
SCRS/2022/105 Collect. Vol. Sci. Pap. ICCAT, 79(5): 304-339 (2022) 
 

304 

 

 

EFFICACY OF A BYCATCH ESTIMATION TOOL 

 
Elizabeth A. Babcock1 , William J. Harford2, Todd Gedamke3, Derek Soto4, C. Phillip Goodyear5 

 

 

SUMMARY 

 

The bycatch estimation tool developed by Babcock (2022) was subjected to simulation testing 

using the species distribution model and longline simulator (LLSIM) developed by Goodyear 

(2021). To evaluate the efficacy of the bycatch estimation tool, generalized representations of 

ICCAT CPC longline fisheries were created using LLSIM and were coupled with alternative 

representations of observer programs to produce simulated logbook and observer databases for 

a range of observer coverage levels and allocation methods. Using a semi-automated model 

selection process, linear predictors based on negative binomial and delta lognormal models were 

used to predict total annual bycatch of blue marlin from the simulated datasets. A stratified ratio 

estimator was also used for comparison. Across representations of observer programs, bycatch 

estimates were reasonably unbiased, with diminishing variation in bias estimates as observer 

coverage increased. The use of simulated data sets provides a demonstration of the utility of the 

bycatch estimation tool as well as evaluation of its reliability. 

 

RÉSUMÉ 

 

L'outil d'estimation des prises accessoires développé par Babcock (2022) a été soumis à des tests 

de simulation en utilisant le modèle de distribution des espèces et le simulateur palangrier 

(LLSIM) mis au point par Goodyear (2021). Afin d'évaluer l'efficacité de l'outil d'estimation des 

prises accessoires, des représentations généralisées des pêcheries palangrières des CPC de 

l'ICCAT ont été créées à l'aide de LLSIM et ont été couplées à des représentations alternatives 

des programmes d'observateurs afin de produire des bases de données de journaux de bord et 

d'observateurs simulées pour une gamme de niveaux de couverture d'observateurs et de méthodes 

d'allocation. En utilisant un processus de sélection de modèle semi-automatique, des prédicteurs 

linéaires basés sur des modèles binomiaux négatifs et delta lognormaux ont été utilisés pour 

prédire la prise accessoire annuelle totale de makaire bleu à partir des ensembles de données 

simulées. Un estimateur de ratio stratifié a également été utilisé à des fins de comparaison. Dans 

toutes les représentations des programmes d'observateurs, les estimations des prises accessoires 

étaient raisonnablement non biaisées, avec une variation décroissante des estimations du biais à 

mesure que la couverture des observateurs augmentait. L'utilisation d'ensembles de données 

simulées permet de démontrer l'utilité de l'outil d'estimation des prises accessoires et d'évaluer 

sa fiabilité. 

 
RESUMEN 

 

La herramienta de estimación de las capturas fortuitas desarrollada por Babcock (2022) se 

sometió a pruebas de simulación utilizando el modelo de distribución de especies y el simulador 

de palangre (LLSIM) desarrollado por Goodyear (2021). Para evaluar la eficacia de la 

herramienta de estimación de las capturas fortuitas, se crearon representaciones generalizadas 

de las pesquerías de palangre de las CPC de ICCAT utilizando LLSIM y se combinaron con 

representaciones alternativas de los programas de observadores para generar bases de datos 

simuladas de los cuadernos de pesca y de los observadores para una serie de niveles de cobertura 

de observadores y métodos de asignación. Utilizando un proceso de selección semiautomatizada 

de modelos, se utilizaron predicciones lineales basadas en modelos binomial negativo y delta-
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lognormal para predecir la captura fortuita total anual de aguja azul a partir de los conjuntos 

de datos simulados. También se utilizó un estimador de ratio estratificado para la comparación. 

En todas las representaciones de los programas de observadores, las estimaciones de captura 

fortuita no presentaban sesgos de manera razonable, con una variación decreciente en las 

estimaciones del sesgo a medida que aumentaba la cobertura de los observadores. El uso de 

conjuntos de datos simulados permite demostrar la utilidad de la herramienta de estimación de 

las capturas fortuitas, así como evaluar de su fiabilidad. 
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1.  Introduction 

 

A statistical framework for bycatch estimation has been developed by Babcock (2022) and Babcock and Goodyear 

(2021). This bycatch estimation tool utilizes a model-based procedure to estimate total annual bycatch by 

expanding a sample, such as an observer database, in relation to total effort from logbooks or landings records. 

This framework can also be used to estimate an annual index of abundance, calculated only from the observer data. 

Using this tool, bycatch estimation is carried out by fitting a generalized linear model based on user-defined 

statistical distributions for the observation error models (e.g. delta-lognormal, and negative binomial) and predictor 

variables (e.g., year, season, depth). The complexity of the task of identifying a best approximating model is 

addressed through a semi-automated model selection process based on the user’s choice of information criteria 

(AICc, AIC or BIC). Once a best approximating model is identified, the GLM is used to predict total bycatch in 

all logbook trips (or only unsampled trips, if desired) and total bycatch is estimated summing across trips. For 

comparison, the code also calculates simple design-based ratio estimators. This bycatch estimation tool has been 

developed as an accessible R package (Babcock 2022).  

 

To evaluate the efficacy of the bycatch estimation tool for bycatch species such as billfish (Blue Marlin, White 

Marlin and Round-scale Spearfish), simulation testing was carried out by coupling the longline simulator LLSIM 

(Goodyear 2021) with an additional simulation model that produces observer databases. Statistical vetting of the 

bycatch estimation tool was carried out by creating different scenarios of observer program designs and varying 

spatiotemporal allocation, allocation based on historical catches, and coverage levels. These simulated observer 

databases, along with simulated logbooks, were used to calculate bias in annual bycatch estimates relative to 

‘known true’ bycatch from LLSIM. Generalized representations of ICCAT CPC longline fisheries were created in 

a three-step process. First, the LLSIM platform was used to simulate representations of ICCAT CPC longline 

fisheries (Goodyear 2021). Second, simulated observer programs were specified in a manner consistent with 

current, realistic scenarios of CPC data collection programs. Finally, bycatch estimation was conducted according 

to design-based estimators and model-based estimators and compared against ‘known true’ bycatch. Bycatch 

estimators included statistical methods used by ICCAT CPCs for bycatch estimation and CPUE standardization 

(Brown 2011, Porter et al. 1999, Forrestal et al. 2019). 

 

 

2.    Methods 

 

2.1 Longline fishery simulation (LLSIM) 

 

LLSIM was used to simulate three idealized fleets as described by Goodyear (2021). These fleets are a USA-like 

fleet (fleet 1), Japan-like fleet (fleet 2) and a Brazil-like fleet (fleet 3), with data spanning from 1990 to 2018 to 

reflect the approximate period for which observer coverage has been established (e.g. Diaz et al. (2009)). The 

species distribution model (SDM) generates a 3-dimensional distribution of blue marlin and swordfish throughout 

the Atlantic Ocean based on the habitat preferences of the species (Goodyear 2016; Forrestal and Schrippa 2019). 

LLSIM then simulates longline sets by distributing hooks throughout the habitat of the species, consistent with the 

distribution, gear, hooks between floats, use of light sticks and other characteristics of historical longline fishing 

fleets. The probability of each hook capturing a blue marlin or swordfish is then determined by the location of the 

hook and the probability of fish presence from the SDM (Goodyear 2021).  
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While LLSIM initially produces set-level catches, sets were allocated to simulated trips to more accurately reflect 

the fact that observers are allocated randomly by trips rather than sets. The method of Grüss et al. (2019) was used 

to allocate sets to the same trip if they were in the same gear, month and spatial area (5 x 5 squares). Trips with 

more than 100 sets were randomly allocated to different trips so that the median trips had about 20 sets. This 

algorithm allowed for correlation among sets in the same trip to introduce potential clustering bias into the 

simulated observer data. These data were aggregated to the trip level before randomly assigning trips to be 

observed or not, and the trip identifier was retained so that the trips that were observed could be matched to the 

corresponding logbook trips.  

 

Additionally, LLSIM data aggregated to the trip-level are used as the ‘known true’ blue marlin bycatch in 

subsequent calculation of estimation bias. Figure 1 shows the annual trends in blue marlin catch in numbers 

(Figure 1A), swordfish catch in numbers (Figure 1B), and fishing effort (Figure 1C), as well as the spatial 

distribution of fishing effort (Figure 1D).  

 

2.2 Observer program simulation 

 

The datasets simulated using LLSIM were then provided to the observer program sub-model. Four basic allocation 

schemes were used to generate observer data sets. The probability of an individual trip being sampled was based 

on the following: 

 

·         Random allocation (5 runs at 19 levels: levels: 5% to 95% by 5%) 

·         Proportional allocation based on historical swordfish catch (5 runs at 19 levels: 5% to 95% by 5%) 

·         Proportional allocation based on historical blue marlin catch (5 runs at 19 levels: 5% to 95% by 5%) 

·         Spatial-temporal allocation based on approximate annual coverage of the three idealized fleets (100 runs) 

 

In the random allocation model, all fleets and all trips were assigned a probability of being sampled from 5% to 

95%, by 5% intervals, and trips were randomly selected until the target simulate observer coverage was reached. 

In the proportional allocation to historical swordfish, and the proportional allocation to blue marlin catch scenarios, 

the model set the overall coverage at each 5% level as in the random allocation, but trips were selected as a function 

of swordfish or blue marlin catch. For the swordfish scenario, the logit of the probability of a trip being observed 

increased linearly with swordfish catch, scaled so that the overall coverage was approximately at the specified 

level (5% to 95%). This scenario is meant to represent the case where vessels that are larger or take longer trips 

are more likely to be observed due to logistical constraints. For the blue marlin scenario, the logit of the probability 

of a trip being observed increased with blue marlin catch, to represent an observer program in which observers are 

preferentially allocated to sectors with more bycatch to improve bycatch estimates. Together, the two proportional 

allocations scenarios represent biased (i.e., nonrandom) but potentially realistic allocations that CPC data 

collection programs may deploy. 

 

Finally, the spatial-temporal allocation coverage is the most “realistic” scenario we explored with values for 3 

fleets based on those reported by Diaz et al. (2009), Anonymous (2012 and 2014), and the 2017 -2019 annual 

reports to ICCAT by USA and Japan. A linear interpolation was used to fill in unknown years for the two fleets 

which showed increases from 1% to approximately 9% and 13% for each. For the Brazil-like fleet, no values were 

available, so we included a linear increase from 1% in 1990 to 5% in 2019. See Figure 2 for examples of 

allocations from each scenario. This scenario was intended to capture the general trend of increasing observer 

coverage in the fleets, but it does not capture nuances such as the variability in trip duration between fleets, and 

the fact that coverage levels may vary within fleets depending on target species and other factors.  

 

2.3 Bycatch estimation tool 

 

The bycatch estimation tool estimates total bycatch as follows. First, mean catch per unit effort (CPUE) of observed 

sample units (trips in this example) is estimated from a linear model with predictor variables in R (R Core Team 

2020). The observation error models that can be used include delta-lognormal, delta-gamma, negative binomial 

(from either glm.nb in the MASS library or glmmTMB, nbinom1 and nbinom2) and Tweedie (from cpglm or 

glmmTMB) (Brooks et al. 2017, Dunn and Smyth, 2005, Venables and Ripley 2002, Zhang 2013). Within each 

observation error model group, potential predictor variables are chosen based on the user’s choice of information 

criteria (AICc, AIC or BIC). The user specifies a most complex and simplest model, and all intermediate models 

are considered using the information criterion with the dredge function in the MuMIn library (Barton, 2020). The 

best candidate models in each observation error group may then be compared using 10-fold cross-validation to see 

which observation error model best predicts CPUE. The best model according to cross-validation is the one with 

the lowest root mean square error (RMSE) in the predicted CPUE and mean error (ME) closest to zero. Cross 
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validation, rather than information criteria, is needed to compare between observation error models because 

information criteria may not be used to compare models with different structures in the likelihood (e.g. delta 

models vs. models that fit all zero and non-data simultaneously). 

 

For the best model in each observation error model group, the total bycatch may be estimated by predicting the 

catch in all logbook trips or sets (i.e., the whole fishery) from the fitted model and summing across all effort in 

each year. Alternatively, the model can be used to predict bycatch in only the unobserved effort, which can be 

added to the observed bycatch as a known constant. The bycatch in each sample unit is predicted directly by the 

negative binomial models. Tweedie models predict CPUE, which is then multiplied by effort. Delta-lognormal 

and delta-gamma models have separate components for the probability of a positive CPUE and the CPUE, which 

must be multiplied together (with appropriate bias corrections) and multiplied by effort to get the total catch. Catch 

is predicted in each trip in the logbook data using the model fitted to the observer data, and catch is summed across 

trips to get the total catch in each year. Because the model-predicted catches are not independent between trips, 

the total variance of the bycatch must be estimated with a formula that includes the covariance among trips. This 

is done using either a Monte Carlo simulation method or a delta method. See the User’s Guide (Babcock 2022) for 

details.  

 

The software also calculates an annual abundance index from the same models that were selected for bycatch 

estimation. An annual abundance index is calculated by setting all variables other than year, and any variables 

required by the user to be included in the index (e.g. region or fleet) to a reference level, which is the mean for 

numerical variables or the most common value for categorical variables. The index and its standard error are then 

predicted at these reference levels.  

 

In addition to the total bycatch estimates, the model outputs diagnostics including plots of the residuals calculated 

using the DHARMa R library (Hartig 2020). The DHARMa library uses simulation to generate scaled residuals 

based on the specified observation error model so that the results are more clearly interpretable than ordinary 

residuals. DHARMa draws random predicted values from the fitted model to generate an empirical predictive 

density for each data point and then calculates the fraction of the empirical density that is greater than the true data 

point. Values of 0.5 are expected, and values near 0 or 1 indicate a mismatch between the data and the model. A 

model that does not appear to fit well according to these diagnostics should not be used for bycatch prediction.  

 

For cross-validation, the observer data are randomly divided into 10 folds. Each fold is left out one at a time and 

the models are fit to the other 9 folds. The same procedure described above is used to find the best model within 

each observation error group using information criteria and the MuMIn library. The fitted model is used to predict 

the CPUE for the left-out fold, and the model with the lowest mean RMSE across the 10 folds is selected as the 

best model. Mean error is also calculated as an indicator of whether the model has any systematic bias. 

 

Finally, for comparison to the model-based total bycatch estimate, the software calculates total bycatch using a 

simple ratio estimator, stratified by variables input by the user. The software does not include any method to impute 

the ratio in unsampled strata, so the method should not be used with many stratification variables at low observer 

coverage levels.  The ratio estimator calculates the ratio 𝑅̂𝑖 in each stratum, i, of mean observed bycatch (𝑐𝑖̅) to 

mean observed effort (𝑒̅𝑖, in number of hooks) in the observed data for each strata as 𝑅̂𝑖 =
𝑐𝑖̅

𝑒̅𝑖
⁄   so that the total 

bycatch 𝐶̂is calculated as the sum of the ratio times total logbook effort 𝐸𝑖 , so that 𝐶̂ = ∑ 𝑅̂𝑖𝐸𝑖
𝑛
𝑖=1  , and the variance 

of the total is (Rao 2000): 
 

𝑉(𝐶̂) = ∑ 𝐸𝑖
2

(1 − 𝑓)

𝑛
 (𝑠𝑐+

2

𝑛

𝑖=1

𝑅̂𝑖
2

𝑠𝑒
2 − 2𝑅̂𝑖𝑠𝑐𝑒) 

 

were f is the fraction of the effort observed, n is the number of sample units observed, and s refers to the standard 

deviations and covariances between effort and catch in the observed data.  
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2.4 Scenario exploration 

 

2.4.1 Observer coverage levels 

 

Coarse patterns of bias in bycatch estimation were examined using coverage steps of 5% from 5% to 95% for 

observer program models of random allocation, swordfish catch allocation, and blue marlin catch allocation. In 

this step, 5 simulation runs were performed for each observer program model and level of observer coverage. This 

evaluation was carried out to ensure estimation models were producing, on average, unbiased bycatch estimates, 

with diminishing variation in bias estimates as observer coverage increased, and to explore the role that observer 

allocation to trips may have in bycatch estimation reliability.  

 

In this evaluation, bycatch estimates were made using the stratified ratio estimator, delta-lognormal, and negative 

binomial observation error models (negative binomial 2 from the glmmTMB library, Brooks et al. 2017). The 

stratified ratio estimator was specified using the variables included in the simplest linear predictor model. For the 

delta-lognormal and negative binomial observation models, the simplest linear predictor included year, fleet, and 

area (North vs. South Atlantic). The most complex model additionally included hooks between floats (i.e., trip-

level median hooks between floats, an indicator of depth of fishing) and season. When predicting bycatch using 

delta-lognormal and negative binomial observation error models, variables used in prediction were those identified 

as the best approximating model based on BIC for the respective observation error model in each simulation run. 

Two forms of bycatch estimation are shown: those that predict total bycatch in all trips (not just unobserved trips) 

and those where observed catches were included in the estimates as a known constant. 

 

2.4.2 Random allocation scheme 

 

Building upon the previous section, a more in-depth exploration of bias in bycatch estimation was conducted using 

random allocation to trips with coverage levels of 5% and 10%. This evaluation was carried out to quantify bias 

that could be expected at reasonably realistic levels of observer coverage. In this evaluation, 100 simulation runs 

were performed, and total bycatch was predicted in all trips (not just unobserved trips). The selection of linear 

predictors was also examined by exploring the frequency with which the variables of hooks between floats (i.e., 

trip-level median hooks between floats) and season were included in best approximating models for each 

observation error type.  

 

2.4.3 Spatial-temporal allocation scheme 

 

To extent possible, the spatial-temporal allocation scheme was specified to simulated observer programs that 

encompassed true historical coverage levels of CPC data collection programs. This allocation scheme was used to 

examine the bycatch estimation tool’s ability to choose the best observation error model by cross-validation, and 

also the accuracy of the variance estimates. One hundred runs were performed and included a more diverse set of 

observation error model types. Further, two forms of bycatch estimation are reported: those that predict total 

bycatch in all trips (not just unobserved trips) and those where observed catches were included in the estimates as 

a known constant.  

 

For each of 100 runs, cross-validation was used to select the best model among the options of delta-lognormal, 

delta-gamma, and the glmmTMB versions of negative binomial 1, negative binomial 2, and Tweedie (Babcock 

2022). Variances were calculated by the Monte Carlo simulation method, which involves drawing 1000 values of 

each of the model coefficients and then drawing simulated values of the predicted catches in each unobserved trip. 

The accuracy of the variance estimate was evaluated by calculating the coverage for each observation error and 

model year, where coverage is defined as the fraction of the 100 draws in which the estimated 95% confidence 

interval contained the true value. This should be around 95% for a correctly specified model. 

 

 

3.  Results 

 

3.1 Bycatch estimation tool 

 

Example outputs produced by the bycatch estimation tool for one draw of the spatiotemporal allocation scenario 

are provided to illustrate use of all the features of the tool (Tables 1 & 2; Figures 3, 4, 5). In this example, cross-

validation plots demonstrate that the delta-gamma model best predicts CPUE according to both RMSE and ME 

(Table 2, Figure 3). The other models also performed well. All models predicted very similar trends in the total 

estimated catch of blue marlin, very close to the correct values, with the width of the 95% confidence interval 
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decreasing as observer coverage increased over time (Figure 4). The DHARMa residuals showed adequate model 

specification in the binomial and gamma models as indicated by the linear qq plot of the scaled residuals (Figure 

5).  

 

3.2 Scenario exploration 

 

3.2.1 Observer coverage levels 

 

Using 5 simulation runs across observer coverage levels, from 5% to 95%, resulted in reasonably unbiased bycatch 

estimates, with diminishing variation in bias as observer coverage increased (Figures 6 through 9; predictions 

made for all trips). For comparison, the results are also presented for catch prediction where observed catches were 

included in the estimates as a known constant (Figures 10 through 12). Note that in these figures, year-specific 

plots are shown for years 2000 and 2010, which were chosen arbitrarily to be representative of bycatch estimation 

bias.  

 

Each estimation model (i.e., stratified ratio, negative binomial, and delta lognormal) reproduced temporal trends 

in bycatch, including at 5% observer coverage (Figures 6B, 7B, 8B). Among alternative models of observer 

allocation to trips that were used in this comparison (i.e., random allocation, swordfish catch allocation, and blue 

marlin catch allocation), minor differences in bycatch estimation bias were observed (Figures 6A, 7A, 8A, & 9). 

While random observer allocation demonstrated unbiased bycatch estimates, especially when observed catch was 

included in bycatch estimation (Figures 10 & 11), systematic bias of bycatch occurred for the swordfish catch-

based observer allocation and blue marlin catch-based observer allocation. 

 

3.2.2 Random allocation scheme 

 

The more in-depth exploration of random observer allocation to trips (i.e., random allocation with 5% coverage, 

random allocation with 10% coverage) reinforced the finding that the bycatch estimation tool produced reasonably 

unbiased bycatch estimates. Results are presented where catch predictions were made for all trips. The stratified 

ratio estimator and negative binomial estimation model produced, on average, unbiased bycatch estimates across 

all years (Table 3; Figure 13). The delta lognormal estimation model produced, on average, a positive bias of 

approximately 7%.  

 

Figure 14 highlights the distribution of bias as well as its central tendency (across 100 simulation runs) for each 

year from 1990 to 2015. Visual examination of these trends suggests that the distribution of bias produced by the 

stratified ratio estimator was approximately centered at 0% in all years and across models of observer allocation. 

Conversely, negative binomial and delta lognormal estimation models consistently produced underestimates of 

bycatch in some years and overestimates in others. 

 

In examining the linear predictors included in best approximating model of each observation error structure, the 

negative binomial estimation model frequently included both of the predictors included in the most complex 

formulation (i.e., season and hooks between floats) (Table 4). Likewise, the delta lognormal estimation model 

frequently included hooks between floats and season in the binomial component, with hooks between floats also 

commonly included in the lognormal component of this observation error model. 

 

3.2.3 Spatial-temporal allocation scheme 

 

Like the random allocation scheme, spatial-temporal allocation produced reasonably unbiased bycatch estimates 

for the stratified ratio estimator and negative binomial estimation model, with the delta lognormal model having a 

small positive bias (Figure 15; Table 5). Temporal trends in bycatch estimates tended to be centered at zero 

percent for the stratified ratio estimator, while negative binomial and delta lognormal estimation models 

consistently produced underestimates of bycatch in some years and overestimates in others (Figure 16). Further, 

results were consistent between forms of bycatch estimation (i.e., prediction of total bycatch from all trips versus 

inclusion of observed catches as a known constant). This result is unsurprising for the range of percent coverage 

included in the spatial-temporal allocation model; however, inclusion of observed catches as a known constant 

remains an important consideration as percent coverage increases (e.g., compare Figure 8A and Figure 11A). 

 

The five tested model types produced very similar distributions of RMSE across the 100 draws, but ME was more 

variable showing a slight consistent positive bias in negative binomial 1 and delta-lognormal, and a consistent 

negative bias in negative binomial 2 (Figure 17). Both RMSE and ME consistently preferred the delta-gamma 

model, although all of the other models were also preferred occasionally. Looking at individual draws, RMSE was 
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much more consistent between models in the same draw, while the opposite was true for ME (Figure 18). The 

quality of the variance estimates varied by models, with coverage levels close to the correct value of 95% in most 

years for the delta models and negative binomial 2, but not Tweedie or negative binomial 1 (Figure 19). In general, 

the bycatch estimates were reasonably good even at realistically low coverage levels.  

 

 

4.   Discussion 

 

The use of simulated data sets provided a demonstration of the utility of the bycatch estimation tool as well as 

evaluation of its reliability. Overall, the semi-automated model selection process produced reasonably unbiased 

estimates of bycatch, highlighted by diminishing variation in bias as observer coverage increased. Furthermore, 

the stratified ratio estimator and negative binomial estimation model more routinely produced unbiased bycatch 

estimates than did the delta lognormal estimation model across years. 

 

The tool provided reasonably good estimates of variance in the total bycatch estimates, particularly for the models 

that were preferred by cross-validation, such as the delta-gamma. Also, the total bycatch estimates were fairly 

consistent across estimation methods (e.g. Figure 4), implying that the choice of error model may be less important 

than the specifics of the observer program design (coverage level, allocation over space and time).  

As expected, the precision of the estimates was strongly influenced by observer coverage levels. At low levels of 

around 5%, sampling error caused substantial variability between draws in the total bycatch estimates. In the 

realistic spatiotemporal allocation scenario, in which coverage increased from around 1% in 1990 to up to 13% in 

some fleets in 2018, the estimates became more precise over time. This indicates that the increase in coverage 

levels over time in many fleets is likely to improve bycatch estimates substantially.  

 

Recent improvements to the bycatch estimation tool, including code refactoring and parallelization, have been 

integrated into an R library to make this framework more easily accessible (Babcock 2022). Additional 

improvements could be added that would be useful for abundance index estimation, such as random effects, 

GAMS, and spatial correlation. If other methods are being used or considered by ICCAT members, they could be 

added to the tool.  
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Table 1. Example of summary of the simulated observer and logbook data for blue marlin, for one simulation with 

the spatiotemporal allocation of observer coverage. Cat Est is the blue marlin bycatch estimated by a simple ratio 

estimator stratified only by year.  

 

Year 
Obs 
Cat 

Obs 
Eff 

Obs 
trips CPUE Pos 

Pos 
Frac Effort trips 

trips 
Obs 
Frac 

Cat 
Est 

Cat 
se 

1990 258 793 30 0.18 16 0.53 89813 3218 0.01 29210 5721 

1991 296 1035 36 0.28 25 0.69 93130 3224 0.01 26643 3246 

1992 598 1922 53 0.24 29 0.55 84827 3148 0.02 26386 7150 

1993 641 2587 89 0.3 52 0.58 112551 3237 0.03 27892 2813 

1994 301 1706 88 0.35 40 0.45 105370 3374 0.03 18587 3564 

1995 461 2791 97 0.14 52 0.54 109494 3471 0.03 18085 2584 

1996 524 3155 79 0.2 55 0.7 121937 4019 0.02 20251 2370 

1997 442 2846 78 0.19 49 0.63 102645 3542 0.02 15944 4004 

1998 580 3353 93 0.16 52 0.56 112927 3658 0.03 19531 4286 

1999 357 2672 97 0.22 63 0.65 97008 3392 0.03 12959 1729 

2000 753 3781 102 0.23 70 0.69 103886 3278 0.03 20688 3291 

2001 736 3511 103 0.24 70 0.68 90824 2939 0.04 19039 2016 

2002 555 2905 96 0.2 66 0.69 72489 2474 0.04 13849 1513 

2003 613 4203 131 0.09 54 0.41 88922 2777 0.05 12970 2969 

2004 494 4013 135 0.13 67 0.5 98444 2912 0.05 12117 1901 

2005 704 4982 142 0.15 80 0.56 88131 2735 0.05 12453 1338 

2006 467 4439 122 0.09 63 0.52 83396 2591 0.05 8773 1805 

2007 433 4644 136 0.08 77 0.57 78185 2416 0.06 7289 1233 

2008 532 4424 149 0.08 72 0.48 86300 2492 0.06 10377 2107 

2009 470 5602 160 0.06 76 0.48 70920 2213 0.07 5950 832 

2010 630 7544 204 0.07 103 0.5 72313 2156 0.09 6039 658 

2011 152 2480 111 0.04 34 0.31 64880 2073 0.05 3976 760 

2012 155 2844 136 0.05 47 0.35 67809 2212 0.06 3696 624 

2013 102 2891 140 0.05 46 0.33 58227 1988 0.07 2054 250 

2014 130 3323 153 0.06 52 0.34 57166 1971 0.08 2237 317 

2015 92 2832 142 0.03 40 0.28 46652 1683 0.08 1515 227 

2016 125 2643 70 0.05 44 0.63 43522 1013 0.07 2059 282 

2017 124 3672 81 0.04 41 0.51 46431 1041 0.08 1568 306 

2018 75 2940 75 0.03 38 0.51 49482 1192 0.06 1262 181 
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Table 2. Example of best models of each type according to the BIC, along with root mean square error (RMSE) 

and mean error (ME) from the cross-validation.  

 

Model Formula RMSE ME 

Binomial hbf + season + 1 + area + fleet + Year NA NA 

Lognormal 1 + area + fleet + Year 0.292 0.001 

Gamma 1 + area + fleet + Year 0.292 -0.001 

TMBnbinom1 

 

 

hbf + season + 1 + area + fleet + Year + 

offset(log(Effort)) 

0.293 0.010 

TMBnbinom2 

 

 

1 + area + fleet + Year + offset(log(Effort)) 0.293 -0.009 

TMBtweedie 1 + area + fleet + Year 0.293 0.000 
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Table 3. Summary of percent bias for random allocation to trips with 5% observer coverage and random allocation 

to trips with 10% observer coverage - predictions made for all trips. Estimation models are: stratified ratio 

estimator, negative binomial, and delta-lognormal. Shown are results across all years ‘All’, and for years 2000 and 

2010 across 100 simulation runs.  

 

  Centered 95% 

Year Observer allocation Estimation model Median Lower Upper 

All Random allocation 5% Stratified ratio -0.76 -27.79 30.23 

All Random allocation 5% Negative binomial -0.12 -26.63 30.37 

All Random allocation 5% Delta lognormal 7.92 -18.88 40.24 

All Random allocation 10% Stratified ratio -0.06 -19.48 21.25 

All Random allocation 10% Negative binomial 0.46 -22.67 21.77 

All Random allocation 10% Delta lognormal 7.70 -13.78 30.32 

2000 Random allocation 5% Stratified ratio -0.03 -29.57 28.35 

2000 Random allocation 5% Negative binomial -3.10 -24.81 15.02 

2000 Random allocation 5% Delta lognormal 0.61 -18.22 19.92 

2000 Random allocation 10% Stratified ratio 1.10 -17.75 21.15 

2000 Random allocation 10% Negative binomial -4.06 -17.44 12.15 

2000 Random allocation 10% Delta lognormal -0.03 -14.92 16.11 

2010 Random allocation 5% Stratified ratio 3.48 -29.95 44.79 

2010 Random allocation 5% Negative binomial -7.37 -27.08 16.49 

2010 Random allocation 5% Delta lognormal 5.48 -17.90 33.51 

2010 Random allocation 10% Stratified ratio -0.85 -25.57 30.84 

2010 Random allocation 10% Negative binomial -6.96 -29.81 12.55 

2010 Random allocation 10% Delta lognormal 4.98 -18.77 27.50 
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Table 4.  Percentage of times that linear predictors Season and hooks between floats (HBF) were included in the 

best approximating model of each observation error model across n = 100 simulation runs. 

 

Observer allocation Estimation model Percent season 

included 

Percent HBF 

included 

n 

Random allocation 5% Negative binomial 80 97 100 

Random allocation 5% Delta lognormal 

(binomial component) 

99 100 100 

Random allocation 5% Delta lognormal 5 89 100 

Random allocation 10% Negative binomial 100 100 100 

Random allocation 10% Delta lognormal 

(binomial component) 

100 100 100 

Random allocation 10% Delta lognormal 27 100 100 
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Table 5. Summary of percent bias for spatial-temporal allocation of observer coverage. Estimation models are: 

stratified ratio estimator, negative binomial, and delta-lognormal. Shown are results across all years ‘All’, and for 

years 2000 and 2010 across 100 simulation runs.  

 

  Centered 95% 

Year Include observed catch 

in estimate 

Estimation model Median Lower Upper 

All TRUE Stratified ratio -1.46 -31.19 35.41 

All TRUE Negative binomial 1.79 -29.05 48.57 

All TRUE Delta lognormal 6.95 -22.91 50.83 

All FALSE Stratified ratio -1.46 -31.19 35.41 

All FALSE Negative binomial 1.59 -29.18 49.18 

All FALSE Delta lognormal 7.39 -22.92 51.38 

2000 TRUE Stratified ratio 0.01 -27.65 30.43 

2000 TRUE Negative binomial -1.43 -27.18 23.40 

2000 TRUE Delta lognormal 1.20 -22.37 25.76 

2000 FALSE Stratified ratio 0.01 -27.65 30.43 

2000 FALSE Negative binomial -1.52 -26.87 23.96 

2000 FALSE Delta lognormal 1.01 -22.18 26.37 

2010 TRUE Stratified ratio -2.93 -28.24 34.61 

2010 TRUE Negative binomial -6.39 -23.79 18.88 

2010 TRUE Delta lognormal 2.95 -15.00 32.33 

2010 FALSE Stratified ratio -2.93 -28.24 34.61 

2010 FALSE Negative binomial -7.51 -23.73 18.45 

2010 FALSE Delta lognormal 2.72 -14.94 33.48 
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Figure 1. Annual catches, fishing effort and spatial distribution of fishing effort from simulated longline fleets 

using LLSIM. 
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Figure 2. Example simulated observer coverage based on (A) random allocation to fishing trips with 10% observer 

coverage and (B) spatio-temporal allocation model. 
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Figure 2 continued. Example simulated observer coverage based on (C) proportional allocation to fishing trips 

based on historical catch of swordfish (SWO) with 10% observer coverage and (D) proportional allocation to 

fishing trips based on historical catch of blue marlin (BUM) with 10% observer coverage.  
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Figure 3. Cross-validation results for each model group by trip for one example run using the spatiotemporal 

coverage scenario Delta-Gamma performed best in this case.  
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Figure 4. Total bycatch estimate from BIC best model in each error group, along with the correct totals (pink 

circles) for one example run of the spatiotemporal coverage scenario. 
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Figure 5.  Diagnostics for the best model for the example run for the realistic spatiotemporal scenario, which was 

a delta model with both binomial and gamma components. 
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Figure 6.  Stratified ratio estimator of blue marlin bycatch. (A) Percent bias resulting from random observer 

allocation to fishing trips across coverage levels of 5% to 95% for years 2000 and 2010, (B) example of annual 

bycatch estimates (blue shaded area is 95% confidence interval) at 5% observer coverage, and (C) example of 

annual bycatch estimates (blue shaded area is 95% confidence interval) at 10% observer coverage. 
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Figure 7.  Negative binomial estimator of blue marlin bycatch - predictions made for all trips. (A) Percent bias 

resulting from random observer allocation to fishing trips across coverage levels of 5% to 95% for years 2000 and 

2010, (B) example of annual bycatch estimates (blue shaded area is 95% confidence interval) at 5% observer 

coverage, and (C) example of annual bycatch estimates (blue shaded area is 95% confidence interval) at 10% 

observer coverage. 
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Figure 8.  Delta lognormal estimator of blue marlin bycatch - predictions made for all trips. (A) Percent bias 

resulting from random observer allocation to fishing trips across coverage levels of 5% to 95% for years 2000 and 

2010, (B) example of annual bycatch estimates (blue shaded area is 95% confidence interval) at 5% observer 

coverage, and (C) example of annual bycatch estimates (blue shaded area is 95% confidence interval) at 10% 

observer coverage. 
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Figure 9.  Percent bias resulting from swordfish catch allocation (A, B, C) and blue marlin catch allocation (D, E, 

F) to fishing trips across coverage levels of 5% to 95%. Predictions made for all trips. Plot titles indicate estimation 

models used to predict bycatch.  Shown are examples for years 2000 and 2010. 
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Figure 10.  Negative binomial estimator of blue marlin bycatch - observed catches included as a known constant. 

(A) Percent bias resulting from random observer allocation to fishing trips across coverage levels of 5% to 95% 

for years 2000 and 2010, (B) example of annual bycatch estimates (blue shaded area is 95% confidence interval) 

at 5% observer coverage, and (C) example of annual bycatch estimates (blue shaded area is 95% confidence 

interval) at 10% observer coverage. 
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Figure 11.  Delta lognormal estimator of blue marlin bycatch - observed catches included as a known constant. 

(A) Percent bias resulting from random observer allocation to fishing trips across coverage levels of 5% to 95% 

for years 2000 and 2010, (B) example of annual bycatch estimates (blue shaded area is 95% confidence interval) 

at 5% observer coverage, and (C) example of annual bycatch estimates (blue shaded area is 95% confidence 

interval) at 10% observer coverage. 
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Figure 12.  Percent bias resulting from swordfish catch allocation (A, B, C) and blue marlin catch allocation (D, 

E, F) to fishing trips across coverage levels of 5% to 95%. Observed catches included as a known constant. Plot 

titles indicate estimation models used to predict bycatch. Shown are examples for years 2000 and 2010. 
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Figure 13.  Percent bias across all years for (A) random allocation to trips with 5% observer coverage, and (B) 

random allocation to trips with 10% observer coverage. Predictions made for all trips. Percent bias across 100 

simulation runs from estimation models: stratified ratio estimator, negative binomial, and delta-lognormal. 
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Figure 14.  Annual distribution of percent bias across (A) random allocation to trips with 5% observer coverage 

and (B) random allocation to trips with 10% observer coverage. Shown are percent bias across 100 simulation runs 

from estimation models: stratified ratio estimator, negative binomial, and delta-lognormal. 
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Figure 14. Continued. 

 

 

 

 

 

 

 



334 

 
 

Figure 15.  Percent bias across all years for spatial-temporal observer allocation for (A) predictions made for all 

trips, and (B) observed catches included as known constant. Percent bias across 100 simulation runs from 

estimation models: stratified ratio estimator, negative binomial, and delta-lognormal. 
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Figure 16. Annual distribution of percent bias for spatial-temporal allocation of observer coverage. Shown are (A) 

predictions made for all trips, and (B) observed catches included as known constant across 100 simulation runs 

from estimation models: stratified ratio estimator, negative binomial, and delta-lognormal.  
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Figure 16. Continued. 
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Figure 17. Violin plots of cross-validation mean error (ME) and root mean squared error (RMSE) across 100 

draws of the realistic spatio-temporal coverage scenario for each observation error model (left), along with the 

number of times each model type was chosen as the best by ME or RMSE across the draws.  
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Figure 18. ME and RMSE values by model and draw.  
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Figure 19. Fraction of 100 draws in which the true total annual bycatch was included in the 95% confidence 

interval for the realistic spatiotemporal coverage scenario. The horizontal line indicates the correct value of 95%.   


