance of this area.  
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The identification of a hotspot for Spinetail devil rays on the outer shelf, past the 

Tīkapa Moana Hauraki Gulf is indicative of their high prevalence as bycatch. High 

suitability occurs just beyond the boundary of the Tīkapa Moana Hauraki Gulf 

Marine Park (Figure 2.14, 2.17) and beyond MPA or areas with robust protection. 

This is evidenced by Spinetail devil rays being one of the most captured protected 

fishes (Francis & Lyon, 2012) especially around the 200m contour by skipjack tuna 

purse seine fisheries (Francis & Jones, 2012). Conservative life history traits coupled 

with the lack of protection and the predominant diet for skipjack tuna to also be N. 

australis in Aotearoa New Zealand waters (Ministry for Primary Industries, n.d.), 

explains their high prevalence as bycatch. Currently, the predictive maps from this 

study suggest that Spinetail devil rays are not being adequately protected within 

Aotearoa New Zealand waters, and the NE shelf of the Te Ika-a-Māui North Island in 

particular. Therefore, these maps and findings presented in this thesis provide 

reliable distributional information to support conservation initiatives to reduce the 

occurrence of Spinetail devil rays as bycatch. This aligns with the Conservation 

Services Programme Protected Marine Fishes Medium-Term Research Plan by the 

Department of Conservation which outlines the high priority of research related to 

Spinetail devil rays’ overlap with fisheries, factors influencing bycatch (e.g., vessel 

size) and habitat preferences (Department of Conservation, 2021). Due to the high 

mortality after being released from purse-seine nets and the high risk and 

consequence score from qualitive assessments of the risk of commercial fishing (Ford 

et al., 2015, 2018), further investigations of this hotspot with survey (e.g., boats, 

aerial) or satellite tags is likely to increase understanding of these elusive animals.  

 

Oceanic manta ray hotspot was identified through the predictive maps, as the 

Jellicoe and Cradock Channel. Due to the coastal and near-shore nature of the 

habitat requirements predicted for this species, their distribution lies within the 

Tīkapa Moana Hauraki Gulf Marine Park. In response to declining biodiversity and 

health of the Gulf, Sea Change Tai Timu Tai Pari is a marine spatial plan with the 

sole purpose of restoring the health, social and economic wellbeing of the region 

(Department of Conservation & Fisheries New Zealand, 2021). Although no MPAs 

are in place yet, due to a previous study combining survey effort and SDMs within 

the Tīkapa Moana Hauraki Gulf to investigate distribution and habitat use of 
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cetaceans, the Cradock Channel was identified as a critical hotspot for both Bryde’s 

whales and bottlenose dolphins (Dwyer, 2014). Through this identification and 

coupled with species richness assessments, Sea Change has proposed a 152km2 

protected area in the Cradock Channel (Department of Conservation & Fisheries New 

Zealand, 2021 Despite a central focus of this proposed MPA on benthic protection, 

the restriction of dredging and trawling will no doubt benefit Oceanic manta rays 

through increased visibility and disturbance.  

 

The Jellicoe Channel was also identified as a hotspot however, this region remains 

unprotected with no proposed MPAs. However, the previous study by Dwyer (2014) 

demonstrates the influence that distributional studies can have on policy and driving 

the implementation of protected areas. Therefore, the identification of the Jellicoe 

Channel can serve as a recommendation to Sea Change for a protected area, 

especially due to the alignment with their aim of creating a network of MPAs in the 

Tīkapa Moana Hauraki Gulf. A potential protected area in this channel can serve as 

an extension of the Cape Rodney Okakiri Point Reserve and Goat Island Reserve to 

increase protection of critical species, namely the Oceanic manta ray.  

 

3.2.2 Dynamic Marine Protected Areas  
 

Although protected areas that are proposed or implemented above can be an 

important tool for conservation (Lubchenco et al., 2003), to date, there is little 

evidence of the efficacy of these contemporary protected areas on mobile marine 

species (Game et al., 2009; White et al., 2015). The lack of efficacy is largely related 

to the static nature of these parks, neglecting the dynamic nature of marine systems 

and the animals the inhabit them.  

 

The conversation has turned to dynamic MPAs that have mobile boundaries and can 

follow the movement of highly mobile species or dynamic systems (e.g., fronts, 

eddies) and account for seasonality, migration, or distributional shifts due to 

interannual variability or climate change (Bakker, 2022; Maxwell, 2015; Reynolds et 

al., 2017; Schofield et al., 2013). Although enforcement is a barrier, these issues are 

indifferent to stationary MPAs and the increasing presence of digital technologies 
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(e.g., drones, marine tags, machine learning algorithms, on-board cameras; 

electronic monitoring) are tools that can be utilised in this space (Bakker, 2022; 

Maxwell et al., 2015; Rohde et al., 2020). As the ocean become increasingly 

unpredictable and dynamic (Dunn et al., 2017; Bakker, 2022), efficacy of static 

conservation strategies that are based in terrestrial management (Carr et al., 2003; 

Duck, 2012) is becoming obsolete. Further questions around the social and economic 

consequences of a MPA that restricted activity, set up to protect a certain species no 

longer contains that species (Cashion et al., 2020).  

 

In response to the cost to relevant stakeholders associated with establishing MPAs, 

Maxwell et al. (2015) found that 34.2% to 82% less space was needed for a dynamic 

MPA compared to a traditional MPA, leaving more area available for human 

activities (Dunn et al., 2011). An example of a dynamic MPA is demonstrated by 

Howell et al. (2008) through the creation of TurtleWatch, a product that maps the 

near real-time areas where loggerhead turtles are likely to be based on SST 

preferences, to minimise interactions with longline fisheries. Due to the success of 

this product in identifying areas where turtle bycatch was likely to occur, it was 

extended to multispecies habitat use with the inclusion of leatherback sea turtles 

(Howell et al., 2015). The Tīkapa Moana Hauraki Gulf Marine Park is not only a 

biologically significant area, but an area with immense recreational and commercial 

fishery presence (Stevens et al., 2021). It is important to address that sustainability 

extends towards social and economic realms, and the compliance of such MPAs 

without this consideration is unlikely to be successful. Thus, dynamic MPAs are a 

likely solution that maximises environmental, social and economic wellbeing and 

sustainability by reducing area usage, increasing more space for human activities and 

the minimisation of fisheries interaction (especially for Spinetail devil rays).  

 

 

3.3 FUTURE RESEARCH  

 

This study serves as the first attempt to understand the potential habitat use and 

distribution of mobulids in Aotearoa New Zealand. The use of opportunistic data and 
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SDMs provided a low-cost option to provide baseline information on mobulids and 

bring awareness to potential distribution shifts over time. However, we note that 

SDMs could never replace dedicated and ongoing fieldwork or survey effort (Guisan 

& Thuiller, 2005). Further, SDMs must be continuously updated with the most 

recent data available, and the ecological rationality of modelled responses and 

predictions must be investigated (Burgman et al., 2005) especially if used in a 

conservation management context.  

 

There are a few elements that should be investigated further to build on the findings 

from this thesis. In terms of facilitating the SDM work done in this thesis, it should 

be supplemented with systematic surveys either on a boat, plane or using satellite 

telemetry and track the finer scale horizontal and vertical habitat use of both species 

(Cabral et al., 2023). Surveys will allow for future models to be run with reliable 

observed absences and presence records.  

 

Further, as filter feeders, mobulids’ distribution and movement are likely to be 

inextricably linked to that of their specific prey. In this thesis, due to the availability 

of data only Chl-a and gradient files could be included however, there is no doubt 

that including specific prey distributions such as N. australis for Spinetail devil rays 

will lead to a better characterisation of their potential distribution. This could involve 

the collection of prey samples during mobulid surveys. There are also a couple of 

regions that have intermittent sightings of mobulids but a lack of survey effort, 

including the Te Moana a Toi-te-Huatahi Bay of Plenty and the West Coast of the Te 

Ika-a-Māui North Island. Increasing survey effort in these areas will ultimately lead 

to a better quantification of the full environmental range that mobulids utilise in 

Aotearoa New Zealand waters and may eventually lead to estimations of abundance 

and population dynamics.  

 

As ectotherms and filter feeders, mobulids will likely be impacted by climate change 

and interannual variability such as ENSO (Richardson, 2008). Although ENSO was 

shown to influence the distribution of Spinetail devil rays, the lack of better absence 

records for Oceanic manta rays meant that this relationship could not be investigated 

further. Collection of data and running SDMs at finer temporal and spatial scales will 
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likely to reveal interannual patterns better. Further, the collection of long-term data 

across broader scales (i.e., not limited to the NE coast) will be necessary to better 

understand habitat-use in Aotearoa New Zealand waters how this is changing over 

time and space in response to climate change and interannual variability.  

 

Additionally, a larger dataset than is presented in this thesis is necessary to examine 

environmental and biological relationships on finer spatial and temporal scales, with 

more certainty. Systematic surveys can be undertaken and supplemented by satellite 

tagging to investigate the validity of hotspots that are suggested in this thesis and to 

examine the plausibility of foraging or nursing grounds in Aotearoa New Zealand 

waters. Given the evidence of courting behaviour for both species, heavily pregnant 

Oceanic manta rays (Lydia Green pers. comm) and near-term embryos collected for 

Spinetail devil rays, there is immense potential for the presence of a breeding or 

nursery ground and site fidelity. The loss of mobulids from global and Aotearoa New 

Zealand waters are largely unknown however, due to these animals constantly 

filtering water and sampling the environment, they are recognised as ecosystem 

indicators (Boldrocchi et al., 2023; Fossi et al., 2014).  Similar to whales, mobulids 

may have an important ecological role as concentrated food drop to the deep (Higgs 

et al., 2014) delivering organic matter from the surface to the deeper ocean. There 

has previously been an oversight into the vulnerability of mobulids to anthropogenic 

impacts and the how their absence may impact coastal ecosystems and communities. 

But through increased awareness, data collection and collaboration, the re-

population and conservation of mobulids is possible, seen through the increased 

sighting frequency in Hawaii since legal protection in 2009 (Ward-Paige et al., 2013) 

and the significant increase in abundance in Raja Ampat, as a result of a series of 

conservation measures and protection since 2007, a shark and ray sanctuary in 2012 

and the Indonesian government declaring full national-level protection in 2014 

(Setyawan et al., 2022a; Setyawan et al., 2022b).  

3.4 CONCLUDING STATEMENT  

 

In conclusion, the NE coast of the Te Ika-a-Māui North Island of Aotearoa New 

Zealand hosts a multitude of environments that are suitable for mobulids, with a 
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clear preference for waters around the Tīkapa Moana Hauraki Gulf Marine Park. 

Though this study, several important hotspots and environmental drivers of habitat 

suitability have been identified with a purely spatial and a spatio-temporal approach. 

Future challenge lies with initiating/starting survey effort as well as the increased 

awareness for fisheries and boat users across the country, not just limited to the NE 

coast. The ill-understood nature of mobulid rays in Aotearoa New Zealand and 

globally highlights the necessary funding, effort and attention that is required to 

ensure their conservation and protection in the wake of current and future threats. 

This research has demonstrated the successful application of SDMs to species with 

limited observations and identified critical areas that require further investigation. 

The consistency between the results and previous studies suggest that these 

predictive maps can be useful in conservation initiatives and future planning. 

Further, this study highlights the need for increased survey effort across the entire 

year with collection of long-term datasets in future SDMs for better predictions 

across finer temporal scales and to avoid constraints associated with using pseudo-

absences. Increased data availability and understanding of processes that drive 

mobulid distribution and habitat use will ultimately lead to increased robustness in 

their protection and conservation now and into the future.   

 

 

 

 



 References 

 

135 

 

REFERENCES 

 

Abudaya, M., Ulman, A., Salah, J., Fernando, D., Wor, C., & di Sciara, G. N. (2018). Speak of 

the devil ray (Mobula mobular) fishery in Gaza. Reviews in Fish Biology and 

Fisheries, 28(1), 229-239. 

Acevedo, P., Jiménez‐Valverde, A., Lobo, J. M., & Real, R. (2012). Delimiting the 

geographical background in species distribution modelling. Journal of 

Biogeography, 39(8), 1383-1390. 

Acha, E. M., Mianzan, H. W., Guerrero, R. A., Favero, M., & Bava, J. (2004). Marine fronts 

at the continental shelves of austral South America: physical and ecological 

processes. Journal of Marine Systems, 44(1-2), 83-105. 

Akçakaya, H. R. (2000). Viability analyses with habitat-based metapopulation models. 

Population Ecology, 42(1), 45-53. 

https://doi.org/https://doi.org/10.1007/s101440050043 

Alava, M., Dolumbalo, E., Yaptinchay, A., Trono, R., Fowler, S., Reed, T., & Dipper, F. 

(2002). Elasmobranch Biodiversity, Conservation and Management. Proceedings of 

the International Seminar and Workshop, Sabah, Malaysia, July 1997. 

Alexander, R. (1996). Evidence of brain-warming in the mobulid rays, Mobula tarapacana 

and Manta birostris (Chondrichthyes: Elasmobranchii: Batoidea: Myliobatiformes). 

Zoological Journal of the Linnean Society, 118(2), 151-164. 

Alexander, R. L. (2008). Evidence of brain-warming in the mobulid rays, Mobula 

tarapacana and Manta birostris (Chondrichthyes: Elasmobranchii: Batoidea: 

Myliobatiformes). Zoological Journal of the Linnean Society, 118(2), 151-164. 

https://doi.org/10.1111/j.1096-3642.1996.tb00224.x 

Allouche, O., Tsoar, A., & Kadmon, R. (2006). Assessing the accuracy of species distribution 

models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied 

Ecology, 43(6), 1223-1232. https://doi.org/https://doi.org/10.1111/j.1365-

2664.2006.01214.x 

Anderson, O. F., Guinotte, J. M., Rowden, A. A., Clark, M. R., Mormede, S., Davies, A. J., & 

Bowden, D. A. (2016). Field validation of habitat suitability models for vulnerable 

marine ecosystems in the South Pacific Ocean: implications for the use of broad-scale 

models in fisheries management. Ocean & Coastal Management, 120, 110-126. 



References 

  

 

 136 

Anderson, R. C., Adam, M. S., Kitchen-Wheeler, A.-M., & Stevens, G. (2011). Extent and 

economic value of manta ray watching in Maldives. Tourism in Marine 

Environments, 7(1), 15-27. 

Andrzejaczek, S., Lucas, T. C. D., Goodman, M. C., Hussey, N. E., Armstrong, A. J., Carlisle, 

A., Coffey, D. M., Gleiss, A. C., Huveneers, C., Jacoby, D. M. P., Meekan, M. G., 

Mourier, J., Peel, L. R., Abrantes, K., Afonso, A. S., Ajemian, M. J., Anderson, B. N., 

Anderson, S. D., Araujo, G.,...Curnick, D. J. (2022). Diving into the vertical 

dimension of elasmobranch movement ecology. Science Advances, 8(33), eabo1754. 

https://doi.org/doi:10.1126/sciadv.abo1754 

Andrzejaczek, S., Schallert, R. J., Forsberg, K., Arnoldi, N. S., Cabanillas-Torpoco, M., 

Purizaca, W., & Block, B. A. (2021). Reverse diel vertical movements of oceanic 

manta rays off the northern coast of Peru and implications for conservation. 

Ecological Solutions and Evidence, 2(1), e12051. 

https://doi.org/https://doi.org/10.1002/2688-8319.12051 

Araújo, M. B., Whittaker, R. J., Ladle, R. J., & Erhard, M. (2005). Reducing uncertainty in 

projections of extinction risk from climate change. Global Ecology and 

Biogeography, 14(6), 529-538. 

Armstrong, A. O., Armstrong, A. J., Jaine, F. R., Couturier, L. I., Fiora, K., Uribe-Palomino, 

J., Weeks, S. J., Townsend, K. A., Bennett, M. B., & Richardson, A. J. (2016). Prey 

density threshold and tidal influence on reef manta ray foraging at an aggregation 

site on the Great Barrier Reef. PloS One, 11(5), e0153393. 

Austin, M. (1987). Models for the analysis of species’ response to environmental gradients. 

Theory and models in vegetation science: Proceedings of Symposium, Uppsala, July 

8–13, 1985, 

Austin, M. P., Nicholls, A. O., & Margules, C. R. (1990). Measurement of the Realized 

Qualitative Niche: Environmental Niches of Five Eucalyptus Species. Ecological 

Monographs, 60(2), 161-177. https://doi.org/https://doi.org/10.2307/1943043 

Bailey, H., & Thompson, P. M. (2009). Using marine mammal habitat modelling to identify 

priority conservation zones within a marine protected area. Marine Ecology 

Progress Series, 378, 279-287. 

Bakker, K. (2022). Smart Oceans: Artificial intelligence and marine protected area 

governance. Earth System Governance, 13, 100141. 

https://doi.org/https://doi.org/10.1016/j.esg.2022.100141 



References 

  

 

 137 

Bakun, A., & Weeks, S. J. (2008). The marine ecosystem off Peru: What are the secrets of its 

fishery productivity and what might its future hold? Progress in Oceanography, 

79(2-4), 290-299. 

Barbosa, M., Sillero, N., Martínez-Freiría, F., & Real, R. (2012). Ecological niche models in 

Mediterranean herpetology: past, present and future. Ecological Modeling, 173-204. 

Barry, S., & Elith, J. (2006). Error and uncertainty in habitat models. Journal of Applied 

Ecology, 43(3), 413-423. https://doi.org/https://doi.org/10.1111/j.1365-

2664.2006.01136.x 

Bartle, J. A. (1976). Euphausiids of cook strait: A transitional fauna? New Zealand Journal 

of Marine and Freshwater Research, 10(4), 559-576. 

https://doi.org/10.1080/00288330.1976.9515640 

Barton, O. (1948). Color notes on Pacific manta, including a new form. Copeia, 1948, 146-

147. 

Bateman, B. L., VanDerWal, J., Williams, S. E., & Johnson, C. N. (2012). Biotic interactions 

influence the projected distribution of a specialist mammal under climate change. 

Diversity and Distributions, 18(9), 861-872. 

https://doi.org/https://doi.org/10.1111/j.1472-4642.2012.00922.x 

Bentlage, B., Peterson, A. T., Barve, N., & Cartwright, P. (2013). Plumbing the depths: 

extending ecological niche modelling and species distribution modelling in three 

dimensions. Global Ecology and Biogeography, 22(8), 952-961. 

Berkes, F. (1993). Traditional ecological knowledge in perspective. Traditional ecological 

knowledge: Concepts and Cases, 1, 1-9. 

Bernal, D., Carlson, J. K., Goldman, K. J., & Lowe, C. G. (2012). Energetics, metabolism, 

and endothermy in sharks and rays. Biology of Sharks and their Relatives, 211, 237. 

Bigelow, H. B., & Schroeder, W. C. (1953). Fishes of the western North Atlantic. Part two. 

Sawfishes, guitarfishes, skates and rays. Memoirs of the Sears Foundation of Marine 

Research, 1, 1-514. 

Black, K. P., Bell, R. G., Oldman, J. W., Carter, G. S., & Hume, T. M. (2000). Features of 3‐

dimensional barotropic and baroclinic circulation in the Hauraki Gulf, New Zealand. 

New Zealand Journal of Marine and Freshwater Research, 34(1), 1-28. 

https://doi.org/10.1080/00288330.2000.9516912 



References 

  

 

 138 

Blackburn, M. (1980). Observations on the distribution of Nyctiphanes australis Sars 

(Crustacea, Euphausiidae) in Australian waters. CSIRO Division of Fisheries and 

Oceanography. 

Blackburn, M., Laurs, R., Owen, R., & Zeitzschel, B. (1970). Seasonal and areal changes in 

standing stocks of phytoplankton, zooplankton and micronekton in the eastern 

tropical Pacific. Marine Biology, 7, 14-31. 

Blaxter, J. (1974). The role of light in the vertical migration of fish, a review. Light as an 

Ecological Factor, 189-210. 

Block, B. A., & Finnerty, J. R. (1994). Endothermy in fishes: a phylogenetic analysis of 

constraints, predispositions, and selection pressures. Environmental Biology of 

Fishes, 40(3), 283-302. https://doi.org/10.1007/BF00002518 

Boerger, C. M., Lattin, G. L., Moore, S. L., & Moore, C. J. (2010). Plastic ingestion by 

planktivorous fishes in the North Pacific Central Gyre. Marine Pollution Bulletin, 

60(12), 2275-2278. 

https://doi.org/https://doi.org/10.1016/j.marpolbul.2010.08.007 

Boldrocchi, G., Monticelli, D., & Bettinetti, R. (2023). To what extent are filter feeder 

elasmobranchs exposed to marine pollution? A systematic review. Environmental 

Pollution, 318, 120881. 

https://doi.org/https://doi.org/10.1016/j.envpol.2022.120881 

Bone, Q., & Moore, R. (2008). Biology of Fishes. Taylor & Francis. 

Bonfil, R., Meÿer, M., Scholl, M. C., Johnson, R., O'Brien, S., Oosthuizen, H., Swanson, S., 

Kotze, D., & Paterson, M. (2005). Transoceanic migration, spatial dynamics, and 

population linkages of white sharks. Science, 310(5745), 100-103. 

Bonnaterre, P. J. a., Bénard, R., & Panckoucke, C. J. (1788). Tableau encyclopédique et 

méthodique des trois regnes de la nature Ichthyologie. Chez Panckoucke. 

https://www.biodiversitylibrary.org/item/44034 

Borrell, A., Cardona, L., Kumarran, R. P., & Aguilar, A. (2011). Trophic ecology of 

elasmobranchs caught off Gujarat, India, as inferred from stable isotopes. ICES 

Journal of Marine Science, 68(3), 547-554. 

Borrelle, S. B., Buxton, R. T., Jones, H. P., & Towns, D. R. (2015). A GIS‐based decision‐

making approach for prioritizing seabird management following predator 

eradication. Restoration Ecology, 23(5), 580-587. 



References 

  

 

 139 

Boyce, M. S., Vernier, P. R., Nielsen, S. E., & Schmiegelow, F. K. (2002). Evaluating 

resource selection functions. Ecological Modelling, 157(2-3), 281-300. 

Bradaii, M., & Capapé, C. (2001). Captures of the giant devil ray, Mobula mobular, in the 

Gulf of Gabes(southern Tunisia, Central Mediterranean). Cybium. Paris, 25(4), 389-

391. 

Breiner, F. T., Guisan, A., Nobis, M. P., & Bergamini, A. (2017). Including environmental 

niche information to improve IUCN Red List assessments. Diversity and 

Distributions, 23(5), 484-495. 

Brill, R. W., Dewar, H., & Graham, J. B. (1994). Basic concepts relevant to heat transfer in 

fishes, and their use in measuring the physiological thermoregulatory abilities of 

tunas. Environmental Biology of Fishes, 40(2), 109-124. 

https://doi.org/10.1007/BF00002538 

Brodie, S., Jacox, M. G., Bograd, S. J., Welch, H., Dewar, H., Scales, K. L., Maxwell, S. M., 

Briscoe, D. M., Edwards, C. A., & Crowder, L. B. (2018). Integrating dynamic 

subsurface habitat metrics into species distribution models. Frontiers in Marine 

Science, 219. https://doi.org/10.3389/fmars.2018.00219 

Broekhuizen, N., Zeldis, J., Stephens, S., Oldman, J., Ross, A., Ren, J., & James, M. (2002). 

Factors related to the sustainability of shellfish aquaculture operations in the Firth of 

Thames: a preliminary analysis. Hamilton, New Zealand. NIWA Client Report 

EVW02243: vi. 

Brotons, L., Thuiller, W., Araújo, M. B., & Hirzel, A. H. (2004). Presence-absence versus 

presence-only modelling methods for predicting bird habitat suitability. Ecography, 

27(4), 437-448. https://doi.org/https://doi.org/10.1111/j.0906-7590.2004.03764.x 

Brown, J. H., & Lomolino, M. V. (1998). Biogeography. Sinuer Associates Publishers. 

Burgess, K. (2017). Feeding ecology and habitat use of the giant manta ray Manta birostris 

at a key aggregation site off mainland Ecuador. 

Burgman, M. A., Lindenmayer, D. B., & Elith, J. (2005). Managing landscapes for 

conservation under uncertainty. Ecology, 86(8), 2007-2017. 

https://doi.org/https://doi.org/10.1890/04-0906 

Bury, S. J., Zeldis, J. R., Nodder, S. D., & Gall, M. (2012). Regenerated primary production 

dominates in a periodically upwelling shelf ecosystem, northeast New Zealand. 

Continental Shelf Research, 32, 1-21. 

https://doi.org/https://doi.org/10.1016/j.csr.2011.09.008 



References 

  

 

 140 

Cabral, M. M. P., Stewart, J. D., Marques, T. A., Ketchum, J. T., Ayala-Bocos, A., Hoyos-

Padilla, E. M., & Reyes-Bonilla, H. (2023). The influence of El Niño Southern 

Oscillation on the population dynamics of oceanic manta rays in the Mexican Pacific. 

Hydrobiologia, 850(2), 257-267. https://doi.org/10.1007/s10750-022-05047-9 

Canese, S., Cardinali, A., Romeo, T., Giusti, M., Salvati, E., Angiolillo, M., & Greco, S. 

(2011). Diving behaviour of giant devil ray in the Mediterranean Sea. Endangered 

Species Research, 14, 171-176. https://doi.org/10.3354/esr00349 

Carr, M. H., Neigel, J. E., Estes, J. A., Andelman, S., Warner, R. R., & Largier, J. L. (2003). 

Comparing marine and terrestrial ecosystems: implications for the design of coastal 

marine reserves. Ecological applications, 13(sp1), 90-107. 

Carroll, E., Gallego, R., Sewell, M., Zeldis, J., Ranjard, L., Ross, H., Tooman, L., O’Rorke, R., 

Newcomb, R., & Constantine, R. (2019). Multi-locus DNA metabarcoding of 

zooplankton communities and scat reveal trophic interactions of a generalist 

predator. Scientific Reports, 9(1), 281. 

Carter, C. M., Ross, A. H., Schiel, D. R., Howard-Williams, C., & Hayden, B. (2005). In situ 

microcosm experiments on the influence of nitrate and light on phytoplankton 

community composition. Journal of Experimental Marine Biology and Ecology, 

326(1), 1-13. https://doi.org/https://doi.org/10.1016/j.jembe.2005.05.006 

Cashion, T., Nguyen, T., Ten Brink, T., Mook, A., Palacios-Abrantes, J., & Roberts, S. M. 

(2020). Shifting seas, shifting boundaries: dynamic marine protected area designs 

for a changing climate. PloS One, 15(11), e0241771. 

Celona, A. (2004). Caught and observed giant devil rays Mobula mobular (Bonnaterre, 

1788) in the Strait of Messina. Annales Ser. Hist. Nat, 

Chambault, P., Fossette, S., Heide-Jørgensen, M. P., Jouannet, D., & Vély, M. (2021). 

Predicting seasonal movements and distribution of the sperm whale using machine 

learning algorithms. Ecology and Evolution, 11(3), 1432-1445. 

https://doi.org/https://doi.org/10.1002/ece3.7154 

Chang, F. H., Uddstrom, M. J., Pinkerton, M. H., & Richardson, K. M. (2008). 

Characterising the 2002 toxic Karenia concordia (Dinophyceae) outbreak and its 

development using satellite imagery on the north-eastern coast of New Zealand. 

Harmful Algae, 7(4), 532-544. 

https://doi.org/https://doi.org/10.1016/j.hal.2007.11.004 



References 

  

 

 141 

Chang, F. H., Zeldis, J., Gall, M., & Hall, J. (2003). Seasonal and spatial variation of 

phytoplankton assemblages, biomass and cell size from spring to summer across the 

north-eastern New Zealand continental shelf. Journal of Plankton Research, 25(7), 

737-758. https://doi.org/10.1093/plankt/25.7.737 

Chavez, F., Strutton, P., Friederich, G., Feely, R., Feldman, G., Foley, D., & McPhaden, M. 

(1999). Biological and chemical response of the equatorial Pacific Ocean to the 1997-

98 El Niño. Science, 286(5447), 2126-2131. 

Chavez-Rosales, S., Palka, D. L., Garrison, L. P., & Josephson, E. A. (2019). Environmental 

predictors of habitat suitability and occurrence of cetaceans in the western North 

Atlantic Ocean. Scientific Reports, 9(1), 1-11. 

Chen, Y.C. (2017). A tutorial on kernel density estimation and recent advances. Biostatistics 

& Epidemiology, 1(1), 161-187. https://doi.org/10.1080/24709360.2017.1396742 

Chisholm Hatfield, S., Marino, E., Whyte, K. P., Dello, K. D., & Mote, P. W. (2018). Indian 

time: time, seasonality, and culture in Traditional Ecological Knowledge of climate 

change. Ecological Processes, 7(1), 25. https://doi.org/10.1186/s13717-018-0136-6 

Chiswell, S. M., Gutiérrez-Rodríguez, A., Gall, M., Safi, K., Strzepek, R., Décima, M. R., & 

Nodder, S. D. (2022). Seasonal cycles of phytoplankton and net primary production 

from Biogeochemical Argo float data in the south-west Pacific Ocean. Deep Sea 

Research Part I: Oceanographic Research Papers, 187, 103834. 

https://doi.org/https://doi.org/10.1016/j.dsr.2022.103834 

Clark, T. B. (2010). Abundance, home range, and movement patterns of manta rays 

(Manta alfredi, M. birostris) in Hawaiʻi [Honolulu]:[University of Hawaii at 

Manoa],[December 2010]]. 

Clearwater, S., & Pankhurst, N. (1994). Reproductive biology and endocrinology of female 

red gurnard, Chelidonichthys kumu (Lesson and Garnot)(family Triglidae), from the 

Hauraki Gulf, New Zealand. Marine and Freshwater Research, 45(2), 131-139. 

Coles, R. J. (1916). Natural history notes on the devilfish, Manta birostris (Walbaum) and 

Mobula olfersi (Müller). Bulletin of the AMNH; v. 35, article 33. 

Colman, J. (1972). Food of snapper, Chrysophrys auratus (forster), in the Hauraki Gulf, 

New Zealand. New Zealand Journal of Marine and Freshwater Research, 6(3), 221-

239. 



References 

  

 

 142 

Compagno, L., Last, P., Carpenter, K., & Niem, V. (1999). Pristidae. Sawfishes. FAO 

Identification Guide for Fishery Purposes. The Living Marine Resources of the 

Western Central Pacific. FAO, Rome, 1410-1417. 

Compagno, L. J. (1999). Systematics and body form. Sharks, skates, and rays: the biology 

of elasmobranch fishes, 1-42. 

Constantine, R., Johnson, M., Riekkola, L., Jervis, S., Kozmian-Ledward, L., Dennis, T., 

Torres, L. G., & Aguilar de Soto, N. (2015). Mitigation of vessel-strike mortality of 

endangered Bryde’s whales in the Hauraki Gulf, New Zealand. Biological 

Conservation, 186, 149-157. 

https://doi.org/https://doi.org/10.1016/j.biocon.2015.03.008 

Copas, J. B. (1983). Regression, Prediction and Shrinkage. Journal of the Royal Statistical 

Society. Series B (Methodological), 45(3), 311-354. 

http://www.jstor.org/stable/2345402 

Cossins, A. (2012). Temperature biology of animals. Springer Science & Business Media. 

Coumou, D., & Rahmstorf, S. (2012). A decade of weather extremes. Nature Climate 

Change, 2(7), 491-496. 

Couturier, L. I., Rohner, C. A., Richardson, A. J., Marshall, A. D., Jaine, F. R., Bennett, M. 

B., Townsend, K. A., Weeks, S. J., & Nichols, P. D. (2013). Stable isotope and 

signature fatty acid analyses suggest reef manta rays feed on demersal zooplankton. 

PloS One, 8(10), e77152. 

Couturier, L. I. E., Jaine, F. R. A., & Kashiwagi, T. (2015). First photographic records of the 

giant manta ray Manta birostris off eastern Australia. PeerJ, 3, e742. 

https://doi.org/10.7717/peerj.742 

Couturier, L. I. E., Marshall, A. D., Jaine, F. R. A., Kashiwagi, T., Pierce, S. J., Townsend, K. 

A., Weeks, S. J., Bennett, M. B., & Richardson, A. J. (2012). Biology, ecology and 

conservation of the Mobulidae. Journal of Fish Biology, 80(5), 1075-1119. 

https://doi.org/https://doi.org/10.1111/j.1095-8649.2012.03264.x 

Cranswick, A. S., Constantine, R., Hendriks, H., & Carroll, E. L. (2022). Social media and 

citizen science records are important for the management of rarely sighted whales. 

Ocean & Coastal Management, 226, 106271. 

https://doi.org/https://doi.org/10.1016/j.ocecoaman.2022.106271 

Croll, D. A., Dewar, H., Dulvy, N. K., Fernando, D., Francis, M. P., Galván‐Magaña, F., Hall, 

M., Heinrichs, S., Marshall, A., & Mccauley, D. (2016). Vulnerabilities and fisheries 



References 

  

 

 143 

impacts: the uncertain future of manta and devil rays. Aquatic conservation: marine 

and freshwater ecosystems, 26(3), 562-575. 

Croll, D. A., Newton, K. M., Weng, K., Galván-Magaña, F., O’ Sullivan, J., & Dewar, H. 

(2012). Movement and habitat use by the spine-tail devil ray in the Eastern Pacific 

Ocean. Marine Ecology Progress Series, 465, 193-200. https://www.int-

res.com/abstracts/meps/v465/p193-200/ 

Cropper, T. E., Hanna, E., & Bigg, G. R. (2014). Spatial and temporal seasonal trends in 

coastal upwelling off Northwest Africa, 1981–2012. Deep Sea Research Part I: 

Oceanographic Research Papers, 86, 94-111. 

Dambach, J., & Rödder, D. (2011). Applications and future challenges in marine species 

distribution modeling. Aquatic Conservation: Marine and Freshwater Ecosystems, 

21(1), 92-100. 

De'Ath, G. (2007). Boosted trees for ecological modeling and prediction. Ecology, 88(1), 

243-251. 

De'ath, G., & Fabricius, K. E. (2000). Classification and regression trees: a powerful yet 

simple technique for ecological data analysis. Ecology, 81(11), 3178-3192. 

https://doi.org/https://doi.org/10.1890/0012-

9658(2000)081[3178:CARTAP]2.0.CO;2 

Deakos, M. H., Baker, J. D., & Bejder, L. (2011). Characteristics of a manta ray Manta alfredi 

population off Maui, Hawaii, and implications for management. Marine Ecology 

Progress Series, 429, 245-260. 

Department of Conservation. (2021). Conservation Services Programme Protected Marine 

Fishes Medium-Term Research Plan. 

Department of Conservation and Fisheries New Zealand. (2021). Sea Change – Tai Timu 

Tai Pari Plan marine protected area (MPA) proposals: agency analysis and advice 

on selection of MPAs towards development of the Hauraki Gulf Marine Park MPA 

network. 

Dewar, H. (2002). Preliminary report: Manta harvest in Lamakera. p. Oceanside, USA: 

Report from the Pfleger Institue of Environmental Research and the Nature 

Conservancy, 3. 

Dewar, H., Mous, P., Domeier, M., Muljadi, A., Pet, J., & Whitty, J. (2008). Movements and 

site fidelity of the giant manta ray, Manta birostris, in the Komodo Marine Park, 

Indonesia. Marine Biology, 155(2), 121-133. 



References 

  

 

 144 

Dormann, C. F. (2007). Promising the future? Global change projections of species 

distributions. Basic and Applied Ecology, 8(5), 387-397. 

Drake, J. M., Randin, C., & Guisan, A. (2006). Modelling ecological niches with support 

vector machines. Journal of Applied Ecology, 43(3), 424-432. 

Druon, J.-N., Hélaouët, P., Beaugrand, G., Fromentin, J.-M., Palialexis, A., & Hoepffner, N. 

(2019). Satellite-based indicator of zooplankton distribution for global monitoring. 

Scientific Reports, 9(1), 1-13. 

Druon, J.-N., Mangin, A., Hélaouët, P., & Palialexis, A. (2021). The chlorophyll-a gradient 

as primary Earth observation index of marine ecosystem feeding capacity. Journal of 

Operational Oceanography, 14(5), 82-90. 

Duck, R. W. (2012). Marine spatial planning: managing a dynamic environment. Journal of 

Environmental Policy & Planning, 14(1), 67-79. 

Dudley, S., Gribble, N., & Shotton, R. (1999). Management of shark control programmes. 

Dudley, S. F., & Cliff, G. (1993). Some effects of shark nets in the Natal nearshore 

environment. Environmental Biology of Fishes, 36, 243-255. 

Duffy, C., & Abbott, D. (2003). Sightings of mobulid rays from northern New Zealand, with 

confirmation of the occurrence of Manta birostris in New Zealand waters. 

Duffy, C. A., & Tindale, S. C. (2018). First observation of the courtship behaviour of the 

giant devil ray Mobula mobular (Myliobatiformes: Mobulidae). New Zealand 

Journal of Zoology, 45(4), 387-394. 

Dulvy, N. K., Pardo, S. A., Simpfendorfer, C. A., & Carlson, J. K. (2014). Diagnosing the 

dangerous demography of manta rays using life history theory. PeerJ, 2, e400. 

Dunn, D., Crespo, G., Bulger, F., Christian, C., Gjerde, K., Jimenez, J., Gottlieb, H. M., 

Rodriguez, H., Ross, E., & Spalding, M. (2017). Deep, distant and dynamic: critical 

considerations for incorporating the open-ocean into a new BBNJ treaty. 

Dunn, D. C., Boustany, A. M., & Halpin, P. N. (2011). Spatio-temporal management of 

fisheries to reduce by-catch and increase fishing selectivity. Fish and Fisheries, 12(1), 

110-119. https://doi.org/https://doi.org/10.1111/j.1467-2979.2010.00388.x 

Dunphy, B., Vickers, S., Zhang, J., Sagar, R., Landers, T., Bury, S., Hickey, A., & Rayner, M. 

(2020). Seabirds as environmental indicators: foraging behaviour and ecophysiology 

of common diving petrels (Pelecanoides urinatrix) reflect local-scale differences in 

prey availability. Marine Biology, 167, 1-12. 



References 

  

 

 145 

Dwyer, S. L. (2014). Spatial ecology and conservation of cetaceans using the Hauraki Gulf, 

New Zealand : a thesis submitted in partial fulfilment of the requirements for the 

degree of Doctor of Philosophy in Marine Ecology at Massey University, Albany, 

New Zealand [Doctoral, Massey University]. http://hdl.handle.net/10179/6966 

Dwyer, S. L., Clement, D. M., Pawley, M. D. M., & Stockin, K. A. (2016). Distribution and 

relative density of cetaceans in the Hauraki Gulf, New Zealand. New Zealand 

Journal of Marine and Freshwater Research, 50(3), 457-480. 

https://doi.org/10.1080/00288330.2016.1160942 

Ebert, D. (2003). Sharks, rays, and chimaeras of California. Univ of California Press. 

Elith, J., Kearney, M., & Phillips, S. (2010). The art of modelling range‐shifting species. 

Methods in Ecology and Evolution, 1(4), 330-342. 

Elith, J., Leathwick, J. R., & Hastie, T. (2008). A working guide to boosted regression trees. 

Journal of Animal Ecology, 77(4), 802-813. 

Elith, J., H. Graham, C., P. Anderson, R., Dudík, M., Ferrier, S., Guisan, A., J. Hijmans, R., 

Huettmann, F., R. Leathwick, J., Lehmann, A., Li, J., G. Lohmann, L., A. Loiselle, B., 

Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., McC. M. Overton, …E. 

Zimmermann, N. (2006). Novel methods improve prediction of species’ distributions 

from occurrence data. Ecography, 29(2), 129-151. 

https://doi.org/https://doi.org/10.1111/j.2006.0906-7590.04596.x 

Embling, C. B., Gillibrand, P. A., Gordon, J., Shrimpton, J., Stevick, P. T., & Hammond, P. 

S. (2010). Using habitat models to identify suitable sites for marine protected areas 

for harbour porpoises (Phocoena phocoena). Biological Conservation, 143(2), 267-

279. 

Engler, R., Guisan, A., & Rechsteiner, L. (2004). An improved approach for predicting the 

distribution of rare and endangered species from occurrence and pseudo‐absence 

data. Journal of Applied Ecology, 41(2), 263-274. 

Etnoyer, P., Canny, D., Mate, B. R., Morgan, L. E., Ortega-Ortiz, J. G., & Nichols, W. J. 

(2006). Sea-surface temperature gradients across blue whale and sea turtle foraging 

trajectories off the Baja California Peninsula, Mexico. Deep Sea Research Part II: 

Topical Studies in Oceanography, 53(3), 340-358. 

https://doi.org/https://doi.org/10.1016/j.dsr2.2006.01.010 

Farmer, N. A., Garrison, L. P., Horn, C., Miller, M., Gowan, T., Kenney, R. D., Vukovich, M., 

Willmott, J. R., Pate, J., Harry Webb, D., Mullican, T. J., Stewart, J. D., Bassos-Hull, 



References 

  

 

 146 

K., Jones, C., Adams, D., Pelletier, N. A., Waldron, J., & Kajiura, S. (2022). The 

distribution of manta rays in the western North Atlantic Ocean off the eastern United 

States. Scientific Reports, 12(1), 6544. https://doi.org/10.1038/s41598-022-10482-8 

Feely, R. A., Gammon, R. H., Taft, B. A., Pullen, P. E., Waterman, L. S., Conway, T. J., 

Gendron, J. F., & Wisegarver, D. P. (1987). Distribution of chemical tracers in the 

eastern equatorial Pacific during and after the 1982–1983 El Niño/Southern 

Oscillation event. Journal of Geophysical Research: Oceans, 92(C6), 6545-6558. 

Fernando, D., & Stewart, J. D. (2021). High bycatch rates of manta and devil rays in the 

“small-scale” artisanal fisheries of Sri Lanka. PeerJ, 9, e11994. 

Ferrier, S. (2002). Mapping spatial pattern in biodiversity for regional conservation 

planning: where to from here? Systematic biology, 51(2), 331-363. 

Fiedler, P. C., Redfern, J. V., Forney, K. A., Palacios, D. M., Sheredy, C., Rasmussen, K., 

García-Godos, I., Santillán, L., Tetley, M. J., & Félix, F. (2018). Prediction of large 

whale distributions: a comparison of presence–absence and presence-only modeling 

techniques. Frontiers in Marine Science, 419. 

Fielding, A. H., & Bell, J. F. (1997). A review of methods for the assessment of prediction 

errors in conservation presence/absence models. Environmental conservation, 

24(1), 38-49. 

Finucci, B., Duffy, C. A., Brough, T., Francis, M. P., Milardi, M., Pinkerton, M. H., Petersen, 

G., & Stephenson, F. (2021). Drivers of Spatial Distributions of Basking Shark 

(Cetorhinus maximus) in the Southwest Pacific. Frontiers in Marine Science, 8, 419. 

Fitzpatrick, M. C., Gotelli, N. J., & Ellison, A. M. (2013). MaxEnt versus MaxLike: empirical 

comparisons with ant species distributions. Ecosphere, 4(5), art55. 

https://doi.org/https://doi.org/10.1890/ES13-00066.1 

Flagg, C., Wirick, C., & Smith, S. (1994). The interaction of phytoplankton, zooplankton and 

currents from 15 months of continuous data in the Mid-Atlantic Bight. Deep Sea 

Research Part II: Topical Studies in Oceanography, 41(2-3), 411-435. 

Fonseca-Ponce, I. A., Zavala-Jiménez, A. A., Aburto-Oropeza, O., Maldonado-Gasca, A., 

Galván-Magaña, F., González-Armas, R., & Stewart, J. D. (2022). Physical and 

environmental drivers of oceanic manta ray Mobula birostris sightings at an 

aggregation site in Bahía de Banderas, Mexico. Marine Ecology Progress Series, 694, 

133-148. https://www.int-res.com/abstracts/meps/v694/p133-148 



References 

  

 

 147 

Ford, R., Francis, M., Holland, L., Clark, M., Duffy, C., Dunn, M., Jones, E., & Wells, R. 

(2018). Qualitative (Level 1) risk assessment of the impact of commercial fishing on 

New Zealand chondrichthyans: an update for 2017. New Zealand Aquatic 

Environment and Biodiversity Report, 201, 103. 

Ford, R. B., Galland, A., Clark, M. R., Crozier, P., Duffy, C. A. J., Dunn, A., Francis, M., & 

Wells, R. (2015). Qualitative (Level 1) risk assessment of the impact of commercial 

fishing on New Zealand chondrichthyans. Ministry for Primary Industries. 

Fortuna, C. M., Kell, L., Holcer, D., Canese, S., Filidei Jr, E., Mackelworth, P., & Donovan, 

G. (2014). Summer distribution and abundance of the giant devil ray (Mobula 

mobular) in the Adriatic Sea: Baseline data for an iterative management framework. 

Scientia Marina, 78(2), 227-237. https://doi.org/10.3989/scimar.03920.30D. 

Fossi, M. C., Coppola, D., Baini, M., Giannetti, M., Guerranti, C., Marsili, L., Panti, C., de 

Sabata, E., & Clò, S. (2014). Large filter feeding marine organisms as indicators of 

microplastic in the pelagic environment: the case studies of the Mediterranean 

basking shark (Cetorhinus maximus) and fin whale (Balaenoptera physalus). 

Marine Environmental Research, 100, 17-24. 

Francis, M., & Jones, E. (2017). Movement , depth distribution and survival of Spinetail 

devil rays (Mobula japanica) tagged and released from purse-seine catches in New 

Zealand. Aquatic Conservation: Marine and Freshwater Ecosystems, 27, 219–236. 

https://doi.org/10.1002/aqc.2641 

Francis, M., & Lyon, W. (2012). Review of commercial fishery interactions and population 

information for eight New Zealand protected fish species. Final Report for DOC 

Contract, 4345, 74. 

Francis, M. P. (1999). New Zealand shark fisheries: development, size and management. 

Marine and Freshwater Research, 49(7), 579-591. 

https://doi.org/https://doi.org/10.1071/MF97076 

Francis, M. P., & Jones, E. G. (2016). Movement, depth distribution and survival of 

Spinetail devil rays (Mobula japanica) tagged and released from purse-seine catches 

in New Zealand. Aquatic Conservation: Marine and Freshwater Ecosystems, 27, 

219-236. 

Francis, M. P., Worthington, C. J., Saul, P., & Clements, K. D. (1999). New and rare tropical 

and subtropical fishes from northern New Zealand. New Zealand Journal of Marine 

and Freshwater Research, 33(4), 571-586. 

https://doi.org/10.3989/scimar.03920.30D


References 

  

 

 148 

Franklin, J. (2010). Mapping species distributions: spatial inference and prediction. 

Cambridge University Press. 

Franks, P. J. (1992). Sink or swim: Accumulation of biomass at fronts. Marine ecology 

progress series. Oldendorf, 82(1), 1-12. 

Freitas, C., Kovacs, K. M., Ims, R. A., & Lydersen, C. (2008). Predicting habitat use by 

ringed seals (Phoca hispida) in a warming Arctic. Ecological Modelling, 217(1-2), 19-

32. 

Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. 

Annals of Statistics, 1189-1232. 

Friedman, J. H. (2002). Stochastic gradient boosting. Computational Statistics & Data 

Analysis, 38(4), 367-378. 

Friedman, J. H., & Meulman, J. J. (2003). Multiple additive regression trees with 

application in epidemiology. Statistics in Medicine, 22(9), 1365-1381. 

Frisk, M. G., Miller, T. J., & Fogarty, M. J. (2001). Estimation and analysis of biological 

parameters in elasmobranch fishes: a comparative life history study. Canadian 

Journal of Fisheries and Aquatic Sciences, 58(5), 969-981. 

Funk, V. A., & Richardson, K. (2002). Systematic data in biodiversity studies: use it or lose 

it. Systematic Biology, 51(2), 303-316. 

Gall, M., & Zeldis, J. (2011). Phytoplankton biomass and primary production responses to 

physico-chemical forcing across the northeastern New Zealand continental shelf. 

Continental Shelf Research, 31(17), 1799-1810. 

https://doi.org/https://doi.org/10.1016/j.csr.2011.06.003 

Gall, M. P., Pinkerton, M. H., Steinmetz, T., & Wood, S. (2022). Satellite remote sensing of 

coastal water quality in New Zealand. New Zealand Journal of Marine and 

Freshwater Research, 56(3), 585-616. 

https://doi.org/10.1080/00288330.2022.2113410 

Game, E. T., Grantham, H. S., Hobday, A. J., Pressey, R. L., Lombard, A. T., Beckley, L. E., 

Gjerde, K., Bustamante, R., Possingham, H. P., & Richardson, A. J. (2009). Pelagic 

protected areas: the missing dimension in ocean conservation. Trends in Ecology & 

Evolution, 24(7), 360-369. 

https://doi.org/https://doi.org/10.1016/j.tree.2009.01.011 

Garner, D. (1969). The seasonal range of sea temperature on the New Zealand shelf. New 

Zealand Journal of Marine and Freshwater Research, 3(2), 201-208. 



References 

  

 

 149 

Garzon, F., Graham, R. T., Witt, M. J., & Hawkes, L. A. (2021). Ecological niche modeling 

reveals manta ray distribution and conservation priority areas in the Western Central 

Atlantic. Animal Conservation, 24(3), 322-334. 

https://doi.org/https://doi.org/10.1111/acv.12663 

Gaskin, C. P. (ed). (2021). The State of Our Seabirds 2021. Seabird ecology, research and 

conservation for the wider Hauraki Gulf / Tīkapa Moana / Te Moananui-ā-Toi 

region. N. N. Z. S. C. Trust. 

Genin, A. (2004). Bio-physical coupling in the formation of zooplankton and fish 

aggregations over abrupt topographies. Journal of Marine Systems, 50(1-2), 3-20. 

Genin, A., Dayton, P. K., Lonsdale, P. F., & Spiess, F. N. (1986). Corals on seamount peaks 

provide evidence of current acceleration over deep-sea topography. Nature, 

322(6074), 59-61. 

Georgian, S. E., Anderson, O. F., & Rowden, A. A. (2019). Ensemble habitat suitability 

modeling of vulnerable marine ecosystem indicator taxa to inform deep-sea fisheries 

management in the South Pacific Ocean. Fisheries Research, 211, 256-274. 

https://doi.org/https://doi.org/10.1016/j.fishres.2018.11.020 

Germanov, E. S., Marshall, A. D., Bejder, L., Fossi, M. C., & Loneragan, N. R. (2018). 

Microplastics: No Small Problem for Filter-Feeding Megafauna. Trends in Ecology & 

Evolution, 33(4), 227-232. 

https://doi.org/https://doi.org/10.1016/j.tree.2018.01.005 

Giannoulaki, M., Schismenou, E., Pyrounaki, M.-M., & Tsagarakis, K. (2014). Habitat 

characterization and migrations. Biology and Ecology of Sardines and Anchovies, 

191-241. 

Giles, H., Pilditch, C. A., Nodder, S. D., Zeldis, J. R., & Currie, K. (2007). Benthic oxygen 

fluxes and sediment properties on the northeastern New Zealand continental shelf. 

Continental Shelf Research, 27(18), 2373-2388. 

https://doi.org/https://doi.org/10.1016/j.csr.2007.06.007 

Gill, T. (1910). The story of the devil-fish. Smithsonian Miscellaneous Collections. 

Girondot, M., Bédel, S., Delmoitiez, L., Russo, M., Chevalier, J., Guéry, L., Ben Hassine, S., 

Féon, H., & Jribi, I. (2015). Spatio-temporal distribution of Manta birostris in French 

Guiana waters. Journal of the Marine Biological Association of the United Kingdom, 

95(1), 153-160. https://doi.org/10.1017/S0025315414001398 

 



References 

  

 

 150 

Gomez, J. (1995). Distribution patterns, abundance and population dynamics of the 

euphausiids Nyctiphanes simplex and Euphausia eximia off the west coast of Baja 

California, Mexico. Marine Ecology Progress Series. Oldendorf, 119(1), 63-76. 

Gordon, L., & Vierus, T. (2022). First photographic evidence of oceanic manta rays (Mobula 

birostris) at two locations in the Fiji islands. PeerJ, 10, e13883. 

https://doi.org/10.7717/peerj.13883 

Gordon, N. D. (1985). The southern oscillation: a New Zealand perspective. Journal of the 

Royal Society of New Zealand, 15(2), 137-155. 

Graham, I. D., Logan, J., Harrison, M. B., Straus, S. E., Tetroe, J., Caswell, W., & Robinson, 

N. (2006). Lost in knowledge translation: time for a map? Journal of Continuing 

Education in the Health Professions, 26(1), 13-24. 

Graham, R. T., Witt, M. J., Castellanos, D. W., Remolina, F., Maxwell, S., Godley, B. J., & 

Hawkes, L. A. (2012). Satellite tracking of manta rays highlights challenges to their 

conservation. PloS One, 7(5), e36834. 

Gray, J. (1953). Undulatory propulsion. Journal of Cell Science, 3(28), 551-578. 

Greig, M. J., Ridgway, N. M., & Shakespeare, B. S. (1988). Sea surface temperature 

variations at coastal sites around New Zealand. New Zealand Journal of Marine and 

Freshwater Research, 22(3), 391-400. 

Griffiths, S. P., & Lezama‐Ochoa, N. (2021). A 40‐year chronology of the vulnerability of 

spinetail devil ray (Mobula mobular) to eastern Pacific tuna fisheries and options for 

future conservation and management. Aquatic Conservation: Marine and 

Freshwater Ecosystems, 31(10), 2910-2925. 

Grinnell, J. (1904). The origin and distribution of the chest-nut-backed chickadee. The Auk, 

21(3), 364-382. 

Guirhem, G., Arrizabalaga, H., Lopetegui-Eguren, L., Murua, H., Lezama-Ochoa, N., 

Griffiths, S., Ruiz, J., Sabarros, P., Báez, J., & Juan-Jordá, M. J. (2021). A 

Preliminary Habitat Suitability Model for Devil Rays in the Western Indian Ocean. 

Guisan, A., Edwards, T. C., & Hastie, T. (2002). Generalized linear and generalized additive 

models in studies of species distributions: setting the scene. Ecological Modelling, 

157(2), 89-100. https://doi.org/https://doi.org/10.1016/S0304-3800(02)00204-1 

Guisan, A., & Thuiller, W. (2005). Predicting species distribution: offering more than 

simple habitat models. Ecology Letters, 8(9), 993-1009. 

https://doi.org/https://doi.org/10.1111/j.1461-0248.2005.00792.x 



References 

  

 

 151 

Guisan, A., Thuiller, W., & Zimmermann, N. E. (2017). Habitat suitability and distribution 

models: with applications in R. Cambridge University Press. 

Guisan, A., Tingley, R., Baumgartner, J. B., Naujokaitis‐Lewis, I., Sutcliffe, P. R., Tulloch, A. 

I., Regan, T. J., Brotons, L., McDonald‐Madden, E., & Mantyka‐Pringle, C. (2013). 

Predicting species distributions for conservation decisions. Ecology Letters, 16(12), 

1424-1435. 

Guisan, A., & Zimmermann, N. E. (2000). Predictive habitat distribution models in ecology. 

Ecological Modelling, 135(2), 147-186. 

https://doi.org/https://doi.org/10.1016/S0304-3800(00)00354-9 

Hacohen-Domené, A., Martínez-Rincón, R. O., Galván-Magaña, F., Cárdenas-Palomo, N., & 

Herrera-Silveira, J. (2017). Environmental factors influencing aggregation of manta 

rays (Manta birostris) off the northeastern coast of the Yucatan Peninsula. Marine 

Ecology, 38(3), e12432. https://doi.org/https://doi.org/10.1111/maec.12432 

Hall, L. S., Krausman, P. R., & Morrison, M. L. (1997). The Habitat Concept and a Plea for 

Standard Terminology. Wildlife Society Bulletin (1973-2006), 25(1), 173-182. 

http://www.jstor.org.ezproxy.auckland.ac.nz/stable/3783301 

Hanley, J. A., & McNeil, B. J. (1982). The meaning and use of the area under a receiver 

operating characteristic (ROC) curve. Radiology, 143(1), 29-36. 

https://doi.org/10.1148/radiology.143.1.7063747 

Hannah, L., Panitz, D., & Midgley, G. (2012). Cape Floristic Region, South Africa. Climate 

and Conservation: Landscape and Seascape Science, Planning, and Action, 80-91. 

Hao, T., Elith, J., Lahoz-Monfort, J. J., & Guillera-Arroita, G. (2020). Testing whether 

ensemble modelling is advantageous for maximising predictive performance of 

species distribution models. Ecography, 43(4), 549-558. 

https://doi.org/https://doi.org/10.1111/ecog.04890 

Harris, G. P., Griffiths, F. B., Clementson, L. A., Lyne, V., & Doe, H. V. d. (1991). Seasonal 

and interannual variability in physical processes, nutrient cycling and the structure 

of the food chain in Tasmanian shelf waters. Journal of Plankton Research, 

13(supp1), 109-131. https://doi.org/10.1093/oxfordjournals.plankt.a042363 

Hartog, J. R., Hobday, A. J., Matear, R., & Feng, M. (2011). Habitat overlap between 

southern bluefin tuna and yellowfin tuna in the east coast longline fishery–

implications for present and future spatial management. Deep Sea Research Part II: 

Topical Studies in Oceanography, 58(5), 746-752. 



References 

  

 

 152 

Hastie, T., Friedman, J., & Tibshirani, R. (2001). Boosting and Additive Trees. In T. Hastie, 

J. Friedman, & R. Tibshirani (Eds.), The Elements of Statistical Learning: Data 

Mining, Inference, and Prediction (pp. 299-345). Springer New York. 

https://doi.org/10.1007/978-0-387-21606-5_10 

Hastie, T., & Tibshirani, R. (1990). Exploring the nature of covariate effects in the 

proportional hazards model. Biometrics, 1005-1016. 

Hatten, J. R. (2014). Mapping and monitoring Mount Graham red squirrel habitat with 

Lidar and Landsat imagery. Ecological Modelling, 289, 106-123. 

Hays, G. C. (2003). A review of the adaptive significance and ecosystem consequences of 

zooplankton diel vertical migrations. Migrations and dispersal of marine 

organisms, 163-170. 

Hays, G. C., Richardson, A. J., & Robinson, C. (2005). Climate change and marine plankton. 

Trends in Ecology & Evolution, 20(6), 337-344. 

Hearn, A. R., Acuña, D., Ketchum, J. T., Peñaherrera, C., Green, J., Marshall, A., Guerrero, 

M., & Shillinger, G. (2014). Elasmobranchs of the Galapagos Marine Reserve. In J. 

Denkinger & L. Vinueza (Eds.), The Galapagos Marine Reserve: A Dynamic Social-

Ecological System (pp. 23-59). Springer International Publishing. 

https://doi.org/10.1007/978-3-319-02769-2_2 

Heinrichs S, O. M. M., Medd H, Hilton P. (2011). The global threat to Manta and Mobula 

Rays. Manta Ray of Hope, Issue. WildAid. 

Hernández-León, S., Almeida, C., Yebra, L., Arístegui, J., de Puelles, M. F., & García-Braun, 

J. (2001). Zooplankton abundance in subtropical waters: is there a lunar cycle? 

Scientia Marina, 65(S1), 59-64. 

Heswall, A.-M., Miller, L., McNaughton, E. J., Brunton-Martin, A. L., Cain, K. E., Friesen, 

M. R., & Gaskett, A. C. (2022). Artificial light at night correlates with seabird 

groundings: mapping city lights near a seabird breeding hotspot. PeerJ, 10, e14237. 

Higgs, N. D., Gates, A. R., & Jones, D. O. (2014). Fish food in the deep sea: revisiting the 

role of large food-falls. PloS one, 9(5), e96016. 

Hijmans, R. J., Phillips, S., Leathwick, J., Elith, J., & Hijmans, M. R. J. (2017). Package 

‘dismo’. Circles, 9(1), 1-68. 

Hill, N. J., Tobin, A. J., Reside, A. E., Pepperell, J. G., & Bridge, T. C. L. (2016). Dynamic 

habitat suitability modelling reveals rapid poleward distribution shift in a mobile 



References 

  

 

 153 

apex predator. Global Change Biology, 22(3), 1086-1096. 

https://doi.org/https://doi.org/10.1111/gcb.13129 

Hoenig, J. M. (1990). Life-history patterns in the elasmobranchs: implications for fisheries 

management. Elasmobranchs as Living Source: Advances in the Biology, Ecology 

Systematics, and the Status of the Fisheries. NOAA Technical Rep, 1-16. 

Holcer, D., Lazar, B., Mackelworth, P., & Fortuna, C. (2013). Rare or just unknown? The 

occurrence of the giant devil ray (Mobula mobular) in the Adriatic Sea. Journal of 

Applied Ichthyology, 29(1), 139-144. 

Holland, K. N., & Grubbs, R. D. (2007). Fish visitors to seamounts: tunas and bill fish at 

seamounts. Seamounts: Ecology, Fisheries & Conservation, 189-201. 

Homma, K. (1997). Biology of the manta ray, Manta birostris (Walbaum), in the Indo-

Pacific. FishConference, 209. 

Homma, K. (1999). Biology of the manta ray, Manta birostris (Walbaum), in the Indo-

Pacific. Proceedings of the 5th Indo Pacific Fish Conference, Noumea, 1997, 209-

216. https://cir.nii.ac.jp/crid/1573105975752685696 

Howell, E. A., Hoover, A., Benson, S. R., Bailey, H., Polovina, J. J., Seminoff, J. A., & 

Dutton, P. H. (2015). Enhancing the TurtleWatch product for leatherback sea turtles, 

a dynamic habitat model for ecosystem-based management. Fisheries 

Oceanography, 24(1), 57-68. https://doi.org/https://doi.org/10.1111/fog.12092 

Howell, E. A., Kobayashi, D. R., Parker, D. M., Balazs, G. H., & Polovina a, J. J. (2008). 

TurtleWatch: a tool to aid in the bycatch reduction of loggerhead turtles Caretta 

caretta in the Hawaii-based pelagic longline fishery. Endangered Species Research, 

5(2-3), 267-278. https://www.int-res.com/abstracts/esr/v5/n2-3/p267-278/ 

Hume, T. M., Oldman, J. W., & Black, K. P. (2000). Sediment facies and pathways of sand 

transport about a large deep water headland, Cape Rodney, New Zealand. New 

Zealand Journal of Marine and Freshwater Research, 34(4), 695-717. 

https://doi.org/10.1080/00288330.2000.9516971 

Hupman, K., Visser, I. N., Martinez, E., & Stockin, K. A. (2015). Using platforms of 

opportunity to determine the occurrence and group characteristics of orca (Orcinus 

orca) in the Hauraki Gulf, New Zealand. New Zealand Journal of Marine and 

Freshwater Research, 49(1), 132-149. 

https://doi.org/10.1080/00288330.2014.980278 



References 

  

 

 154 

Irigoien, X., Klevjer, T. A., Røstad, A., Martinez, U., Boyra, G., Acuña, J. L., Bode, A., 

Echevarria, F., Gonzalez-Gordillo, J. I., & Hernandez-Leon, S. (2014). Large 

mesopelagic fishes biomass and trophic efficiency in the open ocean. Nature 

Communications, 5(1), 3271. 

Ishihara, H., & Homma, K. (1995). Manta rays in the Yaeyama Islands. Shark News, 5(3), 1-

12. 

Iverson, L., Prasad, A., & Liaw, A. (2004). New machine learning tools for predictive 

vegetation mapping after climate change: Bagging and Random Forest perform 

better than regression tree analysis. Proceedings, UK-International Association for 

Landscape Ecology, 317-320. 

Jaine, F. R., Couturier, L. I., Weeks, S. J., Townsend, K. A., Bennett, M. B., Fiora, K., & 

Richardson, A. J. (2012). When giants turn up: sighting trends, environmental 

influences and habitat use of the manta ray Manta alfredi at a coral reef. 

Jillet, J. B. (1971). Zooplankton and Hydrology of Hauraki Gulf, New Zealand. Bascands 

Ltd. . 

Jones, E., & Francis, M. (2012). Protected rays–occurrence and development of mitigation 

methods in the New Zealand tuna purse seine fishery. Client Report No. WEG2012-

49. Department of Conservation, New Zealand, Auckland, New Zealand. 

Jones, J. (2001). Habitat Selection Studies in Avian Ecology: A Critical Review. The Auk, 

118(2), 557-562. https://doi.org/10.1093/auk/118.2.557 

Kanaji, Y., Tanabe, T., Watanabe, H., Oshima, T., & Okazaki, M. (2012). Variability in 

reproductive investment of skipjack tuna (Katsuwonus pelamis) in relation to the 

ocean–climate dynamics in the tropical eastern Indian Ocean. Marine and 

Freshwater Research, 63(8), 695-707. 

https://doi.org/https://doi.org/10.1071/MF11146 

Karp, M. A., Brodie, S., Smith, J. A., Richerson, K., Selden, R. L., Liu, O. R., Muhling, B. A., 

Samhouri, J. F., Barnett, L. A. K., Hazen, E. L., Ovando, D., Fiechter, J., Jacox, M. G., 

& Pozo Buil, M. (2023). Projecting species distributions using fishery-dependent 

data. Fish and Fisheries, 24(1), 71-92. 

https://doi.org/https://doi.org/10.1111/faf.12711 

Kashiwagi, T., Marshall, A. D., Bennett, M. B., & Ovenden, J. R. (2011). Habitat segregation 

and mosaic sympatry of the two species of manta ray in the Indian and Pacific 

Oceans: Manta alfredi and Manta birostris. Marine Biodiversity Records, 4, e53. 



References 

  

 

 155 

Kendrick, T. (2006). Characterisation of the New Zealand tuna fisheries 2002–03 and 

2003–04. New Zealand Fisheries Assessment Report, 28, 78. 

Kitchen-Wheeler, A.M. (2010). Visual identification of individual manta ray (Manta alfredi) 

in the Maldives Islands, Western Indian Ocean. Marine Biology Research, 6(4), 351-

363. 

Komac, B., Esteban, P., Trapero, L., & Caritg, R. (2016). Modelization of the current and 

future habitat suitability of Rhododendron ferrugineum using potential snow 

accumulation. PloS One, 11(1), e0147324. 

Lagos, P. F. (2022). Investigating the response of the New Zealand krill Nyctiphanes 

australis (Euphausiacea) to stress caused by environmental change: A dynamic 

energy budget approach University of Otago. 

Langley, A. (2011). Characterisation of the New Zealand fisheries for skipjack tuna 

Katsuwonus pelamis from 2000 to 2009. New Zealand Fisheries Assessment 

Report, 43, 84. 

Langley, A. (2019). Characterisation of the New Zealand skipjack tuna fishery. New Zealand 

Fisheries Assessment Report, 34. 

Last, P. R. (1994). Sharks and rays of Australia / P.R. Last & J.D. Stevens ; colour 

illustrations, R. Swainston ; line illustrations, G. Davis. CSIRO Australia. 

Last, P. R., & Stevens, J. D. (2009). Sharks and rays of Australia. 

Lawson, J. M., Fordham, S. V., O’Malley, M. P., Davidson, L. N., Walls, R. H., Heupel, M. 

R., Stevens, G., Fernando, D., Budziak, A., & Simpfendorfer, C. A. (2017). Sympathy 

for the devil: a conservation strategy for devil and manta rays. PeerJ, 5, e3027. 

Le, C., Hu, C., English, D., Cannizzaro, J., & Kovach, C. (2013). Climate-driven chlorophyll-a 

changes in a turbid estuary: Observations from satellites and implications for 

management. Remote Sensing of Environment, 130, 11-24. 

https://doi.org/https://doi.org/10.1016/j.rse.2012.11.011 

Le Fevre, J. (1987). Aspects of the biology of frontal systems. In Advances in Marine 

Biology (Vol. 23, pp. 163-299). Elsevier. 

Lea, R. N., & Rosenblatt, R. (2000). Observations on fishes associated with the 1997-98 El 

Niño off California. Reports of California Cooperative Oceanic Fisheries 

Investigations, 41, 117-129. 



References 

  

 

 156 

Leathwick, J., Elith, J., Francis, M., Hastie, T., & Taylor, P. (2006). Variation in demersal 

fish species richness in the oceans surrounding New Zealand: an analysis using 

boosted regression trees. Marine Ecology Progress Series, 321, 267-281. 

Leathwick, J. R. (1998). Are New Zealand's Nothofagus species in equilibrium with their 

environment? Journal of Vegetation Science, 9(5), 719-732. 

Lezama-Ochoa, N., Hall, M., Román, M., & Vogel, N. (2019a). Spatial and temporal 

distribution of mobulid ray species in the eastern Pacific Ocean ascertained from 

observer data from the tropical tuna purse-seine fishery. Environmental Biology of 

Fishes, 102(1), 1-17. https://doi.org/10.1007/s10641-018-0832-1 

Lezama-Ochoa, N., Hall, M. A., Pennino, M. G., Stewart, J. D., López, J., & Murua, H. 

(2019b). Environmental characteristics associated with the presence of the Spinetail 

devil ray (Mobula mobular) in the eastern tropical Pacific. PloS One, 14(8), 

e0220854. 

Lezama-Ochoa, N., Lopez, J., Hall, M., Bach, P., Abascal, F., & Murua, H. (2020a). Spatio-

temporal distribution of the spinetail devil ray Mobula mobular in the eastern 

tropical Atlantic Ocean. Endangered Species Research, 43, 447-460. 

https://www.int-res.com/abstracts/esr/v43/p447-460 

Lezama-Ochoa, N., Pennino, M. G., Hall, M. A., Lopez, J., & Murua, H. (2020b). Using a 

Bayesian modelling approach (INLA-SPDE) to predict the occurrence of the Spinetail 

Devil Ray (Mobular mobular). Scientific Reports, 10(1), 18822. 

https://doi.org/10.1038/s41598-020-73879-3 

Lima, S. L. (2002). Putting predators back into behavioural predator–prey interactions. 

Trends in Ecology & Evolution, 17(2), 70-75. 

Lubchenco, J., Palumbi, S. R., Gaines, S. D., & Andelman, S. (2003). Plugging a hole in the 

ocean: the emerging science of marine reserves. Ecological Applications, 13(1), S3-

S7. 

Lueck, R. G., & Mudge, T. D. (1997). Topographically induced mixing around a shallow 

seamount. Science, 276(5320), 1831-1833. 

Luiz, O. J., Balboni, A. P., Kodja, G., Andrade, M., & Marum, H. (2009). Seasonal 

occurrences of Manta birostris (Chondrichthyes: Mobulidae) in southeastern Brazil. 

Ichthyological Research, 56(1), 96-99. https://doi.org/10.1007/s10228-008-0060-3 

Malanson, G. P. (1997). Simulated responses to hypothetical fundamental niches. Journal 

of Vegetation Science, 8(2), 307-316. 



References 

  

 

 157 

Malanson, G. P., Westman, W. E., & Yan, Y.-L. (1992). Realized versus fundamental niche 

functions in a model of chaparral response to climatic change. Ecological Modelling, 

64(4), 261-277. 

Manly, B., McDonald, L., Thomas, D., McDonald, T., & Erickson, W. (2002). Resource 

Selection by Animals: Statistical Design and Analysis for Field Studies (Vol. 63). 

https://doi.org/10.2307/5247 

Mann, K., & Lazier, J. (1991). Dynamics of Marine Ecosystem, Blakwell Sci., 23–90. 

Michigan, United States of America. 

Marsh, H., & Sinclair, D. F. (1989). An experimental evaluation of dugong and sea turtle 

aerial survey techniques. Wildlife Research, 16(6), 639-650. 

Marshall, A., Barreto, R., Carlson, J., Fernando, D., Fordham, S., Francis, M.P., Derrick, D., 

Herman, K., Jabado, R.W., Liu, K.M., Rigby, C.L. & Romanov, E. (2022a). Mobula 

birostris (amended version of 2020 assessment). The IUCN Red List of Threatened 

Species 2022: e.T198921A214397182. Retrieved December 20 from 

Marshall, A., Barreto, R., Carlson, J., Fernando, D., Fordham, S., Francis, M.P., Herman, K., 

Jabado, R.W., Liu, K.M., Rigby, C.L. & Romanov, E. (2022b). Mobula mobular 

(amended version of 2020 assessment). The IUCN Red List of Threatened Species 

2022: e.T110847130A214381504. Retrieved December 20 from 

Marshall, A., & Bennett, M. (2010). Reproductive ecology of the reef manta ray Manta 

alfredi in southern Mozambique. Journal of Fish Biology, 77(1), 169-190. 

Marshall, A., Bennett, M., Kodja, G., Hinojosa-Alvarez, S., Galvan-Magana, F., Harding, M., 

Stevens, G., & Kashiwagi, T. (2018). Mobula birostris (amended version of 2011 

assessment). The IUCN Red List of Threatened Species. 2018: e. 

T198921A126669349. In. 

Marshall, A. D. (2008). Biology and population ecology of Manta birostris in southern 

Mozambique. 

Marshall, A. D., Compagno, L. J., & Bennett, M. B. (2009). Redescription of the genus 

Manta with resurrection of Manta alfredi (Krefft, 1868)(Chondrichthyes; 

Myliobatoidei; Mobulidae). Zootaxa, 2301(1), 1-28. 

Marshall, A. D., Dudgeon, C. L., & Bennett, M. B. (2011). Size and structure of a 

photographically identified population of manta rays Manta alfredi in southern 

Mozambique. Marine Biology, 158(5), 1111-1124. https://doi.org/10.1007/s00227-

011-1634-6 



References 

  

 

 158 

Mauchline, J. (1980). The biology of mysids and euphausiids. Advances in Marine Biology, 

18, 1-677. 

Maxwell, S. (2015). The Case for Mobile Marine Protected Areas. 

Maxwell, S. M., Hazen, E. L., Lewison, R. L., Dunn, D. C., Bailey, H., Bograd, S. J., Briscoe, 

D. K., Fossette, S., Hobday, A. J., Bennett, M., Benson, S., Caldwell, M. R., Costa, D. 

P., Dewar, H., Eguchi, T., Hazen, L., Kohin, S., Sippel, T., & Crowder, L. B. (2015). 

Dynamic ocean management: Defining and conceptualizing real-time management 

of the ocean. Marine Policy, 58, 42-50. 

https://doi.org/https://doi.org/10.1016/j.marpol.2015.03.014 

McDavitt, M. T. (2005). The cultural significance of sharks and rays in Aboriginal societies 

across Australia’s top end. Marine Education Society of Australasia, Canberra, 

viewed, 13(09), 2011. 

Mehl, J. A. P. (1969). Food of barracouta (Teleosti: Gempylidae) in eastern Cook Strait. 

New Zealand Journal of Marine and Freshwater Research, 3(3), 389-394. 

https://doi.org/10.1080/00288330.1969.9515306 

Melo-Merino, S. M., Reyes-Bonilla, H., & Lira-Noriega, A. (2020). Ecological niche models 

and species distribution models in marine environments: A literature review and 

spatial analysis of evidence. Ecological Modelling, 415, 108837. 

https://doi.org/https://doi.org/10.1016/j.ecolmodel.2019.108837 

Milanovich, J. R., Peterman, W. E., Nibbelink, N. P., & Maerz, J. C. (2010). Projected loss of 

a salamander diversity hotspot as a consequence of projected global climate change. 

PloS One, 5(8), e12189. 

Ministry for Primary Industries (n.d.). Seabirds and protected marine species caught by 

commercial fishers. Retrieved January 5 from https://www.mpi.govt.nz/fishing-

aquaculture/sustainable-fisheries/managing-the-impact-of-fishing-on-protected-

species/seabirds-and-protected-marine-species-caught-by-commercial-fishers/ 

Mitchell, J. S., Mackay, K.A., Neil, H.L., Mackay, E.J., Pallentin, A., Notman P. (2012). 

Undersea New Zealand, 1:5,000,000 Version NIWA Chart, Miscellaneous Series No. 

92). 

Mohanraj, G., Rajapackiam, S., Mohan, S., Batcha, H., & Gomathy, S. (2009). Status of 

elasmobranchs fishery in Chennai, India. Asian Fisheries Science, 22(2), 607-615. 



References 

  

 

 159 

Moilanen, A., Runge, M. C., Elith, J., Tyre, A., Carmel, Y., Fegraus, E., Wintle, B. A., 

Burgman, M., & Ben-Haim, Y. (2006). Planning for robust reserve networks using 

uncertainty analysis. Ecological Modelling, 199(1), 115-124. 

Morato, T., Bulman, C., & Pitcher, T. J. (2009). Modelled effects of primary and secondary 

production enhancement by seamounts on local fish stocks. Deep Sea Research Part 

II: Topical Studies in Oceanography, 56(25), 2713-2719. 

Morato, T., Hoyle, S. D., Allain, V., & Nicol, S. J. (2010). Seamounts are hotspots of pelagic 

biodiversity in the open ocean. Proceedings of the National Academy of Sciences, 

107(21), 9707-9711. 

Morato, T., Varkey, D. A., Damaso, C., Machete, M., Santos, M., Prieto, R., Santos, R. S., & 

Pitcher, T. J. (2008). Evidence of a seamount effect on aggregating visitors. Marine 

Ecology Progress Series, 357, 23-32. 

Morel, A., & Berthon, J.-F. (1989). Surface pigments, algal biomass profiles, and potential 

production of the euphotic layer: Relationships reinvestigated in view of remote-

sensing applications. Limnology and Oceanography, 34(8), 1545-1562. 

https://doi.org/https://doi.org/10.4319/lo.1989.34.8.1545 

Murphy, R. J., Pinkerton, M. H., Richardson, K. M., Bradford‐Grieve, J. M., & Boyd, P. W. 

(2001). Phytoplankton distributions around New Zealand derived from SeaWiFS 

remotely‐sensed ocean colour data. New Zealand Journal of Marine and 

Freshwater Research, 35(2), 343-362. 

https://doi.org/10.1080/00288330.2001.9517005 

Myers, R. A., & Worm, B. (2003). Rapid worldwide depletion of predatory fish 

communities. Nature, 423(6937), 280-283. https://doi.org/10.1038/nature01610 

Neill, W. H., & Stevens, E. D. (1974). Thermal inertia versus thermoregulation in" warm" 

turtles and tunas. Science, 184(4140), 1008-1010. 

Nelson, D. R., McKibben, J. N., Strong, W. R., Lowe, C. G., Sisneros, J. A., Schroeder, D. M., 

& Lavenberg, R. J. (1997). An acoustic tracking of a megamouth shark, Megachasma 

pelagios: a crepuscular vertical migrator. Environmental Biology of Fishes, 49(4), 

389-399. https://doi.org/10.1023/A:1007369619576 

Neumann, D. R. (2001). Activity budget of free-ranging common dolphins (Delphinus 

delphis) in the northwestern Bay of Plenty, New Zealand. Aquatic Mammals, 27(2), 

121-136. 



References 

  

 

 160 

Niehaus, A. C., Angilletta Jr, M. J., Sears, M. W., Franklin, C. E., & Wilson, R. S. (2012). 

Predicting the physiological performance of ectotherms in fluctuating thermal 

environments. Journal of Experimental Biology, 215(4), 694-701. 

Niella, Y., Butcher, P., Holmes, B., Barnett, A., & Harcourt, R. (2022). Forecasting 

intraspecific changes in distribution of a wide-ranging marine predator under 

climate change. Oecologia, 198(1), 111-124. https://doi.org/10.1007/s00442-021-

05075-7 

Nix, H. A. (1986). A biogeographic analysis of Australian elapid snakes. Atlas of elapid 

snakes of Australia, 7, 4-15. 

Notarbartolo di Sciara, G., Lauriano, G., Pierantonio, N., Cañadas, A., Donovan, G., & 

Panigada, S. (2015). The devil we don't know: investigating habitat and abundance of 

endangered giant devil rays in the North-Western Mediterranean Sea. PloS One, 

10(11), e0141189. 

Notarbartolo di Sciara, G., & Serena, F. (1988). Term embryo of Mobula mobular 

(Bonnaterre, 1788) from the northern Tyrrhenian Sea (Chondrichthyes: Mobulidae). 

Atti della Societa Italiana di Scienze Naturali e del Museo Civico di Storia Naturale 

in Milano, 129, 396-400. 

Notarbartolo di Sciara, G., Stevens, G., & Fernando, D. (2020). The giant devil ray Mobula 

mobular (Bonnaterre, 1788) is not giant, but it is the only spinetail devil ray. Marine 

Biodiversity Records, 13(1), 1-5. 

Notarbartolo-di-Sciara, G. (1987). A revisionary study of the genus Mobula Rafinesque, 

1810 (Chondrichthyes: Mobulidae) with the description of a new species. Zoological 

Journal of the Linnean Society, 91(1), 1-91. 

Notarbartolo-di-Sciara, G. (2008). A revisionary study of the genus Mobula Rafinesque, 

1810 (Chondrichthyes: Mobulidae) with the description of a new species. Zoological 

Journal of the Linnean Society, 91(1), 1-91. https://doi.org/10.1111/j.1096-

3642.1987.tb01723.x 

Notarbartolo-di-Sciara, G., & Hillyer, E. V. (1989). Mobulid rays off eastern Venezuela 

(Chondrichthyes, Mobulidae). Copeia, 607-614. 

Nurdin, S., Mustapha, M., & Lihan, T. (2013). The relationship between sea surface 

temperature and chlorophyll-a concentration in fisheries aggregation area in the 

archipelagic waters of Spermonde using satellite images. AIP Conference 

Proceedings, 



References 

  

 

 161 

O'Callaghan, T. M., & Baker, C. S. (2002). Summer cetacean community, with particular 

reference to Bryde's whales, in the Hauraki Gulf, New Zealand (Vol. 55). 

Department of Conservation New Zealand. 

O’Shea, O. R., Kingsford, M. J., & Seymour, J. (2010). Tide-related periodicity of manta rays 

and sharks to cleaning stations on a coral reef. Marine and Freshwater Research, 

61(1), 65-73. 

Ørsted, I. V., & Ørsted, M. (2019). Species distribution models of the Spotted Wing 

Drosophila (Drosophila suzukii, Diptera: Drosophilidae) in its native and invasive 

range reveal an ecological niche shift. Journal of Applied Ecology, 56(2), 423-435. 

Paig-Tran, E. M., Bizzarro, J. J., Strother, J. A., & Summers, A. P. (2011). Bottles as models: 

predicting the effects of varying swimming speed and morphology on size selectivity 

and filtering efficiency in fishes. Journal of Experimental Biology, 214(10), 1643-

1654. 

Panigada, S., Zanardelli, M., MacKenzie, M., Donovan, C., Mélin, F., & Hammond, P. S. 

(2008). Modelling habitat preferences for fin whales and striped dolphins in the 

Pelagos Sanctuary (Western Mediterranean Sea) with physiographic and remote 

sensing variables. Remote Sensing of Environment, 112(8), 3400-3412. 

Papastamatiou, Y. P., DeSalles, P. A., & McCauley, D. J. (2012). Area-restricted searching by 

manta rays and their response to spatial scale in lagoon habitats. Marine Ecology 

Progress Series, 456, 233-244. 

Parker, H., & Boeseman, M. (1954). The basking shark, Cetorhinus maximus, in winter. 

Proceedings of the Zoological Society of London, 

Paterson, R. (1990). Effects of long-term anti-shark measures on target and non-target 

species in Queensland, Australia. Biological Conservation, 52(2), 147-159. 

Paul, L. (1968). Some seasonal water temperature patterns in the Hauraki Gulf, New 

Zealand. New Zealand Journal of Marine and Freshwater Research, 2(3), 535-558. 

Paulin, C. D., Habib, G., Carey, C. L., Swanson, P. M., & Voss, G. J. (1982). New records of 

Mobula japanica and Masturus lanceolatus, and further records of Luvaris 

imperialis (Pisces: Mobulidae, Molidae, Louvaridae) from New Zealand. New 

Zealand Journal of Marine and Freshwater Research, 16(1), 11-17. 

https://doi.org/10.1080/00288330.1982.9515943 



References 

  

 

 162 

Pearce, J., & Ferrier, S. (2000). Evaluating the predictive performance of habitat models 

developed using logistic regression. Ecological Modelling, 133(3), 225-245. 

https://doi.org/https://doi.org/10.1016/S0304-3800(00)00322-7 

Pearman, P. B., Guisan, A., Broennimann, O., & Randin, C. F. (2008). Niche dynamics in 

space and time. Trends in Ecology & Evolution, 23(3), 149-158. 

Pearson, R. G. (2010). Species’ Distribution Modeling for Conservation Educators and 

Practitioners. 

Perez-Navarro, M. A., Broennimann, O., Esteve, M. A., Moya-Perez, J. M., Carreño, M. F., 

Guisan, A., & Lloret, F. (2021). Temporal variability is key to modelling the climatic 

niche. Diversity and Distributions, 27(3), 473-484. 

https://doi.org/https://doi.org/10.1111/ddi.13207 

Peterson, A. T. (2003). Predicting the geography of species’ invasions via ecological niche 

modeling. The Quarterly Review of Biology, 78(4), 419-433. 

Peterson, A. T., Soberón, J., Pearson, R. G., Anderson, R. P., Martínez-Meyer, E., 

Nakamura, M., & Araújo, M. B. (2011). Ecological niches and geographic 

distributions (MPB-49). In Ecological Niches and Geographic Distributions (MPB-

49). Princeton University Press. 

Peterson, A. T., & Vieglais, D. A. (2001). Predicting Species Invasions Using Ecological 

Niche Modeling: New Approaches from Bioinformatics Attack a Pressing Problem: A 

new approach to ecological niche modeling, based on new tools drawn from 

biodiversity informatics, is applied to the challenge of predicting potential species' 

invasions. BioScience, 51(5), 363-371. 

Petitpierre, B., Kueffer, C., Broennimann, O., Randin, C., Daehler, C., & Guisan, A. (2012). 

Climatic niche shifts are rare among terrestrial plant invaders. Science, 335(6074), 

1344-1348. 

Petrella, V., Martinez, E., Anderson, M. G., & Stockin, K. A. (2012). Whistle characteristics 

of common dolphins (Delphinus sp.) in the Hauraki Gulf, New Zealand. Marine 

Mammal Science, 28(3), 479-496. 

Philander, S. G. H. (1983). El Niño Southern Oscillation phenomena. Nature, 302(5906), 

295-301. https://doi.org/10.1038/302295a0 

Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of 

species geographic distributions. Ecological Modelling, 190(3-4), 231-259. 

https://doi.org/https://doi.org/10.1016/j.ecolmodel.2005.03.026 

https://doi.org/https:/doi.org/10.1016/j.ecolmodel.2005.03.026


References 

  

 

 163 

Phillips, S.J., Dudík, M., Elith, J., Graham, C.H., Lehmann, A., Leathwick, J. and Ferrier, S. 

(2009), Sample selection bias and presence-only distribution models: implications 

for background and pseudo-absence data. Ecological Applications, 19: 181-197. 

https://doi.org/10.1890/07-2153.1 

Plourde, S., & Runge, J. A. (1993). Reproduction of the planktonic copepod Calanus 

finmarchicus in the Lower St. Lawrence Estuary: relation to the cycle of 

phytoplankton production and evidence for a Calanus pump. Marine Ecology 

Progress Series, 102(3), 217-227. 

Poloczanska, E. S., Brown, C. J., Sydeman, W. J., Kiessling, W., Schoeman, D. S., Moore, P. 

J., Brander, K., Bruno, J. F., Buckley, L. B., & Burrows, M. T. (2013). Global imprint 

of climate change on marine life. Nature Climate Change, 3(10), 919-925. 

Praca, E., Gannier, A., Das, K., & Laran, S. (2009). Modelling the habitat suitability of 

cetaceans: Example of the sperm whale in the northwestern Mediterranean Sea. 

Deep Sea Research Part I: Oceanographic Research Papers, 56(4), 648-657. 

https://doi.org/https://doi.org/10.1016/j.dsr.2008.11.001 

Putra, M. I. H., & Mustika, P. L. K. (2020). Incorporating in situ prey distribution into 

foraging habitat modelling for marine megafauna in the Solor waters of the Savu Sea, 

Indonesia. Aquatic Conservation: Marine and Freshwater Ecosystems, 30(12), 

2384-2401. https://doi.org/https://doi.org/10.1002/aqc.3379 

Putra, M. I. H., Setyawan, E., Laglbauer, B. J. L., Lewis, S., Dharmadi, D., Sianipar, A., & 

Ender, I. (2020). Predicting mobulid ray distribution in coastal areas of Lesser 

Sunda Seascape: Implication for spatial and fisheries management. Ocean & Coastal 

Management, 198, 105328. 

https://doi.org/https://doi.org/10.1016/j.ocecoaman.2020.105328 

Quillfeldt, P., Cherel, Y., Delord, K., & Weimerkirch, H. (2015). Cool, cold or colder? Spatial 

segregation of prions and blue petrels is explained by differences in preferred sea 

surface temperatures. Biology Letters, 11(4), 20141090. 

Rajapackiam, S., Mohan, S., & Rudramurthy, N. (2007). Utilization of gill rakers of lesser 

devil ray Mobula diabolus-a new fish byproduct. Marine Fisheries Information 

Service, Technical and Extension Series, 191, 22-23. 

Ramírez-León, M. R., García-Aguilar, M. C., Romo-Curiel, A. E., Ramírez-Mendoza, Z., 

Fajardo-Yamamoto, A., & Sosa-Nishizaki, O. (2021). Habitat suitability of cetaceans 

in the Gulf of Mexico using an ecological niche modeling approach. PeerJ, 9, e10834. 

https://doi.org/10.1890/07-2153.1


References 

  

 

 164 

Rayner, M. J., Dunphy, B. J., Lukies, K., Adams, N., Berg, M., Kozmian-Ledward, L., 

Pinkerton, M. H., & Bury, S. J. (2021). Stable isotope record from a resident New 

Zealand seabird community suggests changes in distribution but not trophic position 

since 1878. Marine Ecology Progress Series, 678, 171-182. https://www.int-

res.com/abstracts/meps/v678/p171-182 

R Core Team. (2022). R: A language and environment for statistical computing. In R 

Foundation for Statistical Computing. https://www.R-project.org/ 

Redfern, J. V., Ferguson, M. C., Becker, E. A., Hyrenbach, K. D., Good, C., Barlow, J., 

Kaschner, K., Baumgartner, M. F., Forney, K. A., Ballance, L. T., Fauchald, P., 

Halpin, P., Hamazaki, T., Pershing, A. J., Qian, S. S., Read, A., Reilly, S. B., Torres, 

L., & Werner, F. (2006). Techniques for cetacean&#150;habitat modeling. Marine 

Ecology Progress Series, 310, 271-295. https://www.int-

res.com/abstracts/meps/v310/p271-295/ 

Reynolds, M. D., Sullivan, B. L., Hallstein, E., Matsumoto, S., Kelling, S., Merrifield, M., 

Fink, D., Johnston, A., Hochachka, W. M., & Bruns, N. E. (2017). Dynamic 

conservation for migratory species. Science Advances, 3(8), e1700707. 

Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C., & Wang, W. (2002). An 

improved in situ and satellite SST analysis for climate. Journal of Climate, 15(13), 

1609-1625. 

Rhodes, L. L., Haywood, A. J., Ballantine, W. J., & MacKenzie, A. L. (1993). Algal blooms 

and climate anomalies in north‐east New Zealand, August ‐December 1992. New 

Zealand Journal of Marine and Freshwater Research, 27(4), 419-430. 

https://doi.org/10.1080/00288330.1993.9516583 

Richardson, A. J. (2008). In hot water: zooplankton and climate change. ICES Journal of 

Marine Science, 65(3), 279-295. https://doi.org/10.1093/icesjms/fsn028 

Ricklefs, R. E. (2004). A comprehensive framework for global patterns in biodiversity. 

Ecology Letters, 7(1), 1-15. 

Ritz, D., Hosie, G., & Kirkwood, R. (1990). Diet of Nyctiphanes australis Sars (Crustacea: 

Euphansiacea). Marine and Freshwater Research, 41(3), 365-374. 

https://doi.org/https://doi.org/10.1071/MF9900365 

Robinson, L. M., Elith, J., Hobday, A. J., Pearson, R. G., Kendall, B. E., Possingham, H. P., 

& Richardson, A. J. (2011). Pushing the limits in marine species distribution 

modelling: lessons from the land present challenges and opportunities. Global 

https://www.int-res.com/abstracts/meps/v678/p171-182
https://www.int-res.com/abstracts/meps/v678/p171-182


References 

  

 

 165 

Ecology and Biogeography, 20(6), 789-802. 

https://doi.org/https://doi.org/10.1111/j.1466-8238.2010.00636.x 

Roels, O. A., Laurence, S., & Van Hemelryck, L. (1979). The utilization of cold, nutrient-rich 

deep ocean water for energy and mariculture. Ocean Management, 5(3), 199-210. 

https://doi.org/https://doi.org/10.1016/0302-184X(79)90001-5 

Roemmich, D., & Sutton, P. (1998). The mean and variability of ocean circulation past 

northern New Zealand: Determining the representativeness of hydrographic 

climatologies [https://doi.org/10.1029/98JC00583]. Journal of Geophysical 

Research: Oceans, 103(C6), 13041-13054. 

https://doi.org/https://doi.org/10.1029/98JC00583 

Rohner, C. A., Burgess, K. B., Rambahiniarison, J. M., Stewart, J. D., Ponzo, A., & 

Richardson, A. J. (2017). Mobulid rays feed on euphausiids in the Bohol Sea. Royal 

Society open science, 4(5), 161060. 

Rohner, C. A., Pierce, S. J., Marshall, A. D., Weeks, S. J., Bennett, M. B., & Richardson, A. J. 

(2013). Trends in sightings and environmental influences on a coastal aggregation of 

manta rays and whale sharks. Marine Ecology Progress Series, 482, 153-168. 

https://www.int-res.com/abstracts/meps/v482/p153-168/ 

Rosenzweig, M. L. (1995). Species diversity in space and time. Cambridge university press. 

Rubin, R. (2002). Manta Rays: not all black and white. Shark focus, 15, 4-5. 

Rushton, S., Ormerod, S. J., & Kerby, G. (2004). New paradigms for modelling species 

distributions? Journal of Applied Ecology, 41(2), 193-200. 

Sampson, L., Galván-Magaña, F., De Silva-Dávila, R., Aguíñiga-García, S., & O'Sullivan, J. 

B. (2010). Diet and trophic position of the devil rays Mobula thurstoni and Mobula 

japanica as inferred from stable isotope analysis. Journal of the Marine Biological 

Association of the United Kingdom, 90(5), 969-976. 

https://doi.org/10.1017/S0025315410000548 

Sanderson, S. L., & Wassersug, R. (1990). Suspension-feeding vertebrates. Scientific 

American, 262(3), 96-102. 

Santana, R., Suanda, S. H., Macdonald, H., & O’Callaghan, J. (2021). Mesoscale and wind-

driven intra-annual variability in the East Auckland Current. Scientific Reports, 

11(1), 9764. https://doi.org/10.1038/s41598-021-89222-3 



References 

  

 

 166 

Sardou, J., Etienne, M., & Andersen, V. (1996). Seasonal abundance and vertical 

distributions of macroplankton and micronekton in the Northwestern Mediterranean 

Sea. Oceanologica acta, 19(6), 645-656. 

Scacco, U., Consalvo, I., & Mostarda, E. (2009). First documented catch of the giant devil 

ray Mobula mobular (Chondrichthyes: Mobulidae) in the Adriatic Sea. Marine 

Biodiversity Records, 2, 4. 

https://doi.org/https://doi.org/10.1017/S1755267209001110 

Scales, K. L., Hazen, E. L., Jacox, M. G., Edwards, C. A., Boustany, A. M., Oliver, M. J., & 

Bograd, S. J. (2017). Scale of inference: on the sensitivity of habitat models for wide-

ranging marine predators to the resolution of environmental data. Ecography, 40(1), 

210-220. https://doi.org/https://doi.org/10.1111/ecog.02272 

Scales, K. L., Miller, P. I., Hawkes, L. A., Ingram, S. N., Sims, D. W., & Votier, S. C. (2014). 

Review: On the Front Line: frontal zones as priority at-sea conservation areas for 

mobile marine vertebrates. Journal of Applied Ecology, 51(6), 1575-1583. 

https://doi.org/https://doi.org/10.1111/1365-2664.12330 

Schapire, R. E. (2003). The boosting approach to machine learning: An overview. Nonlinear 

Estimation and Classification, 149-171. 

Schofield, G., Scott, R., Dimadi, A., Fossette, S., Katselidis, K. A., Koutsoubas, D., Lilley, M. 

K. S., Pantis, J. D., Karagouni, A. D., & Hays, G. C. (2013). Evidence-based marine 

protected area planning for a highly mobile endangered marine vertebrate. 

Biological Conservation, 161, 101-109. 

https://doi.org/https://doi.org/10.1016/j.biocon.2013.03.004 

Schweitzer, J., & Notarbartolo-Di-Sciara, G. (1986). The rete mirabile cranica in the genus 

Mobula: A comparative study. Journal of Morphology, 188(2), 167-178. 

https://doi.org/https://doi.org/10.1002/jmor.1051880204 

Sequeira, A. M. M., Mellin, C., Delean, S., Meekan, M. G., & Bradshaw, C. J. A. (2013). 

Spatial and temporal predictions of inter-decadal trends in Indian Ocean whale 

sharks. Marine Ecology Progress Series, 478, 185-195. https://www.int-

res.com/abstracts/meps/v478/p185-195/ 

Setyawan, E., Erdmann, M., Gunadharma, N., Gunawan, T., Hasan, A., Izuan, M., Kasmidi, 

M., Lamatenggo, Y., Lewis, S., Maulana, N., Mambrasar, R., Mongdong, M., Nebore, 

A., Putra, M. I. H., Sianipar, A., Thebu, K., Tuharea, S., & Constantine, R. (2022a). A 

holistic approach to manta ray conservation in the Papuan Bird’s Head Seascape: 



References 

  

 

 167 

Resounding success, ongoing challenges. Marine Policy, 137, 104953. 

https://doi.org/https://doi.org/10.1016/j.marpol.2021.104953 

Setyawan, E., Stevenson, B. C., Erdmann, M. V., Hasan, A. W., Sianipar, A. B., Mofu, I., 

Putra, M. I., Izuan, M., Ambafen, O., & Fewster, R. M. (2022b). Population estimates 

of photo-identified individuals using a modified POPAN model reveal that Raja 

Ampat’s reef manta rays are thriving. 

Sharples, J. (1997). Cross-shelf intrusion of subtropical water into the coastal zone of 

northeast New Zealand. Continental Shelf Research, 17(7), 835-857. 

https://doi.org/https://doi.org/10.1016/S0278-4343(96)00060-X 

Sharples, J., Greig, M., & Oliver, M. (1995). Nearshore–offshore exchange processes: 

summary of fieldwork December 1993–January 1995. In Physics Report 95-4. NIWA 

Wellington, New Zealand. 

Sharples, J., & Greig, M. J. N. (1998). Tidal currents, mean flows, and upwelling on the 

north‐east shelf of New Zealand. New Zealand Journal of Marine and Freshwater 

Research, 32(2), 215-231. https://doi.org/10.1080/00288330.1998.9516821 

Shirlamaine, I., Masangcay, Metillo, E., Hayashizaki, K., Tamada, S., & Nishida, S. (2018). 

Feeding Habits of Mobula japanica Feeding Habits of Mobula japanica 

(Chondrichthyes, Mobulidae) in Butuan Bay, Mindanao Island, Philippines. Science 

Diliman, 30. 

Sillero, N. (2011). What does ecological modelling model? A proposed classification of 

ecological niche models based on their underlying methods. Ecological Modelling, 

222(8), 1343-1346. 

Sillero, N., Arenas-Castro, S., Enriquez‐Urzelai, U., Vale, C. G., Sousa-Guedes, D., Martínez-

Freiría, F., Real, R., & Barbosa, A. M. (2021). Want to model a species niche? A step-

by-step guideline on correlative ecological niche modelling. Ecological Modelling, 

456, 109671. https://doi.org/https://doi.org/10.1016/j.ecolmodel.2021.109671 

Sillero, N., & Barbosa, A. M. (2021). Common mistakes in ecological niche models. 

International Journal of Geographical Information Science, 35(2), 213-226. 

Sims, D. W. (1999). Threshold foraging behaviour of basking sharks on zooplankton: life on 

an energetic knife-edge? Proceedings of the Royal Society of London. Series B: 

Biological Sciences, 266(1427), 1437-1443. 

Sims, D. W., & Quayle, V. A. (1998). Selective foraging behaviour of basking sharks on 

zooplankton in a small-scale front. Nature, 393(6684), 460-464. 



References 

  

 

 168 

Sims, D. W., Southall, E. J., Tarling, G. A., & Metcalfe, J. D. (2005). Habitat-Specific 

Normal and Reverse Diel Vertical Migration in the Plankton-Feeding Basking Shark. 

Journal of Animal Ecology, 74(4), 755-761. 

http://www.jstor.org.ezproxy.auckland.ac.nz/stable/3505456 

Skov, F., & Svenning, J. C. (2004). Potential impact of climatic change on the distribution of 

forest herbs in Europe. Ecography, 27(3), 366-380. 

Sofaer, H. R., Jarnevich, C. S., Pearse, I. S., Smyth, R. L., Auer, S., Cook, G. L., Edwards, T. 

C., Jr, Guala, G. F., Howard, T. G., Morisette, J. T., & Hamilton, H. (2019). 

Development and Delivery of Species Distribution Models to Inform Decision-

Making. BioScience, 69(7), 544-557. https://doi.org/10.1093/biosci/biz045 

Srinivasan, M., Dassis, M., Benn, E., Stockin, K. A., Martinez, E., & Machovsky-Capuska, G. 

E. (2015). Using non-systematic surveys to investigate effects of regional climate 

variability on Australasian gannets in the Hauraki Gulf, New Zealand. Journal of Sea 

Research, 99, 74-82. 

Stanton, B., & Sutton, P. (2003). Velocity measurements in the East Auckland Current 

north‐east of North Cape, New Zealand. New Zealand Journal of Marine and 

Freshwater Research, 37(1), 195-204. 

https://doi.org/10.1080/00288330.2003.9517157 

Stanton, B. R., Sutton, P. J. H., & Chiswell, S. M. (1997). The East Auckland Current, 1994–

95. New Zealand Journal of Marine and Freshwater Research, 31(4), 537-549. 

https://doi.org/10.1080/00288330.1997.9516787 

Stephenson, F., Bulmer, R., Leathwick, J., Brough, T., Clark, D., & Greenfield, B. (2020a). 

Development of a New Zealand seafloor community classification (SCC). NIWA 

report prepared for Department of Conservation (DOC). Hamilton, ON: National 

Institute of Water & Atmospheric Research. 

Stephenson, F., Goetz, K., Sharp, B. R., Mouton, T. L., Beets, F. L., Roberts, J., MacDiarmid, 

A. B., Constantine, R., & Lundquist, C. J. (2020b). Modelling the spatial distribution 

of cetaceans in New Zealand waters. Diversity and Distributions, 26(4), 495-516. 

Stephenson, F., Rowden, A. A., Anderson, O. F., Pitcher, C. R., Pinkerton, M. H., Petersen, 

G., & Bowden, D. A. (2021). Presence-only habitat suitability models for vulnerable 

marine ecosystem indicator taxa in the South Pacific have reached their predictive 

limit. ICES Journal of Marine Science, 78(8), 2830-2843. 

https://doi.org/10.1093/icesjms/fsab162 



References 

  

 

 169 

Stevens, C. L., O’Callaghan, J. M., Chiswell, S. M., & Hadfield, M. G. (2021). Physical 

oceanography of New Zealand/Aotearoa shelf seas – a review. New Zealand Journal 

of Marine and Freshwater Research, 55(1), 6-45. 

https://doi.org/10.1080/00288330.2019.1588746 

Stevens, J. D., Bonfil, R., Dulvy, N. K., & Walker, P. A. (2000). The effects of fishing on 

sharks, rays, and chimaeras (chondrichthyans), and the implications for marine 

ecosystems. ICES Journal of Marine Science, 57(3), 476-494. 

https://doi.org/10.1006/jmsc.2000.0724 

Stewart, A. (2002). Mantas and devil rays. Seafood New Zealand, 10(3), 65-68. 

Stewart, J. D., Beale, C. S., Fernando, D., Sianipar, A. B., Burton, R. S., Semmens, B. X., & 

Aburto-Oropeza, O. (2016a). Spatial ecology and conservation of Manta birostris in 

the Indo-Pacific. Biological Conservation, 200, 178-183. 

https://doi.org/https://doi.org/10.1016/j.biocon.2016.05.016 

Stewart, J. D., Hoyos-Padilla, E. M., Kumli, K. R., & Rubin, R. D. (2016a). Deep-water 

feeding and behavioural plasticity in Manta birostris revealed by archival tags and 

submersible observations. Zoology, 119(5), 406-413. 

https://doi.org/https://doi.org/10.1016/j.zool.2016.05.010 

Stewart, J. D., Jaine, F. R., Armstrong, A. J., Armstrong, A. O., Bennett, M. B., Burgess, K. 

B., Couturier, L. I., Croll, D. A., Cronin, M. R., & Deakos, M. H. (2018). Research 

priorities to support effective manta and devil ray conservation. Frontiers in Marine 

Science, 5, 314. 

Stewart, J. D., Rohner, C. A., Araujo, G., Avila, J., Fernando, D., Forsberg, K., Ponzo, A., 

Rambahiniarison, J. M., Kurle, C. M., & Semmens, B. X. (2017). Trophic overlap in 

mobulid rays: insights from stable isotope analysis. Marine Ecology Progress Series, 

580, 131-151. https://www.int-res.com/abstracts/meps/v580/p131-151/ 

Stockin, K., Pierce, G., Binedell, V., Wiseman, N., & Orams, M. (2008). Factors Affecting the 

Occurrence and Demographics of Common Dolphins (Delphinus sp.) in the Hauraki 

Gulf, New Zealand. Aquatic Mammals, 34, 200-211. 

https://doi.org/10.1578/AM.34.2.2008.200 

Sumpton, W., Taylor, S., Gribble, N., McPherson, G., & Ham, T. (2011). Gear selectivity of 

large-mesh nets and drumlines used to catch sharks in the Queensland Shark Control 

Program. African Journal of Marine Science, 33(1), 37-43. 



References 

  

 

 170 

Sutton, P. J. H., & Bowen, M. M. (2011). Currents off the west coast of Northland, New 

Zealand. New Zealand Journal of Marine and Freshwater Research, 45(4), 609-

624. https://doi.org/10.1080/00288330.2011.569729 

Sutton, T. T., Porteiro, F. M., Heino, M., Byrkjedal, I., Langhelle, G., Anderson, C. I. H., 

Horne, J., Søiland, H., Falkenhaug, T., Godø, O. R., & Bergstad, O. A. (2008). 

Vertical structure, biomass and topographic association of deep-pelagic fishes in 

relation to a mid-ocean ridge system. Deep Sea Research Part II: Topical Studies in 

Oceanography, 55(1), 161-184. 

https://doi.org/https://doi.org/10.1016/j.dsr2.2007.09.013 

Tattersall, W. (1924). Euphausiacea. British Antarctic “Terra Nova” Exped. 1910. Nat. Hist. 

Rep. Zool, 18, l. 

Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., 

Erasmus, B. F., De Siqueira, M. F., Grainger, A., & Hannah, L. (2004). Extinction risk 

from climate change. Nature, 427(6970), 145-148. 

Thorrold, S. R., Afonso, P., Fontes, J., Braun, C. D., Santos, R. S., Skomal, G. B., & Berumen, 

M. L. (2014). Extreme diving behaviour in devil rays links surface waters and the 

deep ocean. Nature Communications, 5(1), 4274. 

https://doi.org/10.1038/ncomms5274 

Thuiller, W., Lafourcade, B., Engler, R., & Araújo, M. B. (2009). BIOMOD–a platform for 

ensemble forecasting of species distributions. Ecography, 32(3), 369-373. 

Thuiller, W., Lavorel, S., Araújo, M. B., Sykes, M. T., & Prentice, I. C. (2005). Climate 

change threats to plant diversity in Europe. Proceedings of the National Academy of 

Sciences, 102(23), 8245-8250. 

Torreblanca, E., Camiñas, J. A., Macías, D., García-Barcelona, S., Real, R., & Báez, J. C. 

(2019). Using opportunistic sightings to infer differential spatio-temporal use of 

western Mediterranean waters by the fin whale. PeerJ, 7, e6673. 

Torres, L. G., Rosel, P. E., D'Agrosa, C., & Read, A. J. (2003). Improving management of 

overlapping bottlenose dolphin ecotypes through spatial analysis and genetics. 

Marine Mammal Science, 19(3), 502-514. 

Tsukamoto, K. (2006). Spawning of eels near a seamount. Nature, 439(7079), 929-929. 

Turner, W., Spector, S., Gardiner, N., Fladeland, M., Sterling, E., & Steininger, M. (2003). 

Remote sensing for biodiversity science and conservation. Trends in Ecology & 



References 

  

 

 171 

Evolution, 18(6), 306-314. https://doi.org/https://doi.org/10.1016/S0169-

5347(03)00070-3 

Valavanis, V. D., Pierce, G. J., Zuur, A. F., Palialexis, A., Saveliev, A., Katara, I., & Wang, J. 

(2008). Modelling of essential fish habitat based on remote sensing, spatial analysis 

and GIS. In V. D. Valavanis (Ed.), Essential Fish Habitat Mapping in the 

Mediterranean (pp. 5-20). Springer Netherlands. https://doi.org/10.1007/978-1-

4020-9141-4_2 

Vazquez-Cuervo, J., Torres, H. S., Menemenlis, D., Chin, T., & Armstrong, E. M. (2017). 

Relationship between SST gradients and upwelling off Peru and Chile: 

model/satellite data analysis. International Journal of Remote Sensing, 38(23), 

6599-6622. https://doi.org/10.1080/01431161.2017.1362130 

Vergés, A., Doropoulos, C., Malcolm, H. A., Skye, M., Garcia-Pizá, M., Marzinelli, E. M., 

Campbell, A. H., Ballesteros, E., Hoey, A. S., & Vila-Concejo, A. (2016). Long-term 

empirical evidence of ocean warming leading to tropicalization of fish communities, 

increased herbivory, and loss of kelp. Proceedings of the National Academy of 

Sciences, 113(48), 13791-13796. 

Vierod, A. D., Guinotte, J. M., & Davies, A. J. (2014). Predicting the distribution of 

vulnerable marine ecosystems in the deep sea using presence-background models. 

Deep Sea Research Part II: Topical Studies in Oceanography, 99, 6-18. 

Walbaum, J. (1792). Petri Artedi Sueci Genera Piscium. Ant. Ferdin. Rose, Greifswald 

(Germany). 

Ward-Paige, C. A., Davis, B., & Worm, B. (2013). Global population trends and human use 

patterns of Manta and Mobula rays. PloS One, 8(9), e74835. 

West, I. (1975). A review of the purse seine fishery for skipjack tuna, Katsuwonus pelamis. 

New Zealand waters, 86. 

Whitcraft, S., O’Malley, M., & Hilton, P. (2014). The continuing threat to manta and mobula 

rays: 2013-14 market surveys, Guangzhou, China. WildAid, San Francisco, 

California. 

White, E. R., Myers, M. C., Flemming, J. M., & Baum, J. K. (2015). Shifting elasmobranch 

community assemblage at Cocos Island—an isolated marine protected area. 

Conservation Biology, 29(4), 1186-1197. 

White, W. T., Corrigan, S., Yang, L., Henderson, A. C., Bazinet, A. L., Swofford, D. L., & 

Naylor, G. J. (2018). Phylogeny of the manta and devil rays (Chondrichthyes: 



References 

  

 

 172 

Mobulidae), with an updated taxonomic arrangement for the family. Zoological 

Journal of the Linnean Society, 182(1), 50-75. 

White, W. T., Giles, J., & Potter, I. C. (2006). Data on the bycatch fishery and reproductive 

biology of mobulid rays (Myliobatiformes) in Indonesia. Fisheries Research, 82(1-3), 

65-73. 

Willis, T., Handley, S., Chang, F., Law, C., Morrisey, D., Mullan, A., Pinkerton, M., Rodgers, 

K., Sutton, P., & Tait, A. (2007). Climate change and the New Zealand marine 

environment. NIWA Client Report NEL2007, 25, 81. 

Willughby, F. (1686). De historia piscium (J. Ray, Ed.). Oxonii: Royal Society. 

Wilson, S., Meekan, M., Carleton, J., Stewart, T., & Knott, B. (2003). Distribution, 

abundance and reproductive biology of Pseudeuphausia latifrons and other 

euphausiids on the southern North West Shelf, Western Australia. Marine Biology, 

142, 369-379. 

Wilson, S. G., Pauly, T., & Meekan, M. G. (2002). Distribution of zooplankton inferred from 

hydroacoustic backscatter data in coastal waters off Ningaloo Reef, Western 

Australia. Marine and Freshwater Research, 53(6), 1005-1015. 

Wilson, S. G., Polovina, J. J., Stewart, B. S., & Meekan, M. G. (2006). Movements of whale 

sharks (Rhincodon typus) tagged at Ningaloo Reef, Western Australia. Marine 

Biology, 148(5), 1157-1166. https://doi.org/10.1007/s00227-005-0153-8 

Wilson, S. G., Taylor, J. G., & Pearce, A. F. (2001). The Seasonal Aggregation of Whale 

Sharks at Ningaloo Reef, Western Australia: Currents, Migrations and the El Niño/ 

Southern Oscillation. Environmental Biology of Fishes, 61(1), 1-11. 

https://doi.org/10.1023/A:1011069914753 

Wiseman, N. (2008). Genetic identity and ecology of Bryde's whales in the Hauraki Gulf, 

New Zealand ResearchSpace@ Auckland]. 

Wiseman, N., Parsons, S., Stockin, K. A., & Baker, C. S. (2011). Seasonal occurrence and 

distribution of Bryde's whales in the Hauraki Gulf, New Zealand. Marine Mammal 

Science, 27(4), E253-E267.  

https://doi.org/https://doi.org/10.1111/j.1748-7692.2010.00454.x 

Wisz, M. S., Pottier, J., Kissling, W. D., Pellissier, L., Lenoir, J., Damgaard, C. F., Dormann, 

C. F., Forchhammer, M. C., Grytnes, J. A., & Guisan, A. (2013). The role of biotic 

interactions in shaping distributions and realised assemblages of species: 

implications for species distribution modelling. Biological Reviews, 88(1), 15-30. 



References 

  

 

 173 

Wollast, R. (2003). Continental margins—review of geochemical settings. Ocean Margin 

Systems, 15-31. 

Woodson, C. B., & Litvin, S. Y. (2015). Ocean fronts drive marine fishery production and 

biogeochemical cycling. Proceedings of the National Academy of Sciences, 112(6), 

1710-1715. 

Yackulic, C. B., Chandler, R., Zipkin, E. F., Royle, J. A., Nichols, J. D., Campbell Grant, E. 

H., & Veran, S. (2013). Presence-only modelling using MAXENT: when can we trust 

the inferences? Methods in Ecology and Evolution, 4(3), 236-243. 

https://doi.org/https://doi.org/10.1111/2041-210x.12004 

Yano, K., Sato, F., & Takahashi, T. (1999). Observations of mating behavior of the manta 

ray, Manta birostris, at the Ogasawara Islands, Japan. Ichthyological Research, 

46(3), 289-296. 

Young, J. W., Jordan, A. R., Bobbi, C., Johannes, R. E., Haskard, K., & Pullen, G. (1993). 

Seasonal and interannual variability in krill (Nyctiphanes australis) stocks and their 

relationship to the fishery for jack mackerel (Trachurus declivis) off eastern 

Tasmania, Australia. Marine Biology, 116(1), 9-18. 

https://doi.org/10.1007/BF00350726 

Young, N. (2001). An analysis of the trends in by-catch of turtle species, angelsharks and 

batoid species protective gillnets off KwaZulu-Natal, South Africa Msc. Thesis, 

University of Reading. 

Youngbluth, M. J. (1968). Aspects of the Ecology and Ethology of the Cleaning Fish, 

Labroides phthirophagus Randall 1. Zeitschrift für Tierpsychologie, 25(8), 915-932. 

Zaret, T. M., & Suffern, J. S. (1976). Vertical migration in zooplankton as a predator 

avoidance mechanism 1. Limnology and Oceanography, 21(6), 804-813. 

Zeldis, J., Hicks, M., Trustrum, N., Orpin, A., Nodder, N., Probert, K., Shankar, U., & 

Currie, K. (2010). New Zealand continental margins. Carbon and Nutrient Fluxes in 

Continental Margins. 

Zeldis, J., & Smith, S. (1999). Water, salt and nutrient budgets for Hauraki Gulf, New 

Zealand. Smith, SV; Crossland, CJ Australasian Estuarine Systems: Carbon, 

Nitrogen and Phosphorus Fluxes. LOICZ Reports & Studies(12). 

Zeldis, J. R. (2004). New and remineralised nutrient supply and ecosystem metabolism on 

the northeastern New Zealand continental shelf. Continental Shelf Research, 24(4), 

563-581. https://doi.org/https://doi.org/10.1016/j.csr.2003.11.008 



References 

  

 

 174 

Zeldis, J. R., Davis, C. S., James, M. R., Ballara, S. L., Booth, W. E., & Chang, F. H. (1995). 

Salp grazing: effects on phytoplankton abundance, vertical distribution and 

taxonomic composition in a coastal habitat. Marine Ecology Progress Series, 126, 

267-283. https://www.int-res.com/abstracts/meps/v126/p267-283/ 

Zeldis, J. R., Oldman, J., Ballara, S. L., & Richards, L. A. (2005). Physical fluxes, pelagic 

ecosystem structure, and larval fish survival in Hauraki Gulf, New Zealand. 

Canadian Journal of Fisheries and Aquatic Sciences, 62(3), 593-610. 

Zeldis, J. R., Walters, R. A., Greig, M. J. N., & Image, K. (2004). Circulation over the 

northeastern New Zealand continental slope, shelf and adjacent Hauraki Gulf, during 

spring and summer. Continental Shelf Research, 24(4), 543-561. 

https://doi.org/https://doi.org/10.1016/j.csr.2003.11.007 

Zeldis, J. R., & Willis, K. J. (2015). Biogeographic and trophic drivers of mesozooplankton 

distribution on the northeast continental shelf and in Hauraki Gulf, New Zealand. 

New Zealand Journal of Marine and Freshwater Research, 49(1), 69-86. 

https://doi.org/10.1080/00288330.2014.955806 

Zimmermann, N. E., Edwards Jr, T. C., Graham, C. H., Pearman, P. B., & Svenning, J.-C. 

(2010). New trends in species distribution modelling. Ecography, 33(6), 985-989. 

https://doi.org/https://doi.org/10.1111/j.1600-0587.2010.06953.x 

Zimmermann, N. E., Yoccoz, N. G., Edwards Jr, T. C., Meier, E. S., Thuiller, W., Guisan, A., 

Schmatz, D. R., & Pearman, P. B. (2009). Climatic extremes improve predictions of 

spatial patterns of tree species. Proceedings of the National Academy of Sciences, 

106, 19723-19728. 

  

 

 

 

 

 

 

 

 

 



 Appendices 

 

 

175 

APPENDICES 

 

Appendix 2.1 

 

Map of KDE probability grid from Oceanic manta ray presence points (white dots), 

shown in ESPG: 9191. Pseudo-absence points are sampled from this probability grid. 

The higher values indicate that pseudo-absences will be sampled from here 

proportionately more than the lower values, according to the probability grid.  
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Appendix 2.2 

 

 

Correlation matrix shown for key variables for Spinetail devil rays – (a) static model, 

(b) dynamic model. Numbers are correlation coefficients, and the colour corresponds 

with positive correlation (red) and negative correlation (blue) with the degree of 

correlation indicated by the darkness of the colour. For BRT models, 0.9 is 

considered high correlation thus, all variables were included in the final model.  
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Appendix 2.3 

 

Correlation matrix shown for key variables for Oceanic manta rays – (a) static model, 

(b) dynamic model. Numbers are correlation coefficients, and the colour corresponds 

with positive correlation (red) and negative correlation (blue) with the degree of 

correlation indicated by the darkness of the colour. For BRT models, 0.9 is 

considered high correlation thus, all variables were included in the final model.  
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