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Spatiotemporal modeling of bycatch data: methods and a
practical guide through a case study in a Canadian Arctic
fishery
Yuan Yan, Eva Cantoni, Chris Field, Margaret Treble, and Joanna Mills Flemming

Abstract: Excess bycatch of marine species during commercial fishing trips is a challenging problem in fishery management
worldwide. The aims of this paper are twofold: to introduce methods and provide a practical guide for spatiotemporal modelling of
bycatch data, as well as to apply these methods and present a thorough examination of Greenland shark (Somniosus microcephalus)
bycatch weight in a Canadian Arctic fishery. We introduce the spatially explicit two-part model and offer a step by step guide for
applying the model to any form of bycatch data, from data cleaning, exploratory data analysis, variable and model selection,
model checking, to results interpretation. We address various problems encountered in decision making and suggest that
researchers proceed cautiously and always keep in mind the aims of the analysis when fitting a spatiotemporal model. Results
identified spatiotemporal hotspots and indicated month and gear type were key drivers of high bycatch. The importance of
onboard observers in providing robust bycatch data was also evident. These findings will help to inform conservation strategies
and management decisions, such as limiting access to spatial hotspots, seasonal closures and gear restrictions.

Résumé : Les prises accessoires excédentaires d’espèces marines durant les sorties de pêche commerciale constituent un
épineux problème en gestion des pêches partout dans le monde. Le présent article a deux objectifs, à savoir : présenter des
méthodes et un guide pratique pour la modélisation spatiotemporelle de données sur les prises accessoires et appliquer ces
méthodes et présenter un examen exhaustif du poids des prises accessoires de laimargues atlantiques (Somniosus microcephalus)
dans une pêche dans l’Arctique canadien. Nous présentons le modèle bipartite spatialement explicite, ainsi qu’un guide par étapes
d’application de ce modèle à toute forme de données sur les prises accessoires, du nettoyage des données à l’interprétation des
résultats en passant par l’analyse exploratoire des données, la sélection des variables et du modèle et la vérification du modèle.
Nous abordons divers problèmes rencontrés dans le processus décisionnel et suggérons que les chercheurs fassent preuve de pru-
dence et gardent toujours en tête les objectifs de l’analyse quand ils calent un modèle spatiotemporel. Les résultats font ressortir
des points chauds dans l’espace et le temps et indiquent que le mois et le type d’engin sont les principaux facteurs déterminants
de prises accessoires élevées. Ils mettent également en évidence l’importance d’observateurs à bord pour la collecte de données
robustes sur les prises accessoires. Ces constatations aideront à éclairer l’élaboration de stratégies de conservation et la prise de
décisions de gestion, telles que des restrictions sur l’accès à des points chaudes, des fermetures saisonnières et des restrictions
visant certains engins. [Traduit par la Rédaction]

1. Introduction
During commercial fishing trips, various non-target species are

often caught unintentionally and usually discarded afterward.
These bycatch events sometimes involve vulnerable, long-lived
and endangered marine species, such as sharks, whose survival
probabilities are low following discard (MacNeil et al. 2012). The
problem of excess bycatch is faced by fisheries worldwide and
contributes to the broader concern of overfishing (Davies et al.
2009). Therefore, understanding bycatch patterns and their driv-
ers is important for contemporary fisheries management to de-
velop conservation strategies for bycatch reduction.
At-sea observers may be assigned to fishing trips to monitor

compliance to fishery regulations and to collect catch and effort
data. Data they collect can include weights and (or) counts of ev-
ery species caught in each haul (fishing tow), as well as locations
and dates related to the haul, vessel and gear specification, fishing

effort (e.g., tow time and speed for trawl fishing, net length and
mesh size for gillnet fishing, number of hooks for longlinefishing),
and possibly environmental covariates (e.g., sea surface tempera-
ture, bathymetry). Such observer data provide a valuable resource
for investigating bycatch patterns.
Statistical models are at the heart of modern data analysis and

aim at extracting information from noisy data. Catch count or
weight data, for example, can be regarded as random samples
drawn from the underlying population of the species in quantity
or biomass, respectively. To infer the underlying population distri-
bution, possibly changing through time and across space, from the
available catch data, proper statistical models are needed to remove
factors affecting catches other than abundance. For example, these
could be factors that affect catchability and availability. Generalized
linearmodels (GLMs) are widely used in stock assessments for catch
per unit effort (CPUE) standardization and derivation of abundance
or biomass indices (Gavaris 1980; Guisan et al. 2002). GLMs decompose

Received 15 July 2020. Accepted 27 May 2021.

Y. Yan, C. Field, and J.M. Flemming. Department of Mathematics & Statistics, Dalhousie University, Halifax, NS B3H 4R2, Canada.
E. Cantoni. Research Center for Statistics and Geneva School of Economics and Management, University of Geneva, Geneva, Switzerland.
M. Treble. Fisheries and Oceans Canada, Winnipeg, MB R3T 2N6, Canada.

Corresponding author: Yuan Yan (email: yuan.yan@dal.ca).
© 2021 Authors Yan, Cantoni, Field, Flemming, and the Crown. This work is licensed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Can. J. Fish. Aquat. Sci. 79: 148–158 (2022) dx.doi.org/10.1139/cjfas-2020-0267 Published at www.cdnsciencepub.com/cjfas on 11 June 2021.

148

C
an

. J
. F

is
h.

 A
qu

at
. S

ci
. D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

22
2.

15
5.

19
0.

24
5 

on
 0

5/
08

/2
2

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.
 

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1139/cjfas-2020-0267


catch variability into contributions from different factors, such as
gear type, environmental conditions (e.g., temperature, salinity),
fishing season and region as well as possible interaction terms.
Furthermore, by treating some factor(s) as random effects, the
GLMs are extended to generalized linear mixed models (GLMMs).
Maunder and Punt (2004) provide a nice review of the early
approaches using GLMs and GLMMs to standardize catch and effort
data. Often, spatial information on fishing hauls is used coarsely to
group hauls by geographical regions and incorporated in the analy-
sis of catch data by treating these regions as fixed effects in a GLM
(Lo et al. 1992; Campbell 2004) or as independent and identically dis-
tributed (i.i.d.) random effects in a GLMM (Ortiz and Arocha 2004;
Thorson andWard 2013). Additionally, includingfishing trips as i.i.d.
random effects in GLMMs not only accounts for vessel variability,
but also implicitly captures spatiotemporal interactions, because
fishing trips are often clustered in space and time (Helser et al. 2004;
Cantoni et al. 2017). Recently, especially with accurate records of
fishing location, more sophisticated models that include spatial
or spatiotemporal components via latent stochastic processes are
becoming popular in fisheries science (Nishida and Chen 2004;
Sims et al. 2008). Adding spatially and (or) spatiotemporally corre-
lated random effects into a GLM results in more efficient use of
available data (Thorson et al. 2015) and can shed light on the
spatiotemporal dynamics of the underlying population density
(Carson et al. 2017).
Bycatch data for certain species, especially rare ones, are char-

acterized by a large number of zeros resulting from the absence
of the species in most hauls. Previous studies of bycatch count
data have tended to use either the zero-inflated version of the
Poisson and negative binomial model (Cosandey-Godin et al.
2015) or the hurdle model (Cantoni et al. 2017) to deal with the
excess of zeros. The two-part model is the counterpart of the hur-
dle model for non-negative continuous data (rather than count
data) with a cluster at zero, or so-called semicontinuous data.
Sometimes the term “two-part model” refers to models for both
semicontinuous data and the hurdle model for count data (Zuur
et al. 2009, Chapter 11), or even more broadly including zero-
inflatedmodels. In this paper, we use the “two-part model” in the
narrow sense referring to a two-part semicontinuous model. The
hurdlemodel and the two-partmodel have the advantage of sepa-
rating the presence/absence process from the process influencing
the size conditional on the presence. Min and Agresti (2002) pro-
vide a review of models dealing with nonnegative data with
clumping at zero for both count and semicontinuous data. In
fisheries, the hurdle model and the two-part model are referred
collectively as delta-distributions (Lo et al. 1992), with the “delta”
in the sense of the Dirac delta function because a point mass is
placed at zero. The delta-lognormal, delta-gamma, ormore gener-
ally the delta-GLMM (Ortiz and Arocha 2004) have also been
adopted for analysing catch-rate data from fishery independent
surveys, because they share with bycatch data the feature that a
large proportion of hauls will have zero catch for certain species
(Helser et al. 2004). Shelton et al. (2014) and Thorson et al. (2015)
extended the delta-GLMM by adding spatial random effects at
given knots using a geostatistical model to yield more accurate
indices of abundance from survey data.
Even though spatial two-part models have become popular in

fisheries science in recent years and been applied to analyse both
catch data from fishery-independent surveys and bycatch data
from commercial fishing trips, the purposes of the analyses are
different. The main goal for analysing survey data is to estimate
species distribution in space-time and extract a yearly index of
abundance. On the other hand, for bycatch data, the primary con-
cerns are to determine factors that affect bycatch to avoid them,
and ultimately to establish effective management and conservation

decisions, such as gear restrictions, catch quotas, seasonal closures
and limiting access to spatial hotspots. In previous applications,
essential details for using spatial two-part models were usually
omitted and practitioners may find it difficult to apply these meth-
ods to their own data. In this paper we consider the data analysis
steps from data cleaning to results interpretation with emphasis
on potential problemswhenfitting spatial two-partmodels.
We analyse observer data from a Canadian Arctic Greenland

halibut (Reinhardtius hippoglossoides) fishery and focus on the
bycatch species of Greenland shark (Somniosus microcephalus),
which is the world’s oldest vertebrate (Nielsen et al. 2016) and vul-
nerable to the bycatch problem. The aim of the analysis is to
understand bycatch risk for Greenland shark by identifying driv-
ing factors and spatial patterns of bycatch occurrence (and its
magnitude). We consider a two-part model with latent Gaussian
random fields as spatial random effects in both parts. The data-
set, R codes, and associated.cpp files are all available online in
the online Supplements1.

2. Materials and methods

2.1. Data preparation
Observer data provided by Fisheries and Oceans Canada (DFO)

are records of fishing trips conducted by Nunavut and Newfound-
land fishing companies for Greenland halibut inside the North-
west Atlantic Fisheries Organization Subarea 0, for years 2013 to
2017. The fishing area ranges from Davis Strait to southern Baffin
Bay, which connects Nunavut’s Baffin Island and Greenland and
serves as the only large-scale industrial finfish fishery in the Ca-
nadian Arctic. Figure 1a shows geographical features of the fish-
ing area. The map was created in the R software (R Core Team
2021) using the marmap package (Pante and Simon-Bouhet 2013).
In this area, Greenland sharks are commonly caught as bycatch
and discarded (MacNeil et al. 2012). The complete dataset con-
tains information on all gear types, mainly from trawl and gillnet
fleets. An initial examination of the data reveals that bycatch
incidence rate for Greenland shark is much higher for the trawl
fleet (892 out of 3596 hauls, 24.8%) than the gillnet fleet (77 out of
3299 hauls, 2.3%). Additionally, 100% observer coverage (every
trip has an observer) is required by DFO for factory trawlers oper-
ating in this fishery due to their fishing power and capacity to
process at sea. Therefore, we focus on Greenland shark bycatch
from the trawl fleet because these contain the bulk of the
bycatch. Practitioners should be aware that many fisheries do
not have this high level of observer coverage and that fishery-
dependent data without an observer on board can be incomplete
(Benoît and Allard 2009; Graham et al. 2011; Curtis and Carretta
2020).
The 3596 hauls came from 54 fishing trips. Trip specific infor-

mation includes vessel class based on gross registered tonnage
(two levels: 500–999.9 and >2000 t, there were no vessels
between 1000 and 1999.9 t). For each haul within a fishing trip,
catches were sorted by species and then kept weight and discard
weight for every species are recorded. We took the sum of the
kept and discard weight of Greenland halibut as target weight
and use discard weight of Greenland shark as bycatch weight
because all were discarded. In addition, along with each haul, the
start and end locations and dates, average fishing depth, tow
time (duration of a tow), gear specification (two levels: single bot-
tom trawl and twin bottom trawl) and source of the record are
also provided. The source indicates whether the observer based
their assessment of the catch on personal observation or infor-
mation provided by the captain or his designate (e.g., when the
observer was taking a break and not able to personally observe
every haul). Overall, the records by non-observers comprise
10.7%.

1Supplementary data are available with the article at https://doi.org/10.1139/cjfas-2020-0267.
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Because data may be inputted manually from records on paper
or directly into computers, errors are unavoidable. Therefore,
data cleaning is an important first step to prepare the raw data
for further analysis. By plotting the start and end fishing longi-
tude and latitude in the raw data, we found some locations to be
on shore or far away from other hauls within the same trip.
Details can be found in Fig. S1 of the Supplementary materials1.
We identified and corrected these erroneous locations one by
one according to some sensible assessments (e.g., mistaken 6 as
5, 2 as 7). Then the mid point of the start and end locations were
taken as the location associated with each haul. We also noticed
some hauls with unreasonably large bycatch weights of Green-
land shark (6–41 t), all of which came from two particular fishing
trips. After checking the original paper files, we were able to
determine that these extreme bycatch weights were caused by a
key punching problem (with an extra zero added) and we fixed
those weight records accordingly. When this kind of error is hard
to solve, the winsorization procedure we introduce later under
methods can help to reduce the influence of erroneous data
points and achieve robustness.
Following the data cleaning step, exploratory data analysis

(EDA) is important to reveal some key features of the data. Table 1
provides the number of hauls with or without bycatch for the

three two-level factors, i.e., source, vessel class and gear. We also
notice that there are very few hauls from smaller vessels (500–
999.9 t) and none of them have bycatch. Figure 1 provides a visual
summary of the data after pre-processing. Figure 1a shows the
3596 haul locations labeled by dot or plus sign, with plus sign
indicating presence of Greenland shark bycatch. The hauls are
grouped by the 54 fishing trips represented by different colours,
from which we can see the trips are clustered in space, as

Fig. 1. Summary of the Greenland shark bycatch data: (a) fishing area with isobathymetric lines and locations of the 3596 hauls shown by
dots (indicating bycatch absent from the haul) and plus signs (indicating bycatch present in the haul), with different colours representing
the 54 fishing trips associated with the hauls (map created in R using the marmap package); (b) hauls with bycatch occurrence among
total hauls by year; (c) bycatch and target weight by year. [Colour online.]

Table 1. Summary of the three two-level factors (source, vessel
tonnage and gear) with respect to the total number of hauls, as well
as the number of hauls without Greenland shark bycatch and
positive bycatch weight, respectively.

No. of hauls

Source Vessel (t) Gear

Observer
Non-
observer 500–999.9 >2000

Single
trawl

Twin
trawl

Bycatch absent 2384 320 24 2680 1088 1616
Bycatch> 0 827 65 0 892 314 578
Total 3211 385 24 3572 1402 2194

150 Can. J. Fish. Aquat. Sci. Vol. 79, 2022
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expected. As shown in Figs. 1b and 1c, the number of hauls with
Greenland shark bycatch among total haul numbers in each year
shows a persistent and stable bycatch occurrence, while bycatch
weights vary quite a lot through years, e.g., bycatch weight in
2015 almost doubles that of 2014. More results for EDA following
protocol of Zuur et al. (2010) can be found in Figs. S2–S4 of the
Supplementarymaterials1.

2.2. Methods
Recorded bycatch weights can be affected by various factors,

such as measurement skill (e.g., source of the record), catchabil-
ity (e.g., fishing effort), in addition to the underlying distribution
of Greenland shark bycatch in space and time. Methods should
be devised keeping in mind the goal of the analysis. To under-
stand driving factors for Greenland shark bycatch and extract in-
formation about the spatial distribution of the bycatch, it is
crucial to include a stochastic spatial component in the model.
The Gaussian random field is a popular geostatistical tool for sto-
chastic spatial processes, because it is fully characterized by its
mean and covariance function. We considered a two-part model
with latent Gaussian random fields as spatial random effects in
both parts for analysing the Greenland shark bycatch data. A first
step to incorporating the spatial information is to project the lati-
tude and longitude of the fishing locations onto a plane. We used
the WGS84 – UTM zone 19 N coordinate reference system, which
is appropriate for the Canadian Arctic region. The new coordi-
nates were in unit of kilometres. We let yi denote the Greenland
shark bycatch weight from the ith haul, at projected fishing loca-
tion si, i = 1, . . ., n, where n is the total number of hauls.
The first part models the incidence of Greenland shark bycatch

using a binaryGLMMwith canonical logit link (logistic regression):

ð1Þ logitfPðyi > 0Þg ¼ logitfpig ¼ xTi b
ðpÞ þ j ðpÞðsiÞ

1ðyi > 0Þ � BernoulliðpiÞ

while the second part uses a gamma GLMMwith log link for posi-
tive bycatch weight:

ð2Þ logfEðyijyi > 0Þg ¼ logfl ig ¼ xTi b
ðl Þ þ j ðl ÞðsiÞ

yijyi > 0 � gamma s�2
G ;l is

2
G

� �

where xi is a vector of covariates, b (p) and b (l ) are fixed effect
coefficients for the two parts, j (p) (s) and j (l ) (s) are two independ-
ent Gaussian random fields indexed by s in continuous space,
j (p) (si) and j (l ) (si) for i = 1, . . ., n can be regarded as multivariate
realizations from the corresponding random fields; gamma(a, b)
denotes the gamma distribution with shape parameter a and
scale parameter b, and s2

G is the dispersion parameter.
The log link used in the second part of the model transforms

the multiplicative relationship between catches and covariates
in a catch equation (Campbell 2004) into an additive one. More-
over, the gamma distribution is suitable when the standard devi-
ation grows proportionally to the mean, with Eðyijyi > 0Þ ¼ l i

and Varðyijyi > 0Þ ¼ l 2
i s

2
G, as suggested by plotting the positive

bycatch weights against the log target weights (see Fig. S5 in the
Supplementary materials1). Another popular choice for the posi-
tive part is the lognormal distribution. By checking visually
whether the plot of positive bycatch weights in log scale against
the log target weights follows assumptions of a simple linear
model, we found the lognormal distribution unsuitable for our
bycatch weights data.
The two Gaussian random fields were modeled with mean 0 and

parametric isotropic covariance functions C(d;h(p)) and C(d;h(l )),
where d is the distance between two locations. A popular choice
for the parametric covariance function is the Matérn covariance
function, which takes the following form:

Cðd; qÞ ¼ s2

Cð�Þ2��1

d
f

� ��

K�
d
f

� �

where q ¼ ðs2; f ; �Þ>; s2 is the variance of the random field, f > 0
is the range parameter, � > 0 controls the smoothness (mean
square differentiability) of the spatial process, and K� is the modi-
fied Bessel function of the second kind of order �. The commonly
used exponential covariance, Cðd;s2; f Þ ¼ s2expð�d=f Þ, is a spe-
cial case of the Matérn family with � = 0.5; while the Gaussian

covariance function, Cðd;s2; f Þ ¼ s2expð� d2

f 2Þ is a special case
of theMatérn family as �!1 (Stein 1999).
Assuming the two parts are independent, parameters for each

can be estimated separately. We argue that the independence
assumption is appropriate in this scenario because factors that
affect incidence of bycatch (e.g., wide distribution and long dis-
tance migration; Campana et al. 2015; Nielsen et al. 2014) and
weight (e.g., variability in size and density; MacNeil et al. 2012;
Rusyaev and Orlov 2013) can be very different. If this is not the
case, the correlated two parts can be modelled jointly (Cantoni
et al. 2017).

2.3. Computational aspects
With a sample size of n = 3596 for bycatch occurrence (binary

part) and n = 892 for positive bycatch weight (gamma part), the
two-part model with latent Gaussian random fields faces two
computational challenges for parameter estimation and predic-
tion of bycatch weight at unobserved locations. These challenges
are common in fisheries science when analysing catch data with
more than a few hundreds records.
The first issue comes from the need to invert an n � n covari-

ance matrix for calculating a multivariate Gaussian density. The
partial realization of j (·) (s), with the dot (·) standing for either p
or l , at the n observed locations follows a multivariate Gaussian

distribution, nð�Þ ¼ j ð�Þðs1Þ; . . . ; j ð�ÞðsnÞ
h iT

� Nð0;Rð�Þ
j Þ, with the n� n

covariance matrix Rð�Þ
j determined by the covariance function

Cðd; u ð�Þ
j Þ and the n � n distance matrix D of the n observed loca-

tions. To deal with this problem, we use a Gaussian Markov Ran-
dom Field (GMRF) at discrete locations with sparse precision
matrix (the inverse of a covariance matrix), to represent the con-
tinuously indexed Gaussian random field via stochastic partial
differential equations (SPDE) (Lindgren et al. 2011). In essence, it
is the direct sparse modelling of the precision matrix in GMRF
(instead of the covariance matrix) that makes it computationally
feasible. To implement this approximation, a mesh is created,
which is a triangulation of the spatial domain with vertices
(knots) near the data locations and some extra locations such
that the minimum edge length is larger than a cut-off value for
efficiency and the maximum edge length does not exceed a pre-
scribed level for better approximation. The Gaussian random
field can be approximated by the GMRF at the mesh with preci-
sion matrix Q if Q–1 is close to R (in some norm), where R is the
covariancematrix of the Gaussian random field at themesh loca-
tions. Parameters involved in the SPDE approach for the preci-
sion matrix Q are a , k and t . They are related to the Matérn
covariance function by a ¼ � þ d=2; k ¼ 1=f , which results in an
effective range of

ffiffiffiffiffiffi
8�

p
=k (distance at which the correlation

decreases to about 0.1):

t2 ¼ Cð�Þf 2�

Cð� þ d=2Þð4pÞd=2s2

where d is the dimension. a cannot be estimated and is usually
fixed based on prior knowledge of the smoothness of the process.
Nevertheless, the choice of a does not affect the results substan-
tially and so we fix a at 2 in our implementation.
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The second issue is related to the high-dimensional integration
involved in the likelihood of a GLMM because random effects
need to be integrated out. For Gaussian models with normally
distributed random effects, the integral remains Gaussian, how-
ever, non-Gaussian GLMMs are not subject to this simplification
by marginalization. Markov chain Monte Carlo (MCMC) methods
are customarily used to approximate such integrals, especially
within the Bayesian framework. However, MCMC methods require
high computational power and sometimes encounter convergence
and mixing problems. The Template Model Builder (TMB) package
(Kristensen et al. 2016) in the R software computes the integral via
the Laplace approximation and utilizes automatic differentiation
(GriewankandWalther 2008) to assist optimization to obtain amax-
imum likelihood estimator (MLE). Empirical evidence shows good
performance of the Laplace approximation for dealing with non-
Gaussian distributions (Kristensen et al. 2016). TMB also conven-
iently supports the SPDE approach for approximating the Gaussian
random field. Therefore, our models are fitted using the TMB pack-
age in R. Alternatively, one could fit with the VAST package, which
is a wrapper using the TMB and SPDE packages; see Thorson (2019)
for its usage.

2.4. Variable selection andmodel comparison

2.4.1. Variable selection
We first fitted the binary part of our spatial two-part model in

eq. 1 with all covariates included. Figures S2–S4 of the Supple-
mentary materials1 summarize the covariates. We took loga-
rithm of target weight so that it was in the same unit as bycatch
weight in log link. Based on scatterplots of the covariates versus
the response variable in Fig. S21, we decided how continuous
covariates enter the model. Usually, depth enters the model in
both linear and quadratic terms, however, a parabolic effect of
depth to bycatch weight is not obvious in Fig. S21. Moreover,
when depth range is limited due to fishery locations, a linear rela-
tionship is sufficient. The three continuous covariates, target
weight in log scale, tow time and average fishing depth were cen-
tered and scaled. For categorical variables, there are 5 years and
11 months (no haul from March) for temporal factors, with 2013
and January as reference levels. For factors of vessel, gear, and
source, all of which have two levels, the vessel larger than 2000 t,
single trawl, and observer are set as reference levels, respectively.
Those covariates affect bycatch in different ways and interpreta-
tion of the effects is crucial. Because the trawlers take hauls
from the sea bottom, the average fishing depth is the average

bathymetry during the fishing trip and can be regarded as an
environmental factor that influences the density or spatial dis-
tribution of Greenland shark bycatch. Haul year and month
enter our model as factors to capture temporal variability. The
total effects of depth, year, month and the spatial random effect
can be interpreted as the underlying spatiotemporal distribu-
tion of Greenland shark bycatch. Tow time, target weight in log
scale, gear and vessel types are all related to fishing effort and
affect catchability of Greenland shark. Effects related to source
of the record can be interpreted as measurement skill and cap-
ture possible differences in weight estimation between observ-
ers and non-observers given true bycatch weight. When
interpreting results it is important to distinguish between coeffi-
cients that affect density or abundance of the bycatch species
such as depth or habitat features (density covariates), from those
that affect the ability to catch them, such as tow time or gear
type (catchability covariates) (Thorson 2019). Including catch-
ability factors could reduce variation, which would lead to more
precise results. Also, catchability factors can often be considered
for use by resourcemanagers to mitigate or control bycatch.
It is important to examine whether the fitted results are con-

sistent with previous knowledge and to check for suspicious pat-
terns before conclusions can be drawn. Spatial plots of the linear
predictor for the binary part by the summation of depth, year,
month and the spatial random effect (Fig. 2a) along with the fixed
effects of tow time (Fig. 2b), show a dubious pattern in that they
contribute to the predictor in opposite directions. Comparing
the estimated fixed effect coefficients with GLM fit without spa-
tial random fields reveals that adding spatial effects causes the
coefficient for tow time to increase dramatically from 0.04 to
0.28. We suspected there is some spatial confounding because du-
ration of tows were not randomly distributed in space, which
may depend on bottom smoothness, with tow time longer for
flatter surface and shorter under rough conditions. Bearing in
mind the goal of the analysis is to disentangle spatiotemporal
effects in bycatch distribution of Greenland shark from factors
affecting catchability, and, in addition, that tow time and target
weight are both measures of fishing effort and are strongly corre-
lated, we dropped tow time from the binary part to avoid
confounding.
For the positive bycatch weights, there are a few hauls with

extremely high records. To reduce the influence of these unusual
weights on model fitting, we first winsorized the bycatch
weights. Winsorization sets the extreme values to some thresh-
old value thereby down-weighting them appropriately rather

Fig. 2. Visualization of problems in abandoned models: (a) linear predictor of the binary part by the summation of depth, year, month
and the spatial random effects of our spatial GLMM including tow time as a covariate; (b) corresponding fixed effects of tow time for the
binary part at the logit scale; (c) predicted spatial random effects at mesh locations for the gamma part of our spatial GLMM with
winsorized bycatch weights. [Colour online.]
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than removing them entirely. Instead of using a conventional
percentile like 95%, we set the cutoff value based on outliers
from the adjusted boxplot (Hubert and Vandervieren 2008) of
bycatch weights, because the bycatch weights are highly skewed.
The largest three records, 4100, 3750 and 3745 kg were all winsor-
ized to 3013.5 kg, which is the upper fence of the adjusted boxplot
(see Fig. S6 in the Supplementary materials1). There were also 25
small weight values were winsorized to the lower fence based on
the adjusted boxplot. Next, we fitted the gamma part of our spatial
model in eq. 1. Because all hauls with positive bycatch weight were
from vessels larger than 2000 t, the vessel factor was dropped. The
predicted random field (Fig. 2c) does not show an obvious spatial
pattern but rather some tiny isolated “hotspots” and “valleys”. This
is because the estimated effective range of the random field is
2.9 km, far too small when compared to the spatial range of the
data. Consequently, the spatial randomfield in the gammapart can-
not improve themodel in terms of interpretability.

2.4.2. Model comparison
We believe the ultimate goal of model fitting is to gain insights

into the process(es) being modelled. Therefore, we used 5-fold
cross-validation to compare the spatial two-part model (spatial
GLMM) with a two-part model without random effects (GLM) and
one using trip as random effects (GLMM) based on their predic-
tive performance. Note that prediction with GLMM for a new trip
is limited to the fixed effect, and cannot borrow information
from nearby observations. For a fair comparison with the GLMM,
training sets were carefully chosen to include all 54 trips, so that
no “new” trip appeared in the testing set. Practitioners can

simply resample until trips in the training set contain all trips in
the testing set (Cantoni et al. 2017).
For the binary part, we used the predicted occurrence rate p̂i as

a classifier and evaluated the predictive performance using area
under the receiver operating characteristic (ROC) curve (AUC).
The ROC curve is a plot of the true positive rate (TPR, also known
as power–sensitivity–recall) against the false positive rate (FPR,
also known as type I error–fall-out–specificity) for a binary pre-
dictor with varying threshold. The related null hypothesis is
“bycatch absent” and the type I error or false positive is to predict
bycatch occurs when it is actually absent. For example, we pre-
dict the ith haul present with Greenland shark bycatch if p̂i is
larger than the threshold. With a low threshold value, more
hauls will be predicted with bycatch present and results in high
values for both TPR and FPR. For a good predictor, we expect high
TPR while keeping the FPR low. So the closer the curve is to the
top left corner, the better the prediction. AUC provides a sum-
mary statistic for the ROC curve, with a higher value indicating
better overall predictive performance. Figure 3 shows ROC curves
of predicting bycatch occurrence using the three models for both
training and testing sets in 5-fold cross-validation using the
ROCR package (Sing et al. 2005). The coloured legend on the right
of each plot corresponds to the threshold value that contributes
to a TPR–FPR point with the colour on the ROC curve. For all
three models, the AUC for the testing set is similar to the training
set, suggesting genuine predictive ability. Our spatial GLMM per-
formed best among the three. Even though the improvement of
the spatial GLMM over the GLMM was not enormous comparing
the AUC values, the spatial model has the advantages of

Fig. 3. Receiver operating characteristic (ROC) curves of predicting bycatch occurrence from the GLM, GLMM with trip as random effects
and spatial GLMM for both training and testing sets in 5-fold cross-validation. [Colour online.]
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capturing the spatial patterns explicitly as well as enabling pre-
diction at unobserved locations.
For the gamma part, we used root mean square error (RMSE) to

evaluate predictive performance. Figure 4 presents histograms of
the response residuals alongwith the RMSE in 5-fold cross-validation
using the three models. For the spatial model, there was a big dif-
ference in RMSE between the training and testing set, which indi-
cated an overfitting problem and that predictive ability would not
extend to a new dataset. Hence we concluded that the sporadic
hotspots shown in the estimated random fields for the gamma
part of our spatial GLMM (Fig. 2c) were artifacts of overfitting. On
the other hand, the GLMM using trips as random effects greatly
improved the predictive performance from the simple GLM and
with stable RMSE between training and testing sets. An explana-
tion for the superior performance of the gamma GLMM for
bycatch weight might be that vessels employed in different fish-
ing trips have factors affecting fishing power beyond the specifi-
cation of tonnage. Using trips as random effects captured this
variability in trips due to characteristics of vessels as samples
from a larger pool of industry vessels (Helser et al. 2004). However,
because trips are clustered in space, variability in vessels may also
bemixedwith spatial patterns.

2.4.3. Final model
From the cross-validation performance, we selected the spatial

GLMM for the binary part and gamma GLMM using trips as ran-
dom effects for positive bycatch weight as our final model. That
is, for Greenland shark bycatch weight yi from the ith haul, at a
projected fishing location si:

1ðyi > 0Þ � BernoulliðpiÞ; logitfpig ¼ xTi b
ðpÞ þ j ðsiÞ;

n � Nð0;s2Rðf ÞÞ
yijyi > 0 � gamma s�2

G ; l is
2
G

� �
;

logfl ig ¼ xTi b
ðl Þ þ rvðiÞ; rv �i:i:d:Nð0;s2

v Þ

where n = [n(s1), . . ., n(sn)]
T,Rðf Þ is the correlationmatrix as a func-

tion of the range parameter f , and v(i) denotes the trip associated
with the ith haul. Residual diagnostics by the simulation-based
scaled residuals (Shepherd et al. 2016) using the DHARMa pack-
age (Hartig 2020) for both parts can be found in Figs. S7–S8 of the
Supplementary materials1, which do not show obvious violation
of themodel assumptions.

3. Results
The estimated fixed effect coefficients are shown in Table 2.

For the binary part, the target weight (in log scale) has a positive
coefficient for predicting presence of bycatch, while fishing
depth contributes negatively. The coefficient for gear means the
probability of catching Greenland sharks is higher using twin
trawl than single trawl. The coefficient of vessel effect is large in
absolute value, however, with a highly inflated standard error.
This is due to the fact that there are only 24 hauls (all from the
same trip) from a vessel in the tonnage category 500–999.9 t and
none of them contains Greenland shark bycatch. For the gamma
part, fishing depth is again negatively correlated to the positive
bycatch weights. However, target weight is not significantly
useful in predicting bycatch weights. The source factor is

Fig. 4. Histograms of the response residuals for gamma part by the GLM, GLMM with trip as random effects and spatial GLMM for both
training and testing sets in 5-fold cross-validation.
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significant in both parts and the negative coefficient indicates
that non-observers tend to ignore bycatch and underestimate the
bycatchweights when compared with trained observers.
Figure 5 shows spatial plots of the random fields and the indi-

vidual effects by month, year and depth, which are related to the
underlying distribution of Greenland shark bycatch occurrence
as well as their summation, at the linear predictor–logit scale for
the binary part. Similarly, Fig. 6 exhibits the trip random effects,
month, year and depth effects, as well as the summation of the
three fixed effects in space, at the linear predictor–log scale for
the gamma part, where the summation can be seen as represen-
tative of the biomass distribution of Greenland shark bycatch in
space. Note that the month and year effects are at the observed
time (i.e., at different month and year) and we can see months
effects are clustered in space due to fishing scheme. Estimated
parameters for the random effects involved in the two parts as
well as the dispersion for the gamma part are presented in Table 3.
For the binary part, we see an interesting spatial pattern in the ran-
dom field with sporadic hotspots along the coast of Baffin Island

(Fig. 5). The estimated effective range is 159 km, which implies that
the spatial effects span around 159 km and above that distance
the correlation becomes negligible. By comparison, the distance
between the isobar 600 and 1800 m is around 50 km in the east–
west direction, and the spatial random fields come into effect
conditioned on depth being fitted. The weights of bycatch are
distributedmore erratically in space.
The month effects for both parts display some seasonal pattern

but with distinct features as shown in Fig. 7. December has the
highest bycatch encounter probability and bycatch weights,
while September has the lowest. However, because fishing loca-
tions are not randomly sampled in different years and months
(e.g., some locations are fished only in a certain month as shown
by the months effects in Figs. 5 and 6), the effects in space and
time could be intertwined and are therefore difficult to separate.

4. Discussion
In this study, we fitted a spatially explicit two-part model to the

weights of Greenland shark bycatch in a Canadian Arctic trawl

Table 2. Estimated coefficients of fixed effects and standard errors for the two-part model, with significant
effects shown in bold.

Intercept
Target
weight

Tow
time

Fishing
depth Gear Vessel Source

Binary Estimate 1.100 0.365 — −0.254 0.518 –13.893 −0.746
SE (0.681) (0.060) — (0.084) (0.110) (2200.995) (0.157)

Gamma Estimate 6.494 0.029 0.034 −0.111 0.061 — −0.203
SE (0.485) (0.041) (0.036) (0.039) (0.068) — (0.094)

Fig. 5. Spatial plots of the latent Gaussian random fields, month, year and depth effects, as well as their summation as the underlying
distribution of Greenland shark bycatch occurrence on the linear predictor scale for the binary part of the model. [Colour online.]
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fishery to understand the spatiotemporal patterns and driving
factors for both bycatch occurrence and magnitude. The two-part
model allows us to model the bycatch occurrence probability and
positive bycatch weight of Greenland shark separately with dif-
ferent fixed effects and spatial random effects, improving on the
zero-inflated model by Cosandey-Godin et al. (2015). Our final
model demonstrates some compelling spatial patterns for
bycatch occurrence probability with hotspots along the coast of
Baffin Island, suggesting spatially based management measures
could be considered to minimize bycatch of Greenland shark in
the Greenland halibut fishery. This result is consistent with
observations of Greenland shark in inshore areas described by
Cosandey-Godin et al. (2015) and Devine et al. (2018). The esti-
mated effective range of the random field is 159 km, while
Cosandey-Godin et al. (2015) reported a range of 175 km when
analysing Greenland shark bycatch count in a Canadian Arctic
gillnet fishery. Although the encounter probability of Greenland

sharks is higher in the coastal area of Baffin Island, the biomass is
lower than in the Northern Davis Strait. This matches the findings
of Hussey et al. (2015) who reported juvenile sharks presence in
North Baffin Bay fjords, which might serve as breeding or rearing
areas for the sharks.
Results of the model fitting indicated that among the effects

examined, month, gear and bycatch data source (observer vs non-
observer) were significant. These effects can be controlled and there-
fore, could be candidates for management measures. Managers
could consider limiting the use of twin trawls to reduce Greenland
shark bycatch and ensure they have the necessary data to inform
management decisions by continuing to deploy observers on fishing
vessels. While interpretation of the month effect is complicated by
interaction between space and time, results indicate that bycatch
was higher inwintermonths compared to summermonths, suggest-
ing a seasonal closure could be considered tominimize bycatch.
The methods applied in this paper are relatively new and

include novel features and perspectives. Most importantly, we
provided Supplementary details1 needed to make them more ac-
cessible to fisheries scientists globally. Through our model fitting
procedure and our model selection decisions, we emphasize that
spatial models are not a panacea for analysing datasets that con-
tain spatial information and should not be applied blindly. Inter-
pretability and good predictive performance are essential to be a
valuable model. Therefore, researchers should proceed cautiously
and always look to interpret results from a spatiotemporal model
by examining parameters, and prefer those with sensible explana-
tions for the data process.

Fig. 6. Spatial plots of the trip random effects, month, year and depth effects, as well as the summation of the fixed effects as the
underlying distribution of Greenland shark bycatch magnitude on the linear predictor scale for the gamma part of the model. [Colour
online.]

Table 3. Estimated coefficients of spatial random
effects in the binary part, variance for trip random
effects and dispersion parameter in gamma part.

Binary part Gamma part

Effective
range

Variance
s2

Variance
s2

v

Dispersion
s2

G

Estimation 159.5 1.28 0.154 0.475
SE (59.2) (0.50) (0.039) (0.022)
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The two-part model adopted in this bycatch study can be
extended in various ways for analysing bycatch data in general as
outlined in the following three points. First, the spatial random
effects can be extended to spatiotemporal processes if the spatial
pattern differ greatly from year to year. Possible choices include
random fields with autoregressive structure or summation of a
consistent random field over years plus a yearly varying random
field. Second, if the spatial patterns show anisotropic features
(spatial correlation depends not only on the distance apart but
also the direction), especially when the depth or bathymetry in-
formation is missing, the isotropic assumption for the latent ran-
dom fields can be relaxed to allow for geometric anisotropy.
Third, the two parts can be modelled jointly under the assump-
tion of dependency. See Cantoni et al. (2017) for a novel correlated
two-part model. Again, sometimes simple models are sufficient
for analysis purposes and more complicated models should be
considered only when simple models are found questionable by
diagnostic plots and more complex models provide insightful
information.
For future study, instead of focusing on a single bycatch spe-

cies, the binary part can be extended to a multinomial model to
investigate patterns for multiple bycatch species simultaneously.
Also, land–sea boundaries could be taken into consideration
using the barrier method (Bakka et al. 2019). The confounding
problem of covariates and spatial effects we encountered
deserves further study. This is a common problem when spatial
random effects are added to a regression model, because covari-
ates can also show spatial patterns, see discussion in Hodges and
Reich (2010). Thaden and Kneib (2018) proposed a solution to
spatial confounding by using structural equation models, where

covariates aremodeled jointly with the response. For example, in
our bycatch data, the target weight and bycatch weight could be
modelled jointly to avoid confounding. Another unique problem
encountered in analysing fishery dependent data are that fishery
fleets tend to go to areas known for high abundance of target spe-
cies. A study on the consequences of preferential sampling on
catch data analysis is welcome.
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