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Abstract. The utilization and capabilities of biotelemetry are expanding enormously as technology and
access rapidly improve. These large, correlated datasets pose statistical challenges requiring advanced sta-
tistical techniques to appropriately interpret and model animal movement. We used satellite telemetry data
of critically endangered Eastern Pacific leatherback turtles (Dermochelys coriacea) to develop a habitat-based
model of their motility (and conversely residence time) using a hierarchical Bayesian framework, which
could be broadly applied across species. To account for the spatiotemporally auto-correlated, unbalanced,
and presence-only telemetry observations, in combination with dynamic environmental variables, a novel
modeling approach was applied. We expanded a Poisson generalized linear model in a continuous-time
discrete-space (CTDS) model framework to predict individual leatherback movement based on environ-
mental drivers, such as sea surface temperature. Population-level movement estimates were then obtained
with a Bayesian approach and used to create monthly, near real-time predictions of Eastern Pacific leather-
back movement in the South Pacific Ocean. This model framework will inform the development of a
dynamic ocean management model, “South Pacific TurtleWatch (SPTW),” and could be applied to teleme-
try data from other populations and species to predict motility and residence times in dynamic environ-
ments, while accounting for statistical uncertainties arising at multiple stages of telemetry analysis.

Key words: animal behavior; Bayesian; biologging; continuous-time discrete-space; Dermochelys coriacea; leatherback
turtles; movement; telemetry.
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INTRODUCTION

With the advancements in telemetry technolo-
gies, animal movement data have been collected
with increasing duration, resolution, and accuracy

(Hooten et al. 2017). These telemetry data provide
opportunities for resource selection studies (John-
son et al. 2008b), which examine the complex
interactions between animal populations and envi-
ronmental processes. The high dimensionality of
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modern animal movement data, however, calls for
development of efficient computational methods
and the ability to incorporate both static (e.g.,
bathymetry) and dynamic (e.g., sea surface tem-
perature) environmental drivers that can influence
animal movements. For aquatic and exploited spe-
cies, insights from such studies can in turn enable
dynamic ocean management, spatiotemporally
varying management based on the incorporation
of near real-time data (Howell et al. 2008, Block
et al. 2011, Maxwell et al. 2015, Hazen et al. 2016,
2018).

Telemetry data provide valuable animal move-
ment information, but are characterized by many
challenging statistical properties, such as non-nor-
mal measurement errors (Jonsen et al. 2005), tem-
poral auto-correlation (Fleming et al. 2015), and
unbalanced and presence-only sampling design
(Aarts et al. 2008). Modern statistical models
include state-space model approaches to model
measurement errors and dynamics of the move-
ment process (Jonsen et al. 2005), continuous-time
models of unbalanced sampling (Johnson et al.
2008a), and agent-based or velocity-based models
(Hooten et al. 2010, Hanks et al. 2011). These
approaches, however, tend to use customized
Markov chain Monte Carlo (MCMC) algorithms
for statistical inference, which are computation-
ally demanding, and generally focus on statistical
inference of individual-level movement (Hooten
et al. 2016). With the increasing availability of
telemetry observations from multiple individuals,
it is natural to generalize this individual-level
inference to the population level, although there
are the added challenges of individual-level or
sampling variability (Aarts et al. 2008).

Telemetry data are increasingly being used in
species distribution models (Hazen et al. 2016,
2018). Although terrestrial studies tend to use
environmental variables based on static geo-
graphic features at a fixed resolution, this may
not adequately represent the environmental con-
ditions experienced by marine species within a
dynamic seascape (Hidalgo et al. 2016). Thus, it
is important to consider movements of highly
migratory marine species in relation to the con-
temporaneous environment they are experienc-
ing, particularly for highly dynamic features
(Mannocci et al. 2017).

In order to account for the various sources of
uncertainty and complexity inherent within

telemetry data, Hooten et al. (2016) and Hanks
et al. (2015) proposed a Bayesian hierarchical
approach to statistical inference of population-
level movement. This hierarchical approach
incorporates uncertainties from multiple sources,
such as inaccuracy of location observations,
process variability from stochastic movement
processes, and sampling variability among indi-
viduals. In addition, this approach can be formu-
lated in the classical generalized linear mixed
model framework. Although previously imple-
mented with static environmental variables, we
generalized the modeling approach to incorpo-
rate dynamic environmental drivers, essential to
understanding and predicting the spatiotempo-
ral distribution of highly migratory species. We
utilized and modified this statistically robust
approach to study dynamic resource selection
using a large telemetry dataset of Eastern Pacific
leatherback turtles (Dermochelys coriacea). The
“ctmcmove” R package (Hanks 2018) was gener-
alized to achieve the input of dynamic environ-
mental drivers (see Data S1). Thus, this dynamic
framework can be applied to other populations
and species tracked through a dynamic seascape
to predict motility and residence time based on
changing environmental conditions.

METHODS

Leatherback turtle data
Adult females were tagged with Argos satellite

transmitters at nesting beaches in Mexico (n = 1)
and Costa Rica (2003–2008) (Fig. 1; n = 42; Shil-
linger et al. 2008, 2010, Bailey et al. 2012b). Two
juvenile leatherbacks caught in the Peruvian
driftnet fishery were released with Argos tags
(2014). Additional data from Mexiquillo, Cah-
uit�an, and Agua Blanca, Mexico (n = 24; 1993–
2003); Playa Grande, Costa Rica (n = 8; 1992–
1995); and Peru (n = 2; 2014–2015) were not
included within the final analyses due to sub-
stantial gaps in the availability of associated
remotely sensed environmental datasets.

State-space model
We applied a Bayesian switching state-space

model (SSSM; Jonsen et al. 2005, 2007) to raw
satellite telemetry positions and obtained mean
daily location and behavioral mode estimates
(classified as transiting or foraging) for each
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Fig. 1. Monthly values for each of the modeled environmental variables: (a) bathymetry (m), (b) sea surface
temperature (°C), (c) frontal probability index, (d) Ekman upwelling (m/s), and (e) sea surface height (m) for
leatherback observations based on the estimated mean daily positions from the switching state-space model.
Maps were generated using “ggmap” in R (Kahle and Wickham 2013).
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individual track. We distinguished post-nesting
behavior from inter-nesting behavior for the
leatherbacks tagged on the nesting beaches by
removing the initial part of the track that was
indicative of inter-nesting behavior as in Bailey
et al. (2008, 2012a). Only post-nesting portions of
the tracks of at least 30-d duration were included
in the analysis (Bailey et al. 2012a). The SSSM
package “bsam” (Jonsen et al. 2005, Jonsen 2016,
R Core Team 2017) was chosen over other R pack-
ages (e.g., “crawl”; Johnson et al. 2008a, Johnson
and London 2018) because the SSSM provided
the behavioral mode estimation necessary for this
track delineation and had been used in previous
studies with these tracks (Bailey et al. 2008,
2012a, b, Shillinger et al. 2008, 2010, Block et al.
2011). By removing inter-nesting females, we
assumed sex did not influence movement behav-
ior in this population (James et al. 2005, Benson
et al. 2011). Two MCMCs were run with 30,000
samples, a burn-in of 20,000, and thinning of 10.
Switching state-space model-derived position
estimates on land were corrected to the nearest
plausible location at sea. Tracks with gaps too
large for the SSSM to accurately interpolate across
(≥20 d) were split into track sections (n = 12
tracks split). All analyses were conducted in the R
statistical environment (R Core Team 2017).

Environmental covariates
Environmental covariates included in the

model were sea surface temperature (SST),
bathymetry, sea surface height (SSH), frontal
probability index (FPI), and Ekman upwelling
(Fig. 1; see Appendix S1: Table S1). Monthly val-
ues were obtained from the NOAA/NMFS
Southwest Fisheries Science Center, Environmen-
tal Research Division’s ERDDAP server (https://c
oastwatch.pfeg.noaa.gov/erddap; Simons 2016),
E.U. Copernicus Marine and Environment Moni-
toring Service (CMEMS; marine.copernicus.eu),
and Plymouth Marine Laboratory (following
method in Miller et al. 2015) within a latitudinal
range of �42° to 30° N and longitude from
�140° to �70° E. We chose to build the model
over a 0.5° grid cell to provide a cell size that
leatherbacks could move across within one day
given transiting speed estimates (Shillinger et al.
2008), but as large as possible to reduce compu-
tational intensity given the large prediction area
(see Appendix S2).

Continuous-time discrete-space model
Continuous-time discrete-space (CTDS; Hanks

et al. 2015) is a habitat model that accommodates
unbalanced telemetry data from individual Argos
tracks and gridded estimates of environmental
covariates to provide movement estimates
through a given area. Specifically, let b̂yiðuÞ; u ¼

n
1. . .;Tg denote the estimated daily track locations
from the SSSM, where i denotes an individual
animal. Let bi denote the CTDS parameter for this
individual. We denote the individual CTDS
model pðŷijbiÞ as following: discretize the contin-
uous track according to the granularity of the
environmental covariates, and let Si ¼ gi; ti; si

� �
denote the animal’s CTDS path, where gi ¼ gic;f
c ¼ 0; . . .;Cg denotes the sequence of starting cells
traversed by the animal, and ti ¼ tic; c ¼f
1; . . .;Cg and si ¼ sic; c ¼ 1; . . .;Cf g the time of
entry and residence time for each cell gi;c�1 before
transition into gi;c.
Let k� l denote two neighboring grid cells,

and xi;kl;t the corresponding vector of environ-
mental drivers. The transition rate between cells
can then be modeled with the environmental
data via a log link

ki;kl bi; tð Þ ¼ exp xTi;kl;tbi
n o

: (1)

We considered only motility-based covariates
and assumed that impacts of gradient-based
covariates on turtle movements would be minor
at the population level.

ki;kl bi; tð Þ ¼ exp xTi;k;tbi
n o

: (2)

The transition to neighboring cells follows a
multinomial process with probability propor-
tional to (1). Let |Nk| denote the number of adja-
cent cells to cell k, the total transition rate from a
cell k equals

ki;k bi; tð Þ ¼
X
l� k

ki;kl bi; tð Þ ¼ Nkj jexp xTi;k;tbi
n o

; (3)

and the corresponding residence time at cell k
follows an exponential distribution

si;gc � si;c � exponential ki;k bi; tð Þ� �
; (4)

where exponential (k) denotes the distribution
with mean 1/k.
Assuming conditional independence between

transitions and residence time—given the
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environmental drivers—within and across transi-
tions, the likelihood of the CTDS path Si accord-
ing to models 1–4 can be written as

YC
c¼1

ki;c�1;c bi; ti;c
� �

exp �si;cki;c�1 bi; ti;c
� �� �

; (5)

where we write ki;gc�1;gc � ki;c�1;c for brevity of
notation. Hanks et al. (2015) introduced the
latent variable zc;c0 ¼ 1 gc0 ¼ gcþ1ð Þ and write the
likelihood above as

YC
c¼1

Y
c0�c�1

ki;c�1;c0 bi;ti;c
� �zi;c�1;c0 exp �sicki;c�1;c0 bi;ticð Þ� �

:

(6)

The advantage of the parameterization is that
model 6 is an independent Poisson likelihood
with data zi;c;c0 ; c ¼ 0;C� 1; c� c0

� �
and offset

log si;c
� �

; c ¼ 1; . . .;C
� �

, for which the iterative
generalized least squares algorithm can be used
for estimation in the frequentist framework.

Population-level inference
The CTDS models individual-level association

between movement and environmental cues. To
account for sampling variabilities among indi-
viduals and then generalize the individual
response pattern to the population level, we
applied a hierarchical model that uses random
effects for individual-level parameters (Hooten
et al. 2016). Let n denote the number of individ-
uals and p ŷijbi

� �
denote the CTDS likelihood

function (6) of individual i ¼ 1; . . .; n as the first
stage of the hierarchical model. At the second
stage, we specify a conventional normal prior
for bi

bi �N lb;Rb
� �

; for i ¼ 1; . . .; n; (7)

where lb;Rb denote the population-level param-
eter and the covariance matrix of individual-level
sampling variabilities around lb. Letting m ¼
dimðxÞ denote the dimensionality of the environ-
mental covariates, we assign a vague hyper-prior
to complete the hierarchical Bayesian model
specification.

lb �N l0;R0ð Þ;R�1 �Wishart m;Qð Þ; (8)

where l0 is m� 1 vector of zero, R0 is 100 9 I,
where I is a m� m identity matrix, and Q ¼ m�1I.

Markov chain Monte Carlo algorithm
The hierarchical model (6–8) follows the gen-

eralized linear mixed model family (see
Appendix S2). We used the Hamilton MCMC
with No-U-Turn algorithm (Hoffman and Gel-
man 2014) due to its superior convergence per-
formance. The “brms” package (B€urkner 2017)
served as an R interface to Stan and model selec-
tion. Markov chain Monte Carlo convergence
diagnostics were conducted for lb;Rb; and
selected bi parameters based on the R “coda”
package (Brooks and Gelman 1998, Plummer
et al. 2006).

Model selection
The full model available for selection was sym-

bolically

logðmotilityÞ� bathymetry þ f ðSSTÞ
þ Ekmanþ FPIþ SSHþ crw;

(9)

where motility is the total rate of transitions out
of a grid cell per day. Each environmental vari-
able is incorporated as a dynamic driver based
on the time of entry into the initial cell for each
movement c. We incorporated quadratic sea sur-
face temperature and linear bathymetry, Ekman
upwelling, frontal probability index, and sea
surface height. The crw term is a constructed
auto-covariate term (Illian et al. 2012), which
measures the directional change between the
adjacent moves, and is important in the model
to incorporate temporal auto-correlation. The
remaining model covariates were selected first
using a “top-down” strategy based on posterior
leave-one-out (LOO) predictive statistics (Vehtari
et al. 2017). We sequentially removed each vari-
able from the hierarchical model (6–8) and com-
pared the LOO statistics between the original
model and each simplified model. The variable
resulting in the least significant difference in the
LOO statistic is removed. This drop-one process
stops when no variable can be removed from the
model. The automatic model selection was sup-
plemented by manual interpretations.

Model prediction
We used residence time as a metric to map the

predictive resource selection (Hanks et al. 2015).
Let xpj ; j ¼ 1; . . .; J denote the value of selected
covariates at grid cells gj, which covers the entire
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leatherback habitat in the eastern Pacific. The
mean residence time at each cell can be defined as

rj lbð Þ ¼ exp �xpj
T
lb

n o
for j ¼ 1; . . .J: (10)

Posterior inference of rj lb
� �

can be forward
simulated based on posterior samples of lb,
while accounting for the joint distribution of all
model parameters. The posterior mean and inter-
quartile-range can be mapped as the estimated
residence time and associated uncertainty.

RESULTS

Based on the results of the SSSM, there were
58 tracks from 45 individual turtles used in the
modeling process, totaling 10,066 daily positions
spanning February 2003 through December 2014
(Table 1). The best model from the posterior
LOO model selection was the full model bathy-
metry, SST, SST2, FPI, and SSH (DLooIC = �4.57,
SE(DLooIC) = 3.53, P = 0.20; see Appendix S1:
Table S2). Population-level Eastern Pacific
leatherback motility estimates (lb) indicate
effects for each model covariate given no zero
overlap for each 95% confidence interval
(Table 2). Leatherbacks are more likely to move
(decrease residence time) with high and low val-
ues of SST (lb ¼ 0:54; SST2: lb ¼ 0:72) and high
FPI (lb ¼ 0:76), while reducing movement in
areas of high SSH (lb ¼ �1:330). Environmental
predictors were checked for collinearity. Resi-
dence time in days was predicted for June 2016
(Fig. 2a) and December 2016 (Fig. 2b).

DISCUSSION

This habitat-based movement modeling app-
roach can serve as a foundation for studies uti-
lizing tagging data to overcome statistical

challenges for population-level movements (see
Appendix S1: Fig. S1). Organismal movement is
often highly complex, and this framework
accommodates intricate environmental selection
by individuals scaled to populations. This pro-
cess can be applied to tagging studies to account
for the spatiotemporally auto-correlated, unbal-
anced, and presence-only telemetry observations
in a dynamic environment. It is broadly applica-
ble, automatable, parallelizable, and inter-
pretable, easing computing demands of vast
datasets. This considers and accounts for often-
overlooked data source errors, reducing model
uncertainty. Overall, this hierarchical modeling
approach represents a higher-level estimation of
persistent, predictable behavior across any popu-
lation of study.
Compared to other movement studies, the

CTDS model framework does not require the

Table 1. Post-nesting Eastern Pacific leatherback positional information modified from Bailey et al. (2012a).

Tagging location Data type Years
Total daily
positions No. tags

Track duration (d)

Mean Min Max

Mexico: nesting Argos satellite tag 2003 92 1 NA NA NA
Costa Rica: nesting Argos satellite tag 2004–2008 9841 42 179 34 513
Peru: driftnet fisheries bycatch Argos satellite tag 2014 133 2 67 48 85
Total post-nesting tracks Argos satellite tag 2003–2014 10,066 45 174 34 513

Notes: All tracks included Argos satellite tag data from starting locations in Mexico, Costa Rica, and Peru with either nesting
or fisheries incidentally caught turtles.

Table 2. Population-level coefficient estimates (poste-
rior median and 95% credible sets) from continuous-
time discrete-space hierarchical model relating
motility with environmental covariates.

Coefficient Estimate
Estimate
error

2.5
percentile

97.5
percentile

Intercept �1.070 0.190 �1.460 �0.680
Bathy 0.080 0.030 0.030 0.130
SST 0.540 0.080 0.380 0.700
SST2 0.720 0.190 0.370 1.100
FPI 0.760 0.120 0.530 0.970
SSH �1.330 0.220 �1.760 �0.890
crw 0.670 0.030 0.610 0.730

Notes: crw denotes the direction of the most recent move-
ment at each time point. Tracks (n = 58) used were longer
than 30 d, include all environmental predictors, and do not
exhibit collinearity between predictors. Bathy is bathymetry,
SST is sea surface temperature, SST2 is quadratic sea surface
temperature, FPI is the frontal probability index, and SSH is
sea surface height.
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creation of false absences or pseudo-tracks com-
monly used in generalized additive mixed model
analyses of telemetry data (Willis-Norton et al.
2015, Hazen et al. 2016). This framework pro-
vides a means strengthening dynamic manage-
ment models by incorporating multiple data
sources, including irregularly spaced data, which
strengthens the ability to model available data
and maximize sample sizes. The approach
reported here is flexible, particularly in that it
can be adapted around the same framework
indeterminate of the model used. Wilson et al.
(2018) utilized a CTDS approach to model spe-
cies distribution based on static seascape vari-
ables. Their approach accounted for unobserved
movements into preferred habitats, highlighting
these model benefits for marine telemetry data.
We incorporated dynamic environmental covari-
ates in CTDS to better reflect changing environ-
mental conditions encountered by migrating
marine species through time (e.g., seasonal seas-
cape changes). This enabled short-term forecast-
ing of preferential spatial use at a monthly
timescale. The monthly prediction could be more
relevant for dynamic ocean management than
the long-term utilization density, which was
more appropriate for species interacting with

static environmental variables. Overall, CTDS
provides population-level inference through
MCMC compared to many movement studies
based on individual-level models.
Using the CTDS modeling framework, we pre-

dicted the residence time of leatherback turtles
during two months in 2016 (Fig. 2). Residence
time estimates should predict leatherbacks tran-
siting quickly from warm, coastal waters in
December near the nesting beaches, moving
toward productive fronts in the South Pacific
Gyre (Fig. 2b). Turtles begin their post-nesting
migration southwards through the eastern tropi-
cal Pacific in February to May (Shillinger et al.
2008). In the South Pacific Ocean, there is a sea-
sonal pattern with turtles moving south to the
South Pacific Subtropical Convergence (Saba
et al. 2008) in the austral summer (December to
April) when temperatures are higher at these
temperate latitudes (~30–40° S) (Shillinger et al.
2011). Leatherbacks generally return north to
warmer, tropical waters (~0–20° S) in the winter
(May–November; Fig. 2a). As expected, there is a
large area in the South Pacific Gyre with low resi-
dence time in this warm, less productive water
mass during both June and December 2016. In
both months, leatherbacks were likely to move

Fig. 2. Leatherback turtle residence time (d) based on continuous-time discrete-space predictions using 45 indi-
viduals (n = 58 tracks) and environmental covariates of bathymetry, sea surface temperature, quadratic sea sur-
face temperature, frontal probability index, and sea surface height for (a) June 2016 and (b) December 2016. Plus
signs represent daily positions of leatherbacks included in the model during the respective months.
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more slowly through the productive waters west
of Peru and Chile. The prediction maps can serve
as a valuable tool to assist with dynamic ocean
management (Howell et al. 2015) to prevent and
ultimately reduce bycatch of leatherback turtles
in fisheries through their incorporation into an
end-user interface, South Pacific TurtleWatch
(SPTW).

Previous studies have conveyed the complex
relationship between satellite-derived surface
environmental metrics and leatherback distribu-
tion (Shillinger et al. 2008, 2011, Bailey et al.
2012a). Higher latitudes in the South Pacific are
more productive, but temperature is ultimately
expected to be a proxy for predicting prey abun-
dance (gelatinous zooplankton), the driver of
leatherback movement (Heaslip et al. 2012, Jones
et al. 2012). Leatherbacks avoid cooler water far-
ther south where they forage around 19°C and
generally avoid warmer water (>31°C) when
breeding (Shillinger et al. 2011). This expectation
of higher residence time in the north during aus-
tral winter and higher probability in the south
during summer, creating a north–south seasonal
cycle throughout the South Pacific, is generally
captured in our model predictions.

Although this modeling approach has many
benefits, there are several limitations and com-
plexities to consider. The model must be evalu-
ated for its ability to predict the biologically
realistic behavioral responses. If regression coef-
ficients are small at the individual level, patterns
across population-level inferences will not be
observed. The uncertainty in the estimated
movement paths of individuals can be decreased
in this framework by applying multiple path
imputations (Hooten et al. 2010, Hanks et al.
2015, Wilson et al. 2018), but with larger teleme-
try datasets, it can become computationally chal-
lenging. Within our model, vague priors were
used to drive inference. However, priors can be
specified to increase predictive power when
greater species information is available, a benefit
of using this Bayesian approach. A manual back-
ward model selection was conducted, but a Baye-
sian model averaging approach could make it
easier to evaluate overall predictive power of a
given set of predictor variables. We used a gener-
alized linear model, having to assume the ass-
ociation between the leatherback movement and
environmental variables was parametric.

However, a semi-parametric generalized addi-
tive mixed model could be incorporated to
model more complex associations with the envi-
ronment.
The amount of telemetry data becoming avail-

able is ever-expanding, as are the complex mod-
els relating animal behavior to environmental
cues, but high computational power is often
required. Therefore, it is essential to use a predic-
tive model capable of incorporating robust
model estimates of movement over large track-
ing datasets and vast amounts of environmental
information. Here, we utilized a novel approach
by incorporating dynamic drivers of animal
movement in a broad framework other studies
can utilize, and we addressed the data analysis
needs of more advanced observational tech-
niques without super-computing computational
requirements. The ability to predict motility and
residence times of marine species based on envi-
ronmental conditions can play a valuable role in
assisting with their management and conserva-
tion in a dynamic ocean.
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