Seabird bycatch loss rate variability in pelagic longline fisheries

Can Zhou*[1], Nigel Brothers[2], Joan Browder[3], Yan Jiao[1]
[1] Department of Fish and Wildlife Conservation, Virginia Polytechnic Institute and State University, Virginia, 24060, USA
[2] Marine Ecology and Technology Consultant, Wonga Beach, Queensland, 4873, Australia
[3] National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Southeast Fisheries Science Center, Miami, Florida, 33176, USA

* Corresponding author

Present address: Visiting researcher at Texas A\&M University, College Station, TX, 77840, USA
Phone: +1 9794739124
Email: eidotog@gmail.com

Abstract

:

The incidental mortality of seabirds from fisheries ranks as the greatest threat impacting seabirds globally. However, its impact on seabird populations may have been substantially underestimated due to lost, undetected bycatch. To estimate the full extent of the bycatch problem, knowledge about the magnitude and variability of lost bycatch is necessary. Based on a long-term dataset, this study aims to facilitate the loss-corrected bycatch estimates for pelagic longline fisheries that do not have a concurrent bycatch loss observation component. We analyze information from all types of fishery interactions of seabirds to improve the estimate of bycatch loss rate and also reveal its variability. Specifically, we analyze how environmental and ecological factors affect seabird bycatch loss rate using Bayesian state-space models. Results show strong species effects in the bycatch loss rate. Inclement weather and strong competition among seabird species also affect bycatch loss rate. Estimates of the species-specific bycatch loss rate indicate that, for some species, the loss can well exceed the average loss rate, suggesting that seabird bycatch loss cannot be further ignored in assessing the fishery impact on seabird populations. To gauge the full scale of seabird bycatch, it is critical to account for this lost bycatch in bycatch assessments, at minimum, using an average loss rate with the ultimate goal of species-specific loss-corrected assessments.

Keywords: Bayesian statistics; state-space models; bycatch assessment; cryptic bycatch

1 Introduction

The seabird bycatch problem in pelagic longline fisheries has been exposed for only about three decades (Brothers 1991), and yet bycatch in fisheries ranks as the top threat by impact to populations of albatrosses, large petrels/shearwaters and penguins (Anderson et al. 2011; Croxall et al. 2012; Dias et al. 2019). The incidental mortality from fisheries is currently recognized as a serious global concern (ACAP 2019a). It threatens 17 of the 22 albatross species with extinction and puts an additional 7 petrel species under elevated risk (ACAP 2019b; Anderson et al. 2011; IUCN 2019; Robertson and Gales 1998).

Seabirds foraging near a longline fishing vessel are vulnerable to being incidentally caught primarily during two windows of opportunity/risk, when the baited hook is accessible to seabirds either in the line-setting stage or in the line-hauling stage (Brothers et al. 2010). Many seabirds are surface-scavengers that take baits from hooks, and this behavior makes them vulnerable to longline fishing operations (Camphuysen et al. 1995). Those hooked or entangled at the setting stage are subject to loss during set, soak and haul (Brothers et al. 2010). Almost all fishery observer protocols to date only record bycatch at the haul, and consequently those caught at the setting stage that drop off the gear before they can be observed, i.e., cryptic bycatch (Gilman et al. 2013), are not included in the records. Due to this, the actual seabird bycatch in pelagic longline fisheries could well exceed what is reported (Anderson et al. 2011; Brothers et al. 2010). Cryptic seabird bycatch has also been documented in trawl fisheries, such as mortalities from warp strikes (Maree et al. 2014; Sullivan et al. 2006; Watkins et al. 2008).

In order to recover the cryptic seabird bycatch in pelagic longline fisheries, it is necessary to consider a much broader class of seabird-fishery interactions, which themselves are observable and cover both the apparent and cryptic bycatch events (Figure 1). Seabird-fishery interactions can be classified into different types based on whether the sequence of interactions leads to a bycatch event and the associated observation uncertainty (Figure 2A) (Brothers et al. 2010). Based on the seabird interactions with the highest certainty of getting caught or entangled by the fishing gear (observed caught type; also type O in Figure 2A), more than 50% of the observed caught seabirds were not retrieved at the haul (Brothers et al. 2010). Similar estimates of loss rate were also reported in Brothers (1991); Gilman et al. (2007) and Gilman et al. (2003). For this type of interaction (observed caught type), observation uncertainty, i.e., mistakenly classifying an interaction of an uncaught seabird into a caught category, is relatively low and can be ignored to a first approximation. However, only a small fraction of all recorded interactions qualifies as this type, e.g., less than 2.9% of all interactions were classified as observed caught (Brothers et al. 2010), with the majority of interactions unutilized in the estimation of loss rate, thus substantially limiting the inferential power of the analysis.

Pooling information from all recorded interactions has the potential to improve the estimate of bycatch loss rate and also reveal its variability. A recent study based on the same set of observation records as in Brothers et al. (2010) but making use of all interaction types estimates the average bycatch loss rate at 29.8% with a 95% credible interval of [$0.24 \%, 51.88 \%$] (Zhou et al. 2019a). The estimate is consistent with two regional bycatch loss rate estimates: 27% for the Japanese longline tuna vessels operating in the region of Tasmania, Australia (Brothers 1991) and 28% for the Hawaii longline
tuna and swordfish fisheries (Gilman et al. 2003; Gilman et al. 2007). Regional differences in the percentages of observed seabirds caught during setting and subsequently retrieved at the haul were noted in Brothers et al. (2010); however, it is unclear whether regional differences contribute significantly to the variability of loss rate.

Since revelation of the bycatch loss problem at the global scale (Brothers et al. 2010), little has been done to try to estimate the lost portion of seabird bycatch in bycatch assessments, with a few notable exceptions. In the assessment of seabird bycatch risk from New Zealand commercial fisheries, a multiplier of 2.08 was used for all the observed bycatches on pelagic longlines (Richard et al. 2017), taking into account the sampling effect but still ignoring observation uncertainty. Such an approach is useful in gauging the approximate scale of the total bycatch. The multiplier approach has also been developed for trawl and demersal longline fisheries (Richard et al. 2017; Watkins et al. 2008). To avoid the problem of over-estimation, an integrated bycatch assessment model built for the US Western North Atlantic pelagic longline fishery incorporates both observation uncertainty in the bycatch loss process and bycatch origin (Zhou et al. 2019a). By comparison with results from this integrated model, the corresponding loss-free assessment model substantially under-estimated both total bycatch and the associated uncertainty in that fishery. A loss-free assessment model is thus harmful both in discounting the actual impact of bycatch and in making that false statement overconfidently.

The aim of this study is to facilitate loss-corrected bycatch estimation based on existing data for pelagic longline fisheries that do not have a concurrent bycatch loss observation component (most qualify as such). The strategy is to extend models to test
variability of the bycatch loss rate among alternative factors and conditions to improve our understanding of loss rate and the seabird bycatch process in longline fisheries. Using Bayesian state-space models we analyze how environmental factors at the time of the bait-taking interaction and ecological traits of seabirds affect bycatch loss rate.

2 Material and methods

2.1 Bait-taking attempts and outcome confirmation

The seabird bait-taking attempt and confirmation observations data in pelagic longline fisheries was collected by XX from 11 fishing vessels. over a 15-year period, from 1988 to 2003, in four geographical regions: Indian Ocean, Coral Sea, Southern Ocean and Central Pacific. This data set contains a total of 5,969 observed seabird interactions on a total of 726,626 baited hooks. The same data were previously presented in Brothers et al. (2010).

The focal point of Brothers et al. (2010) was interacting seabirds, whereas, in this study, the focus is instead on the baited hooks. A baited hook may be pursued by a single individual or multiple individuals. When multiple individuals compete over the same baited hook, the bait-taking attempt of each individual registers as a separate count of interaction. While multiple bycatch incidences on the same hook are theoretically possible, they have not been observed in the field, and in this study, we assume that a baited hook may catch at most one individual. Due to this change of focus, the count of different types of bait-taking attempts (Table 1) differs from that of Brothers et al. (2010).

The seabird interaction methodology was developed in 1988 by Brothers (1991). Here, we present the methodology on a conceptual level and refer the reader to Gilman et
al. (2003) for a detailed description. The seabird interaction methodology involves two linked observation components (Figure 2), one at the line setting stage and one at the hauling stage. Time and other positional aids, such as the interaction location relative to line surface floats distances, which provide time intervals, are used to link an observed seabird interaction at the line setting stage to a retrieved carcass during the haul. In contrast, a traditional observer protocol only involves observations at the hauling stage.

Multiple hooks are observed simultaneously and independently of each other; for simplicity, the following description only pertains to the observations of a single baited hook. At the line setting stage, a bait-taking attempt is classified into one of five types based on whether the sequence of interactions that lead to a bycatch event and also the classification uncertainty (Figure 2A). Indeterminate (I) will be assigned if an individual is seen to successfully take the bait but circumstances do not allow further confirmations; a possibly caught (P) individual is seen to successfully take the bait, display one of the typical capture responses momentarily but circumstances do not allow the final confirmation of the capture; an observed caught (O) individual displays clear evidence of struggle and its inability to escape the line. I, P and O bait-taking attempts, in decreasing uncertainty, eventually lead to a bycatch event. On the other hand, the attempt is successful (S) if an individual was seen to successfully remove the bait from the hook and not be caught in the process; it is unsuccessful (U) if the individual made no contact with the fishing gear during the attempt. Multiple individuals may attempt to interact with the same hook, and all attempts were recorded, but in this study, we are only concerned with the last observed attempt. At the line hauling stage, a carcass is either retrieved from
the observed hook or not, and this result is recorded as the final confirmation of the interaction (Figure 2B).

Note that all observations are based on behavioral responds of seabirds towards baited hooks above the surface of the water, and underwater attacks cannot be observed directly. However, each underwater attack attempt, i.e., the underwater dive pursuit, and its outcome, e.g., successful or unsuccessful bait take when the bird that dived returns to the surface, can be observed and accounted for in the model.

2.2 Probability model of the seabird bycatch and observation processes

To remove observation uncertainty from the estimation of bycatch loss rate and also to pool information from different stages of bait-taking attempts (I, P and O) leading to a bycatch event, a state-space probability model was developed. In this model, other attempts and bycatch events are two hidden states, upon which two sets of observations are made (Figure 2). The probability of classifying a bait-taking attempt (A) that does not lead to a bycatch event as one of five types is
$\operatorname{Prob}(A=i)=\beta_{i}$,
where $i \in\{\mathrm{O}, \mathrm{P}, \mathrm{I}, \mathrm{S}$ and U$\}$ with the constraint $\sum_{i} \beta_{i}=1$, and similarly for an attempt leading to a bycatch event, the classification probability is
$\operatorname{Prob}(A=i)=\gamma_{i}$,
with the constraint $\sum_{i} \gamma_{i}=1$. For a no-bycatch event, no carcass will be retrieved, and for a bycatch event, a carcass will be retrieved with a probability of $1-p_{\text {loss }}$. Non-
informative Dirichlet priors, i.e., Dirichlet ($1,1,1,1,1$), were used for both the vectors of $\beta_{i} \mathrm{~s}$ and $\gamma_{i} \mathrm{~s}$ for $i \in\{\mathrm{O}, \mathrm{P}, \mathrm{I}, \mathrm{S}$ and U$\}$. It is assumed that the observations for different hooks are independent and identically distributed.

2.3 Predictors of the loss rate

Two sets of predictors were tested for their performance to predict bycatch loss rate in this study: 1) environmental factors and 2) ecological traits. Environmental factors include physical conditions and also biological competition, and these factors were recorded concurrently with the bait-taking observations; ecological traits of seabirds were extracted from published literature.

For the environmental factors, three variables were analyzed, i.e., reg: the four fishing regions where the interaction is taking place, phy: the physical oceanic condition at the time of the bait-taking attempt and $c m p$: the risk score at the nearest bird abundance count interval. Variable phy is the sum of the wind score and sea score at the time of the bait-taking attempt. It measures the roughness of the oceanic condition. The wind score is a combination of wind speed and wind direction with respect to the vessel to determine the score with a range from 1 (calm) to 8 (rough), and the sea score is based on the Douglas sea scale with a score of 2 denoting slight waves and 8 denoting very rough conditions. Three levels of phy representing calm, intermediate and rough conditions were used, i.e., phy $\leq 4,4<p h y \leq 8$, and $8<p h y$. Most of the observed interactions occurred when the condition was calm, and the least interactions occurred when the condition was rough. Variable $c m p$ is the sum of the counts of seabirds by species around the vessel weighted by their respective bycatch risk score. Spot counts of seabird
abundance around the vessel were recorded mostly at either 15 - or $30-\mathrm{min}$ intervals throughout the duration of line sets. The weight for each observed seabird species ranges from 0 to 10 based on their tendency to engage in bait-taking interactions, with 0 denoting species that do not interact with fishing operations and 10 denoting species most adept at bait locating and recovery. Four levels of competition severity were used, i.e., $c m p \leq 200,200<c m p \leq 400,400<c m p \leq 600$, and $600<c m p$. See supplementary material for a detailed description of the bycatch risk score for each species.

For the ecological traits, three variables were analyzed, i.e., spp: the species identity of the seabird making the final bait-taking attempt, diver and scavenger: the primary feeding strategies of the species. While all seabirds are capable of taking baits close to the surface, some species regularly dive to snatch items at some distance below the surface and some species are regular scavengers. These different feeding strategies may have incurred different forms of hooking and/or entanglement, which consequently led to different loss rates.

2.4 Hypotheses

Eight hypotheses on the variability of the bycatch loss rate were tested (Table 2). The null hypothesis (H 0) assumes a constant loss rate ($p_{\text {loss }}=p_{0}$). Here, the domain of p_{0} is on the interval $[0,1]$, and we used the probit link function to transform the domain from $[0,1]$ into the entire real line, i.e., $\operatorname{probit}\left(p_{\text {loss }}\right)=c$. The use of probit link simplifies the choice of the non-informative prior for c, which is the standard normal because of the probability integral transformation between variables c and $p_{\text {loss }}$. All the following hypotheses were constructed by adding covariates (predictors) to $\operatorname{probit}\left(p_{\text {loss }}\right)$.

The first three hypotheses test for the effect of environmental factors on loss rate. Hypothesis H1 tests for the effect of the fishing region on loss rate. In H1, the loss rate of an interaction occurred in region i with a probit link of $\operatorname{probit}\left(p_{\text {loss }}[i]\right)=r e g_{i}$, where the prior of region effect is the standard normal for each region $i=$ Central Pacific, Coral Sea, Indian Ocean and Southern Ocean. In addition. the physical oceanic condition and competitive species circumstances at the time of the interaction may affect the form of hooking and/or entanglement and subsequently affect the bycatch loss rate. H 2 tests for the effect of oceanic condition on the loss rate. In H2, the loss rate of an interaction with physical condition $p h y_{j}$ at the time of the interaction and a probit link is modeled as $\operatorname{probit}\left(p_{\text {loss }}[j]\right)=$ phy y_{j}, where the prior of the effect of physical condition is the standard normal for each condition $j=$ calm, intermediate and rough. H3 tests for the effect of the severity of competition on loss rate. In H3, the loss rate of an interaction with risk level $C m p_{k}$ at the time of interaction and a probit link is $\operatorname{probit}\left(p_{\text {loss }}[k]\right)=c m p_{k}$, where the prior of the risk level effect is the standard normal for each bycatch risk level.

The other four hypotheses test for the effects of ecological traits of seabirds on loss rate. The species-specific hypothesis (H4) assumes that each species has a speciesspecific loss rate. In H4, the loss rate of species l with a probit link is
$\operatorname{probit}\left(p_{\text {loss }}[l]\right)=s p p_{l}$, where the prior of the species effect $s p p_{l}$ is the standard normal for each species. Next, the hierarchical species hypothesis (H5) postulates an average bycatch loss rate among all species, from which the loss rate for each species deviates. In H5, the loss rate of species m with a probit link is $\operatorname{probit}\left(p_{\text {loss }}[m]\right)=c+s p p_{m}$, where the prior for the average effect is $c \sim \operatorname{Normal}(0, v[1])$, the prior for the species effect is
$s p p_{m} \sim \operatorname{Normal}(0, v[2])$, and the prior for the variance components is $v \sim \operatorname{Dirichlet}(1,1)$ to ensure non-informativity on $p_{\text {loss }}$. H 5 estimates both an average loss rate based on the entire data set and the species effect for each species without partitioning the data set. H5 is a compromise between H 0 and H 4 in the sense that H 0 assumes a constant loss rate across all bait-taking attempts and estimates the loss rate based on the entire data set, while H 4 assumes a separate loss rate for each species and partitions the data according to species identity.

In the next two hypotheses, we try to decompose the species effect into components based on seabird ecological traits. Differences in primary feeding strategies among different species may affect loss rate. Specifically, we test whether regular divers and scavengers have a different loss rate than primarily surface feeding species. In H4e1, the loss rate of species n with a probit link is $\operatorname{probit}\left(p_{\text {loss }}[n]\right)=\operatorname{diver}(n)$, where $\operatorname{diver}(n)$ is an indicator function of species n,
$\operatorname{diver}(n)=\left\{\begin{array}{l}1, \text { if species } n \text { regularly dives for food } \\ 2, \text { otherwise }\end{array}\right.$,
and in H 4 e 2 , the loss rate of species n with a probit link is
$\operatorname{probit}\left(p_{\text {loss }}[n]\right)=\operatorname{scavenger}(n)$, where $\operatorname{scavenger}(n)$ is an indicator function of species n, $\operatorname{scavenger}(n)=\left\{\begin{array}{l}1, \text { if species } n \text { regularly scavenges for food } \\ 2, \text { otherwise }\end{array}\right.$, and the prior for each factor level is the standard normal for both hypotheses. Results show that none of the environmental factors improved model performance, and therefore, environmental factors were not included in H 4 e 1 and H 4 e 2 .

2.5 Model fitting and selection

A Bayesian approach was used for parameter estimation. We used exclusively non-informative priors for model coefficients. To simulate MCMC (Markov Chain Monte Carlo) samples from the posterior distribution, we used JAGS 4.3 (Plummer 2003) in the statistical program R 3.6.1 (R Development Core Team 2016).

Model performance was measured based on deviance information criterion (DIC, (Plummer 2002)),

$$
D I C=\bar{D}+p D
$$

where deviance D is twice the negative log-likelihood, \bar{D} is the posterior mean of the deviance, and $p D$ is an estimate of the effective number of parameters in the model based on the algorithm proposed by (Plummer 2002). The model with the minimum DIC is the recommended model, and as a rule of thumb, a less than 2 difference in DIC relative to the recommended model suggests substantial evidence for the model, differences between 3 and 7 indicate that the model has considerably less support, whereas a larger than 10 difference indicates that the model is very unlikely (Burnham and Anderson 2003; Burnham et al. 2011).

3 Results

Species identity has a significant effect on the bycatch loss rate. Based on DIC, the species-specific model H 4 has the best performance in modeling bycatch loss rate (Table 2). The selected model incorporates species identity as a fixed effect with a reduction of 8.6 points with respect to the null model. Efforts to decompose the species
effect into ecological components were not successful. The species effect cannot be explained by either the dive feeding behavior or the scavenging behavior, the incorporation of which did not improve model fit against the null model. The inclusion of the fishing region and physical oceanic conditions did not improve model fit against the null model (Table 2). In addition, we did not find any effect of environmental factors on bycatch loss rate.

Based on the null model H 0 , the posterior estimate of the average bycatch loss rate peaks around 42.82% (Figure 3). The posterior estimate has a mean of 31.02% and a 95% credible interval $[2.17 \%, 54.19 \%]$. Compared to an earlier estimate of the average bycatch loss rate on the same data set but based on the counts of bait-taking attempts in three aggregate types (Zhou et al. 2019a), the posterior estimate in this study is more concentrated around the region with the highest posterior density (Figure 3), suggesting more information on the loss rate in the unaggregated form of the data. Both the mean and interval estimates of the loss rate were slightly higher than the earlier estimate.

Based on the selected model (H4), species-specific bycatch loss rates were estimated for 22 albatross, petrel and shearwater species (groups) encountered as bycatch during the entire period of the experiment. The estimates of median and interquartile range varied considerably among species (Figure 4). Among all 22 seabird species (groups), grey petrel, great-winged petrel and white-chinned petrel were the top three species (groups) with the highest median bycatch loss rate ($p_{\text {loss }}>70 \%$). Flesh-footed shearwater, grey-headed albatross and northern royal albatross were among the bottom three with the lowest median bycatch loss rate ($p_{\text {loss }}<20 \%$). Posterior estimates for
black petrel, Buller's petrel, Salvin's albatross, sooty albatross, soft-plumaged petrel and wandering albatross did not differ much from the prior distribution due to the limited number of observations available for these species. The species-specific bycatch loss rate of these species is therefore inconclusive based on the available observations.

The median loss rate for a given fishing operation can well exceed 50% or more. Although the posterior density of the average loss rate drops significantly in the range of values larger than 50% (Figure 3), e.g., the posterior probability of $\bar{p}_{\text {loss }}>60 \%$ is less than 0.001 , the median loss rate for the top three species (groups) with the highest loss rate exceeds 60%. The reason for this apparent contradiction is that the entire sample is dominated by two species (groups), i.e., black-browed albatross and Laysan albatross, which constitute 39% of all the recorded bait-taking attempts, and both species (groups) have a similar median loss rate between 30% and 40% (Figure 4).

Stressful environmental conditions at the time of bait-taking interaction generally result in a lower bycatch loss rate. Based on model H 2 , median estimates of the loss rate under different physical conditions reveal that the loss rate is relatively stable at calm and intermediate physical conditions but is actually lower when physical conditions are rough (Figure 5). More competitive species situations also lead to slightly lower loss rates according to the median estimate of loss rate at different levels of competition (Figure 6).

The dive feeding and scavenging behaviors failed to explain the majority of the species effect on loss rate. Compared with the prior distribution (dotted line segments in Figure 7) of the difference in loss rate between divers and non-divers, the posterior (solid curve in Figure 7) only shifted slightly to the negative range, and on average, diving
species have a loss rate 7.26% lower in value than non-diving species. Similarly, scavenging species on average have a loss rate 4.48% lower in value than non-scavenging species (Figure 8).

4 Discussions and conclusion

Results from this study indicate that the loss component of seabird bycatch in pelagic longline fisheries cannot be further ignored in assessing population impacts of fishing on seabirds. The loss rate strongly depends on the species identity of the bycatch, and for some species, species loss rate can well exceed average loss rate, which had a medium value of 31.02% in this study and 50% in earlier studies (Anderson et al. 2011; Brothers et al. 2010). Nevertheless, estimates based on average loss rate are an underestimate for some species. Notably, the posterior median loss rate of grey petrel is 77.84%. Species having a higher bycatch loss rate experience more impact from the fishery than expected. Considering how little progress has been made to incorporate even the average loss rate into seabird bycatch assessments, the first step forward would be to recover lost bycatch using the average loss rate in order to gauge the approximate scale of the total bycatch with the ultimate goal of species-specific loss-corrected assessments.

Estimated seabird species-specific bycatch loss rates provided here account for fishery removals and are directly applicable to seabird conservation management. Efforts to support bycatch loss observations are critically important given the high loss rate and large variations among species found in this study. While the applicability of the study results to data-deficient fisheries or regions remains open to question, use of indicative information, such as the posterior average bycatch loss rate [see Zhou et al. (2019a) for
an example], is more appropriate from a seabird conservation perspective than to simply ignore the fact of seabird bycatch losses entirely. This is increasingly important when Potential Biological Removal methodology (Sharp et al. 2009) could be used to manage fishery impacts and seabird populations.

It would be wrong to assume that, in general, the loss rate only rarely exceeds 54.19% (the upper boundary of the 95% credible interval of the average loss rate). By itself, the average loss rate is misleading, and the only reason why it is presented here is to accommodate data-poor scenarios where species identity of the bycatch is not available. The estimated average bycatch loss rate is only specific to the experiment (Brothers et al. 2010), and in fact, it is the weighted average of all the seabird bycatches encountered during the experiment. Thus, it does not represent the average bycatch loss rate in general. Species identity plays a significant role in determining the actual average bycatch loss rate for a particular fishery; whenever possible, the species-specific rates should be used without making any unfounded assumptions on the sampling behavior. To incorporate the bycatch loss process into assessment of the impact of bycatch on seabird populations, e.g., using the methods demonstrated in Zhou et al. (2019a), a species-specific approach is recommended.

The primary forms of seabird bycatch are hooking in the bill/throat and entanglement by the line (Brothers 1991). According to a recent study (Baker et al. 2019), the retention rate is almost 100% for a hooked/entangled dead bird carcass. It is probable that many birds caught that ultimately are lost successfully break loose while still alive. Hooking and entanglement under stressful conditions may reduce successful escape prospects. Even those that successfully escaped may have incurred injuries, e.g., a broken
lower bill, that can impact their long-term survival. Albatrosses have been observed that have died on their nests from hook wounds (Weimerskirch and Jouventin 1987). Other potential sources of hook wounds include discarded hooks in the offal and hooks remaining on cut off branch lines attached to birds (Brothers 1995).

The loss of bycaught birds from fishing gear can be due to predation, currents and other mechanical action during line soak and haul (Brothers et al. 2010; Gilman et al. 2003). Around one third of the seabird carcasses hauled aboard tuna fishing vessels in the Australian Fishing Zone were damaged and partially eaten (Brothers et al. 1998; Gales et al. 1999). Blue (Prionace glauca) and shortfin mako (Isurus oxyrinchus) sharks are commonly caught as bycatch species on pelagic longlines (Gilman et al. 2008; Vega and Licandeo 2009), and sharks in the vicinity, after the birds were hooked, including those sharks later hooked themselves, may have caused removal of an entire seabird carcass from a hook. In another study, , a large tear through the soft tissue in retrieved albatross carcasses was often found in the region where the hook was lodged, suggesting that the drag from currents might tear hooks free from the carcass (Trebilco et al. 2010). The removal might also come from unobserved discarding of bycaught seabirds by the crew, but it is not a factor in the current study due to the bycatch loss observations employed (Brothers et al. 2010). Gales et al. (1998) found that the seabird catch rate in Tasmania was 95% higher when accounting for the bycatch deliberately not hauled aboard due to crew flicking or cutting the branch line along the side of the vessel.

The majority of the species effect remains unexplained. Some species, e.g., greatwinged petrel (Brothers et al. 2010), which is among the top three species with the highest loss rate, are more skilled than others in successfully removing bait from hooks.

These species may be more likely to break free from otherwise fatal entanglement with the fishing gear. Great-winged petrels, in particular, have a relatively small bill and gape, which is likely to minimize their capture risk on the generally larger hook sizes in use by pelagic longline vessels. Aggression and competition among individuals may be another factor separating species according to successful outcomes and tendency to stay in place once hooked. It has been observed that a seabird is capable of successfully removing bait without being hooked or entangled in a relatively stress-free environment, e.g., when the seabird is the only individual attempting to take the bait and the ocean is relatively calm. When multiple individuals (possibly from multiple species) are competing for baits, a higher number of individuals are caught (Brothers et al. 2010). Some species may compete more aggressively for bait than others. In particular, northern royal albatross often compete aggressively for baits already seized by other species (Brothers et al. 2010). Such aggressive behavior may result in more secure capture circumstances and, subsequently, relatively lower loss rate for this species (Figure 4).

This study did not find substantial evidence for divers having a different loss rate from surface feeders and scavengers. Some proficient deep diving species are capable of taking baits at even 200 m astern with an unweighted branchline (Keitt et al. 2000; Weimerskirch and Cherel 1998), which is approaching the maximum reliable observation distance across all sea state conditions under the current observation protocol, i.e., naked eye with binocular assisted vision for more distant observations (Brothers et al. 2010). If successful bait taking that can result in death was regularly occurring at depth beyond observation distance, one would expect there to be a lot more inexplicable observed
bycatch, whereas the data contains few observed (carcasses hauled aboard) bycatch that couldn't be ascribed to a particular interaction observation.

Geographically, the bait-taking observations in this study did not cover the West Indian and Atlantic Ocean sectors, where the species composition of the bycatch is substantially different from the regions covered in this study. Greater shearwater (Puffinus gravis), northern gannet (Morus bassanus) and gulls (Larus spp.) dominate the bycatch in the Western North Atlantic (Zhou et al. 2019b; Zhou et al. 2018), but none of these species were bycaught in this study. Based on the strong species effect found in this study, it is reasonable to suspect those bycatch species of the Atlantic may have a different loss rate than explored here. It is therefore necessary to conduct a similar experiment in the Atlantic (and elsewhere) to collect observations on seabird bait-taking attempts in order to estimate the loss rate of additional species. Moreover, further observations are needed for the seabird species (asterisked in Figure 4) that are already covered in this study but with limited sample sizes.

The findings of the current study are consistent with previous studies on bycatch loss rate (Baker et al. 2007; Brothers 1991; Brothers et al. 2010; Gilman et al. 2003; Gilman et al. 2007; Zhou et al. 2019a), and the analysis of species-specific rates revealed that the loss rate can reach as high as 70% for some species. An adequate bycatch assessment should document the full impact of a fishery on seabird populations by trying to recover the lost bycatch through the observation of both the set and haul. Continuing to ignore bycatch loss in bycatch assessments may lead to eventual loss of biodiversity.

5 Acknowledgements

The observed seabird interactions at the setting stage and carcass retrieval at the hauling stage from longline fisheries were extracted from the appendices of the final report "How accurate are observer reported kills of albatrosses on longlines?" prepared by XX for the Blue Oceans Institute in 2008. Without the long-term field observations of the seabird bait-taking attempts at the setting stage and the confirmation of carcass retrieval at the haul, none of the findings in this work would have been possible. We thank the handling editor and anonymous reviewers for their valuable comments and suggestions on a previous version of this manuscript. The idea of this paper was conceived when XX was conducting post-doctoral research at Virginia Tech. XX received funding from the National Oceanic and Atmospheric Administration Fisheries' National Seabird Program, and XX received funding from the National Oceanic and Atmospheric Administration National Marine Fisheries Service, Southeast Fisheries Science Center [grant number WC133F15SE1858]. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References

ACAP, 2019a. ACAP Review and Best Practice Advice for Reducing the Impact of Pelagic Longline Fisheries on Seabirds. Agreement on the Conservation of Albatrosses and Petrels, Florianopolis, Brazil.
ACAP, 2019b. Species Assessments. Agreement on the Conservation of Albatrosses and Petrels.
Anderson, O.R., Small, C.J., Croxall, J.P., Dunn, E.K., Sullivan, B.J., Yates, O., Black, A., 2011. Global seabird bycatch in longline fisheries. Endangered Species Research 14, 91-106.
Baker, G.B., Candy, S., Parker, G., 2019. Improving estimates of cryptic mortality for use in seabird risk assessments: loss of seabirds from longline hooks, In Ninth Meeting of the Seabird Bycatch Working Group. Florianopolis, Brazil.

Baker, G.B., Double, M.C., Gales, R., Tuck, G.N., Abbott, C.L., Ryan, P.G., Petersen, S.L., Robertson, C.J., Alderman, R., 2007. A global assessment of the impact of fisheriesrelated mortality on shy and white-capped albatrosses: conservation implications. Biological Conservation 137, 319-333.
Brothers, N., 1991. Albatross mortality and associated bait loss in the Japanese longline fishery in the Southern Ocean. Biological Conservation 55, 255-268.
Brothers, N., 1995. Catching fish not birds: A guide to improving your longline fishing efficiency, Australian Longline Version edn. Australia Parks and Wildlife Service, Hobart, Australia.
Brothers, N., Duckworth, A.R., Safina, C., Gilman, E.L., 2010. Seabird bycatch in pelagic longline fisheries is grossly underestimated when using only haul data. PLoS ONE 5, e12491.
Brothers, N., Gales, R., Reid, T., 1998. Seabird interations with longline fishing in the AFZ: seabird mortality estimates and 1988-1996 trends, In Wildlife Report 98/1. ed. T. Parks and Willife Service.
Burnham, K.P., Anderson, D.R., 2003. Model selection and multimodel inference: a practical information-theoretic approach. Springer Science \& Business Media.
Burnham, K.P., Anderson, D.R., Huyvaert, K.P., 2011. AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behavioral ecology and sociobiology 65, 23-35.
Camphuysen, C.J., Calvo, B., Durinck, J., Ensor, K., Follestad, A., Furness, R.W., Garthe, S., Leaper, G., Skov, H., Tasker, M.L., Winter, C.J.N., 1995. Consumption of discards by seabirds in the North Sea, In Final Report EC DG XIV Research Contract BIOECO/93/10. ed. Netherlands Institute for Sea Research, Texel.
Croxall, J.P., Butchart, S.H., Lascelles, B., Stattersfield, A.J., Sullivan, B., Symes, A., Taylor, P., 2012. Seabird conservation status, threats and priority actions: a global assessment. Bird Conservation International 22, 1-34.
Dias, M.P., Martin, R., Pearmain, E.J., Burfield, I.J., Small, C., Phillips, R.A., Yates, O., Lascelles, B., Borboroglu, P.G., Croxall, J.P., 2019. Threats to seabirds: A global assessment. Biological Conservation.
Gales, R., Brothers, N., Reid, T., 1998. Seabird mortality in the Japanese tuna longline fishery around Australia, 1988-1995. Biological Conservation 86, 37-56.
Gales, R., Brothers, N., Reid, T., Pemberton, D., Baker, G.B., 1999. Seabird mortality on longlines in Australian waters: A case study of progress and policy, In 22nd International Ornithological Congress. eds N.J. Adams, R.H. Slotow, pp. 648-675. BirdLife South Africa: Johannesburg, Durban, South Africa.
Gilman, E., Boggs, C., Brothers, N., 2003. Performance assessment of an underwater setting chute to mitigate seabird bycatch in the Hawaii pelagic longline tuna fishery. Ocean \& Coastal Management 46, 985-1010.
Gilman, E., Brothers, N., Kobayashi, D.R., 2007. Comparison of three seabird bycatch avoidance methods in Hawaii-based pelagic longline fisheries. Fisheries Science 73, 208210.

Gilman, E., Clarke, S., Brothers, N., Alfaro-Shigueto, J., Mandelman, J., Mangel, J., Petersen, S., Piovano, S., Thomson, N., Dalzell, P., 2008. Shark interactions in pelagic longline fisheries. Marine Policy 32, 1-18.

Gilman, E., Suuronen, P., Hall, M., Kennelly, S., 2013. Causes and methods to estimate cryptic sources of fishing mortalitya. Journal of fish biology 83, 766-803.
IUCN, 2019. The IUCN red list of threatened species.
Keitt, B.S., Croll, D.A., Tershy, B.R., 2000. Dive depth and diet of the black-vented shearwater (Puffinus opisthomelas). The Auk 117, 507-510.
Maree, B.A., Wanless, R.M., Fairweather, T., Sullivan, B., Yates, O., 2014. Significant reductions in mortality of threatened seabirds in a S outh A frican trawl fishery. Animal conservation 17, 520-529.
Plummer, M., 2002. Discussion of the paper by Spiegelhalter et al. Journal of the Royal Statistical Society Series B 64, 620.
Plummer, M., 2003. JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling, In Proceedings of the 3rd international workshop on distributed statistical computing. p. 125. Vienna, Austria.
R Development Core Team, 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Richard, Y., Abraham, E., Berkenbusch, K., 2017. Assessment of the risk of commercial fisheries to New Zealand seabirds, 2006-07 to 2014-15.
Robertson, G., Gales, R., 1998. Albatross biology and conservation. Surrey Beatty \& Sons.
Sharp, B.R., Waugh, S.M., Walker, N.A., 2009. A risk assessment framework for incidental seabird mortality associated with New Zealand fisheries in the NZ-EEZ, Wellington, New Zealand.
Sullivan, B.J., Reid, T.A., Bugoni, L., 2006. Seabird mortality on factory trawlers in the Falkland Islands and beyond. Biological Conservation 131, 495-504.
Trebilco, R., Gales, R., Lawrence, E., Alderman, R., Robertson, G., Baker, G.B., 2010. Characterizing seabird bycatch in the eastern Australian tuna and billfish pelagic longline fishery in relation to temporal, spatial and biological influences. Aquatic Conservation: Marine and Freshwater Ecosystems 20, 531-542.
Vega, R., Licandeo, R., 2009. The effect of American and Spanish longline systems on target and non-target species in the eastern South Pacific swordfish fishery. Fisheries Research 98, 22-32.
Watkins, B., Petersen, S., Ryan, P., 2008. Interactions between seabirds and deep - water hake trawl gear: an assessment of impacts in South African waters. Animal conservation 11, 247-254.
Weimerskirch, H., Cherel, Y., 1998. Feeding ecology of Short-tailed Shearwaters:
breeding in Tasmania and foraging in the Antarctic? Marine Ecology Progress Series 167, 261-274.
Weimerskirch, H., Jouventin, P., 1987. Population Dynamics of the Wandering Albatross, Diomedea exulans, of the Crozet Islands: Causes and Consequences of the Population Decline. Oikos 49, 315-322.
Zhou, C., Jiao, Y., Browder, J., 2019a. How much do we know about seabird bycatch in pelagic longline fisheries? A simulation study on the potential bias caused by the usually unobserved portion of seabird bycatch. PLoS ONE 14, e0220797.
Zhou, C., Jiao, Y., Browder, J., 2019b. Seabird bycatch vulnerability to pelagic longline fisheries: ecological traits matter. Aquatic Conservation: Marine and Freshwater Ecosystems 29, 1324-1335.

Zhou, C., Rujia, B., Jiao, Y., 2018. Estimated seabird bycatch in the U.S. Atlantic pelagic longine fishery during 1992-2017 based on observer and logbook data. Virginia Polytechnic Institute and State University, Blacksburg, VA.

537 Tables and figures

	Carcass retrieved	
Bait-taking attempts	No	Yes
Observed caught	90	85
Possibly caught	65	14
Indeterminate	238	13
Successful	1152	2
Unsuccessful	1331	0

Table 1 Number of bait-taking interactions by the extent of confirmation of outcome and

542 Table 2 Candidate models based on different hypothesis on the loss rate and the model selection results based on DIC. The selected model is marked in bold.

Hypotheses	Covariates	Δ DIC
H0	-	8.6
H1	Fishing region	9.5
H2	Physical condition	8.9
H3	Bycatch risk score	11.1
H4	Species-specific effect	$\mathbf{0}$
H5	Hierarchical species effect	2.5
H4e1	Diver or not	9.5
H4e2	Scavenger or not	10.1

544

Figure 1 Seabird-fishery interactions and the outcome of apparent and cryptic bycatch events in pelagic longline fisheries.

The outcome of the seabird-fishery interactions can be classified into three groups based on the severity of the impact. The high impact group (red) entails the immediate death of the seabird, and it includes carcasses retrieved, carcasses removed by cutting off the branch lines, those torn off the hook due to water pressure and those consumed whole by sharks or other predatory fish. The intermediate impact group (orange) and the low impact group (yellow) include those entangled seabirds that managed to escape with or without inflicting any injuries. Note that only the outcome of a retrieved carcass can be directly observed based on the existing observation protocol.
[Production instructions: 1.5 or 2 columns; no color needed in print]

Figure 2 Observation of bait-taking interactions (A) at the line setting stage and outcome confirmation at the line hauling stage (B) with respect to a baited hook.

There are two types of bait-taking attempts (Panel A), those leading to a bycatch (lower gray circle), either through hooking or entanglement, and other attempts (upper gray circle). An observer classifies the interactions into one of five types (white circles to the left), observed caught (O), possibly caught (P), indeterminate (I), successful (S) and unsuccessful (U).

Bycatch events (Panel A) have two possible outcomes at the line hauling stage (Panel B): Either the carcass is retrieved at the hauling stage (lower white circle) or the captured seabird may separate from the hook with probability ploss and become unobservable to the observer at the hauling stage (upper white circle). All the other attempts (Panel A) lead to the event of no carcass retrieved (Panel B). The expressions on the arrows are the associated state transition probabilities.
[Production instructions: 1.5 or 2 columns; no color needed in print]

580 [Production instructions: 1 or 1.5 columns; no color needed in print]
Figure 3 Prior (dotted line) and posterior estimate (solid curve) of the average bycatch loss rate based on model HO.

Black-browed Albatross:
Black-footed Albatross:
Black Petrel*:
Buller's Albatross*:
Cape Petrel:
Flesh-footed Shearwater:
Grey-headed Albatross:
Giant Petrel:
Grey Petrel:
Great-winged Petrel:
Laysan Albatross:
Light-mantled Sooty Albatross:
Northern Royal Albatross:
Salvin's Albatross*:
Shearwater:
Shy Albatross:
Subantarctic Skua:
Sooty Albatross*:
Soft-plumaged Petrel*:
Wandering Albatross*:
White-chinned Petrel:
Yellow-nosed Albatross:

Figure 4 Bycatch loss rates of common seabird species (groups) in pelagic longline fisheries. For each line, the solid diamond marks the median posterior estimate, the solid intervals mark the interquartile range of the posterior estimate, and the dashed line marks the 95% credible interval. Seabird species (groups) are ordered alphabetically. Black-browed albatross includes Thalassarche melanophris and T. impavida; Black petrel includes Procellaria parkinsoni, and P. westlandica; giant petrel includes Macronectes giganteus and M. halli; shearwater includes A. grisea, P. tenuirostris and P. pacificus; shy albatross includes T. cauta and T. steadi; wandering albatross include Diomedea exulans, D. antipodensis, D. dabbenena and D. amsterdamensis ; yellownosed albatross includes T. chlororhynchos and T. carteri. Species or species groups marked with * have no more than 10 observed records, and their results are inconclusive.
[Production instructions: 1.5 or 2 columns; no color needed in print]

Figure 5 Median (solid line) and 95\% credible interval (dotted lines) of the posterior estimate of the bycatch loss rate at calm (phy ≤ 4), intermediate $(4<p h y \leq 8)$ and rough (8 < phy) physical conditions based on model H 2 .
[Production instructions: 1 column; no color needed in print]

603

608 [Production instructions: 1 column; no color needed in print]
Figure 6 Median (solid line) and 95\% credible interval (dotted lines) of the posterior estimate of the bycatch loss rate at different levels of bycatch risk score based on model H3.

616 [Production instructions: 1 column; no color needed in print]
Figure 7 Prior (two dotted line segments) and posterior (solid curve) of the difference in bycatch loss rate between divers and non-divers based on model H4el. A negative value indicates a lower loss rate for divers, and the vertical dashed line separates negative values and positive ones.

Figure 8 Prior (two dotted line segments) and posterior (solid curve) of the difference in bycatch loss rate between scavengers and non-scavengers based on model H4e2. A negative value indicates a lower loss rate for scavengers, and the vertical dashed line separates negative values from positive ones.
[Production instructions: 1 column; no color needed in print]

