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ABTRACT 13 
Fisheries can have profound impacts on co-occurring species exposed to incidental capture, 14 
particularly those with life history traits that make them vulnerable to elevated mortality levels. 15 
Fisheries spatial management holds substantial potential to balance socioeconomic benefits 16 
and costs to threatened bycatch species. This study analyzed observer program data for a 17 
western Pacific Ocean tuna purse seine fishery to estimate the effect of the spatial and temporal 18 
distribution of fishing on catch rates of target and at-risk species by fitting spatially-explicit 19 
generalised additive multilevel regression models within a Bayesian inference framework. Mean 20 
field prediction surfaces defined catch rate hotspots for principal market tunas, silky sharks, rays 21 
and whale sharks, informing the development of candidate area-based management strategies. 22 
Due to sample size limitations, odontocete and marine turtle catch geospatial patterns were 23 
summarized using 2D hexagonal binning of mean catch rates. Effort could be focused in two 24 
areas within core fishing grounds in the Solomon and Bismark Seas to reduce overlap with 25 
hotspots for silky sharks, rays and whale sharks without affecting target catch. Effort could also 26 
be shifted outside of core fishing grounds to zones with higher target tuna catch rates that would 27 
also reduce overlap with hotspots for at-risk species. However, two tuna warmspots overlapped 28 
silky and whale shark warmspots. Sparse and small marine turtle and whale shark hotspots 29 
occurred across the fishing grounds. Research on the economic and operational viability of 30 
alternative spatial management strategies is a priority. A small subset of sets had 31 
disproportionately large odontocete captures. Real time fleet communication and move-on rules 32 
and avoiding sets on dolphin schools might reduce odontocete catch rates. Management of 33 
informative operational predictors such as set association type and mesh size present additional 34 
opportunities to balance catch rates of at-risk and target species. A transition to employing 35 
output controls that effectively constrain the fishery would alter the spatial management strategy 36 
to focus on zones with the lowest ratio of at-risk bycatch to target tuna catch. Findings inform 37 
the design of alternative spatial management strategies to avoid catch rate hotspots of at-risk 38 
species without compromising the catch of principal market species. 39 
 40 
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hotspots 42 
 43 
 44 
1. INTRODUCTION 45 
There has been growing concern over the sustainability of marine megafauna exposed to 46 
bycatch fishing mortality, including species with life histories that make them particularly 47 
vulnerable to elevated mortality from anthropogenic threats (Musick 1999; Hall et al., 2017; 48 
Jorgensen et al., 2022). Selective fishery removals of pelagic marine apex and mesopredators 49 
can alter population and ecosystem size structure, have cascading effects down food webs in 50 
some pelagic ecosystems and cause fisheries-induced evolution (Kitchell et al., 2002; Ward and 51 
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Myers, 2005; Polovina and Woodworth-Jefcoats, 2013). There has also been increasing 52 
attention to risks from bycatch to food, nutrition and livelihood security (Jaiteh et al., 2017; Seidu 53 
et al., 2022). 54 

Tuna purse seine fisheries are a substantial anthropogenic mortality source for silky 55 
(Carcharhinus falciformis) and other species of sharks, including oceanic whitetip sharks (C. 56 
longimanus), hammerheads (Sphyrnidae) and whale sharks (Rhincodon typus). They also 57 
capture manta and devil rays (Mobula spp.), marine turtles, whales, and mainly in the eastern 58 
Pacific Ocean, sets may be made on tuna schools associated with dolphins (Dagorn et al., 59 
2013; Hall & Roman, 2013; Kaplan et al., 2014; Poisson et al., 2014; Lezama-Ochoa et al., 60 
2019; Filmalter et al., 2021).  61 

For some gear types and some taxa of at-risk bycatch, numerous methods are now 62 
available that avoid and substantially reduce catch and fishing mortality of bycatch that are also 63 
economically viable, practical, safe and support a broad range of approaches for effective 64 
compliance monitoring (Gilman, 2011; Poisson et al., 2016; Hall et al., 2017). However, there 65 
has been mixed progress in their uptake (Gilman et al., 2014; Juan-Jorda et al., 2018). This 66 
includes input and output controls, international trade bans, restrictions on drifting fish 67 
aggregating device (FAD) designs to avoid shark and turtle entanglement, restrictions on purse 68 
seine set type, handling and release practices and area-based management tools (ABMTs) 69 
(Poisson et al., 2016; Hall et al., 2017; Gilman et al., 2022).  70 

Static and dynamic ABMTs hold substantial potential to mitigate threatened species 71 
bycatch, including in blue water fisheries (Halpern, 2003; Slooten, 2013; Kaiser et al. 2018, 72 
Kenchington et al. 2018; FAO, 2019; Gilman et al., 2019a; Mannocci et al., 2020). Time-area 73 
measures for tuna purse seine fisheries adopted by regional fisheries management 74 
organizations (RFMOs) have been designed to support management strategies for principal 75 
market species (Kaplan et al., 2014; Gilman et al., 2019a; Hilborn et al., 2021). For example, 76 
tuna RFMOs have employed seasonal and permanent static closures and seasonal drifting FAD 77 
closures to support objectives for managing target species, such as reduced catch and mortality 78 
of juvenile tunas, swordfish and bluefin tuna (Gilman et al., 2019a; Hilborn et al., 2021). ABMTs 79 
also have the potential to manage threatened species bycatch in purse seine fisheries (Kaplan 80 
et al., 2014; Mannocci et al., 2020; Diaz-Delgado et al., 2021). While there is limited empirical 81 
evidence of ecological responses to Blue Water spatial management interventions, effects are 82 
likely to be strongest for upper trophic level species with certain behavioral and life-history traits, 83 
with strong site fidelity and that are highly exploited prior to the ABMT intervention (Le Quesne 84 
and Codling, 2009; Claudet et al., 2010; Gruss et al., 2011; Gilman et al., 2019a).  85 

A western Pacific Ocean, Marine Stewardship Council-certified tuna purse seine fishery 86 
with vessels flagged to Papua New Guinea (PNG) and the Philippines, composes 17% of 87 
regional and 8% of global large scale tropical tuna purse seine vessels (Justel-Rubio and Recio, 88 
2022). The fishery has apparently high silky shark bycatch and captures additional at-risk 89 
species including Mobulid rays, whale sharks, cetaceans and marine turtles (SCS, 2020). The 90 
fishery adopted a plan to address a condition of Marine Stewardship Council certification on the 91 
management of silky shark bycatch by exploring the potential of spatial fisheries management 92 
(SCS, 2022).  93 

This study identified the spatial exposure of at-risk and target tuna species to purse 94 
seine fishery hazards in the western Pacific Ocean. The study analyzed observer data from 95 
PNG and Philippine flagged tuna purse seine vessels to estimate the effect of the spatial and 96 
temporal distribution of fishing effort on catch rates of at-risk and target species, with effort 97 
conditioned to account for other potentially informative predictors of catch risk based on fitting 98 
spatially-explicit generalized additive multilevel regression models within a Bayesian inference 99 
framework. Findings identify potential multispecies conflicts from alternative spatial 100 
management strategies so that any unavoidable tradeoffs are planned and acceptable (Gilman 101 
et al., 2019b). The study objective was to determine if there are temporally and spatially 102 
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predictable hotspots and coldspots for catch rates of at-risk species and of target tunas to 103 
determine if these can be feasibly separated. Findings provide evidence to inform the design of 104 
a bycatch management strategy that incorporates spatial management to avoid catch rate 105 
hotspots of at-risk species without compromising the catch of principal market species. 106 
 107 
 108 
2. METHODS 109 
 110 
2.1. Data Sources 111 
Observer data were obtained from the Pacific Community and Forum Fisheries Agency 112 
Regional Observer Programme. Observer data collection protocols are described in the 113 
Regional Purse Seine Fisheries Observer Workbook and relevant observer data collection 114 
forms (SPC and FFA, 2012, 2018). The compiled dataset comprised the species-specific catch 115 
recorded for each set, and 22 continuous and nominal categorical predictors summarized in 116 
Table S1 that might be informative of spatial and temporal patterns in the species-specific catch 117 
rate. The study sample included 109,396 sets within five zones: the Federated States of 118 
Micronesia exclusive economic zone (EEZ) (N=6,204 sets), Gilbert Islands portion of the Kiribati 119 
EEZ (N=7,765 sets), Nauru EEZ (N=4,705 sets), PNG EEZ (N=87,713 sets), and Solomon 120 
Islands EEZ (N=3,009 sets). These sets were made within 4,859 trips by 157 tuna purse seine 121 
vessels flagged to PNG and the Philippines, with sets conducted over ~22 years, between 15 122 
March 2001 and 15 December 2022 (Fig. 1). Sets in other zones of the western and central 123 
Pacific Ocean combined, both within EEZs and on the high seas (high seas pockets are closed 124 
to purse seine fishing, WCPFC, 2021), contained <6% of available observer data for sets by 125 
PNG and Philippine flagged tuna purse seine vessels and were excluded from the study due to 126 
too small sample sizes. Fig. 1 summarizes the purse seine set intensity for the 22-year period 127 
using a high-resolution 2D hexagon binning approach (Carr et al., 1987) via the hexbin R 128 
package (Carr et al., 2023).  129 

Six species or species groups considered for inclusion in the study, with sample sizes 130 
summarized in Table 1, were: combined principal commercial tuna species (skipjack 131 
Katsuwonus pelamis, yellowfin Thunnus albacares and bigeye T. obesus tunas), silky shark, 132 
combined species of rays, combined species of odontocetes, whale shark, and combined 133 
species of hard-shelled turtles. Records for the weight in metric tonnnes of the catch of 134 
commercial tuna species and number of catch of at-risk species were used in the analyses. The 135 
fishery primarily targets skipjack and yellowfin tunas and also catches bigeye tuna primarily in 136 
associated sets (Table 1). Skipjack tuna accounted for 63.7% of the combined weight of the 137 
principal market tuna species, followed by yellowfin tuna (33.6%) and bigeye tuna (2.7%). Of 138 
captured rays, 40% were giant manta (Mobula birostris), 52% other Mobula species, 7% pelagic 139 
stingray (Pteroplatytrygon violacea), and the remainder (<1%) were not identified to the species 140 
level. Of captured hard-shelled turtles, 27% were olive ridley (Lepidochelys olivacea), 26% 141 
green (Chelonia mydas), 19% loggerhead (Caretta caretta), 19% hawksbill (Eretmochelys 142 
imbricata), 6% not identified to the species level, and 2% were recorded as flatback (Natator 143 
depressus). Of captured odontocetes, 39% were false killer whales (Pseudorca crassidens), 144 
13% bottlenose dolphins not identified to the species level (Tursiops spp.), 7% common 145 
dolphins (Delphinus delphis), 6% each of Indo-Pacific (T. aduncus), Risso’s (Grampus griseus), 146 
rough-toothed (Steno bredanensis) and spinner dolphins (Stenella longirostris), and <5% each 147 
of other species. Table 1 also reports the proportion of sets with >0 captures by set type and 148 
species/taxa. Free school sets had a higher rate of “skunk” sets (sets where the school 149 
escaped, with little or no capture) than sets associated with floating objects (Hall & Roman, 150 
2013). Approximately 30% of the sets were skunk sets, and ca. 32% of sets contained no target 151 
tuna species catch. 152 
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The fishery is predominantly a free school set (64% of total sets over the full study 153 
period, Table 1). From the first to second half of the study sample time series, anchored FAD 154 
sets declined from a mean of 38% to 4%, while free school sets increased from 37% to 77% of 155 
annual sets. During the most recent five years, free school sets were a mean of 84.2%, drifting 156 
FAD 6.7%, other associated 8.6%, and anchored FAD sets were 0.5% of the total number of 157 
sets made per year. 158 
 159 
2.2. Statistical Modeling Approach 160 
 161 
2.2.1. Workflow synopsis 162 
Our modelling workflow, outlined in more detail below, can be summarised as follows, for four of 163 
the species with sufficient catch data (silky shark, tunas, rays, whale shark): (1) identify and 164 
extract potentially informative environmental predictors of species-specific catch rate at each of 165 
the set-specific geolocations, (2) impute missing values for set-specific predictors such as purse 166 
seine net length or set-type using machine learning (ML) based chained imputation procedures 167 
due to the very large number of purse seine sets, (3) again due to the large and high 168 
dimensional data set, use ML-based predictor screening in terms of predictive performance to 169 
explore informative species-specific predictors and potential predictor interactions, (4) fit 170 
species-specific spatially-explicit generalised additive multilevel regression models or 171 
geoGAMMs to the catch time series data using a Bayesian statistical modelling framework with 172 
a reduced selection of predictors informed by the ML-based screening step, (5) evaluate the 173 
predictive performance of each geoGAMM using posterior predictive check tests, and then (6) 174 
derive from each geoGAMM the spatially resolved catch prediction surface or map to support 175 
evidence-informed marine spatial planning. We used 2D hexagonal binning (Carr et al., 1987) to 176 
summarise the geospatial pattern in catch rates for the two species groups with sparse data 177 
(hard-shelled marine turtles and odontocetes). 178 
 179 
2.2.2. Potentially informative predictors 180 
We used macro-scale ocean-climate indicators of the Pacific Decadal Oscillation (PDO) index 181 
and Multivariate El Nino Southern Oscillation Index (MEI) as potential environmental drivers 182 
known to affect both pelagic fish, cetacean and marine turtle productivity and distributions 183 
(Newman et al 2016, Bjorndal et al., 2017; Free et al., 2019). The PDO is a regional climate 184 
index based on cyclical variations in north Pacific sea-surface temperature (Newman et al 185 
2016). The MEI is another widely used regional scale ocean-climate index based on sea surface 186 
temperature anomalies (Zhang et al., 2019). We sourced the monthly PDO index and the 187 
revised bimonthly MEI from NOAA data repositories using the rsoi package for R (Albers, 188 
2022). The monthly PDO and MEI index was then matched with the month of each purse seine 189 
set — the PDO and MEI time series lagged by 12 months were included to potentially reflect 190 
any delay in ocean productivity response to ocean temperature effects (Bjorndal et al., 2017; 191 
Reisinger et al., 2022).  192 

Seascape features and ocean depth are related predictors affecting pelagic biodiversity 193 
hotspots and tuna fisheries catch rates in the Pacific Ocean (Morato et al., 2010). We sourced 194 
the bathymetric depth (depth to seafloor) for the geolocation of each set using Bio-ORACLE 195 
v2.0 (Assis et al., 2018) and the sdmpredictors package for R (Bosch & Fernandez, 2021). 196 
Regional bathymetry mapping shown in Supplemental Material Figure S1 was derived using 197 
NOAA bathymetry data (Amante & Eakins, 2009) that were accessed and processed via the 198 
ggOceanMaps R package (Vihtakari, 2022).  199 

Lunar illumination is known to be informative of tuna catch in the western Pacific region 200 
(Gilman et al., 2015), so we sourced predicted moonlight intensity for the date, time and 201 
geolocation of each set using the moonlit package for R (Śmielak, 2023).  202 
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In addition, potentially informative vessel, observer, operational, spatial and temporal 203 
predictors of species-specific purse seine catch rates, summarized in Table S1, were included in 204 
the ML-based predictor screening steps of the modelling workflow for each species and species 205 
group. The most informative identified predictors were then included in the species-specific 206 
geoGAMMs. These 16 predictors were available from the observer program dataset. For some 207 
of the vessels with missing values for overall length and fish hold capacity in the observer 208 
program dataset, values were able to be sourced from WCPFC (2023). The strength of 209 
correlation between all continuous predictors (including spatial predictors: longitude, latitude) 210 
was explored using the corrplot package for R (Wei & Simko, 2021) — this helped determine 211 
whether any potential predictors might best be excluded from subsequent models due to 212 
potential strong multicollinearity. 213 

Other potentially informative predictors were considered but were not able to be included 214 
due to data quality constraints. Explored but excluded predictors included vessel gross weight, 215 
vessel engine power, number of crew, number of speedboats, some variables that affect the 216 
speed of submerging the net, and vessel owner. Various set type-specific predictors could also 217 
not be included due to data quality constraints, including variables specific to free school sets of 218 
crow’s nest height, use of bird radar and helicopter range (Hoyle et al., 2014), and variables 219 
specific to FAD sets such as how drifting FADs were detected (signal from a radio buoy or a 220 
satellite buoy attached to the FAD or visual), FAD designs and materials such as the depth and 221 
materials of the appendage, and use of instrumentation (e.g., satellite buoy with an integrated 222 
echosounder) (Lennert-Cody et al., 2008; Hall & Roman, 2013; Schaefer et al., 2021; Wain et 223 
al., 2021). 224 
 225 
2.2.3. Machine learning-based missing data imputation 226 
Dealing with missing data in one or more predictors is a major challenge for principled statistical 227 
modelling (Little, 1988) and is usually dealt with using some form of model-based imputation 228 
prior to fitting the model to be used for inference (Murray, 2018). We used an upset plot 229 
approach to visually explore missing data patterns (Lex et al., 2014) and found that ca. 8-9% of 230 
purse seine set records were missing one of four predictors of net depth, net length, net mesh 231 
size, or set cruise speed, while 4% of sets were missing vessel well capacity and 3% were 232 
missing set type. Some sets were missing multiple predictors with, for example, ca. 6% of the 233 
sets missing all 4 predictors of net depth, net length, net mesh size and cruise speed. The 234 
missing data were not missing completely at random (MCAR) as determined with a test for 235 
MCAR (Little, 1988: Chi-sq test = 25702, df = 247, P < 0.0001) using the nanair R package 236 
(Tierney & Cook, 2023) — so deleting missing cases or variables in our study is not appropriate 237 
but requires modelling the missingness instead to support robust statistical inference (Gelman & 238 
Hill, 2006).  239 

It is possible to fit a Bayesian regression-based model using the original data with all 240 
predictors and directly estimate the missing data during the model fitting procedure. However, 241 
for the very large sample and high dimensional dataset considered here, this sort of 242 
measurement-error modelling procedure (Richardson & Gilks, 1993; Goldstein et al., 2018) was 243 
not computationally feasible. So, we used a fast multivariate missing data imputation approach 244 
based on multiple chained random forests to impute all missing data for all continuous and 245 
categorical predictors using the missRanger package for R (Mayer, 2021) with the ranger R 246 
package as the backend (Wright & Ziegler, 2017) where all missing data are simultaneously 247 
imputed multiple times until the minimum mean out-of-bag error was found (Mayer, 2021). The 248 
chained random forest data imputation model also applied predictive mean matching (Little, 249 
1988) to avoid any imputation with values never present in the original dataset. This imputed 250 
dataset now comprised the original 109,396 purse seine sets and 22 predictors but now without 251 
any missing values, and was the dataset used in all our subsequent analyses.  252 
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 253 
2.2.4. Machine learning-based predictor screening 254 
Models using ML approaches are powerful tools for applied predictive modelling in large data 255 
settings and make very few assumptions about data structures (Kuhn & Johnson, 2013). The 256 
first challenge in our statistical modelling workflow was to determine which ML algorithm was the 257 
most applicable for the species-specific catch data. Usually, ML-based applications apply a 258 
single prediction algorithm often with little if any specific knowledge domain justification. We 259 
used an automatic ML or AutoML procedure (He et al., 2021) in the first instance to explore 260 
which prediction algorithm might be best suited for each of the species-specific catch data time 261 
series given the 22 potential predictors (Table S1) since there was little evidence of strong 262 
correlation between most of the predictors (Figure S2). Specifically, we used the AutoML 263 
procedure on the H20.ai platform (H2O.ai, 2022) via the h2o (LeDell et al., 2023) and agua 264 
(Kuhn et al., 2023) R interface packages to: (1) explore, (2) hyperparameter tune, and (3) 265 
evaluate a large number of regression or classification (to explicitly address the ‘skunk” sets) 266 
models using six prediction algorithm classes (gradient boosting machine, xgboost, distributed 267 
random forest, neural nets, generalized linear model, stacked ensemble) and 4 model-specific 268 
performance metrics for each species.  269 

Stacked ensemble ML uses a supervised meta-learning algorithm to find the optimal 270 
combination of the other five prediction algorithms. We used stacked ensembles as a 271 
benchmark to determine which of the other single-class algorithms was as well suited in terms 272 
of predictive performance for each species-specific dataset. Stacked ensembles are useful for 273 
prediction but very difficult to interpret, which is a major objective of this study, and so we chose 274 
the next best performing single-class algorithm for each species that compared adequately with 275 
the stacked ensemble class. The performance metrics were MAE, RMSE, R2, and mean 276 
residual deviance for the regression-based models and AUC, accuracy, RMSE, and logloss for 277 
the classification-based models (see Kuhn & Johnson, 2013). All ML modelling workflows were 278 
applied within the tidymodels meta-learning framework for R (Kuhn & Wickham, 2020).  279 

We fitted the appropriate species-specific supervised ML algorithm determined using 280 
AutoML to each species-specific catch series using the 22 potentially informative predictors. The 281 
response variable (hence supervised) in the case of 4 of the 6 species or groups considered 282 
here (silky shark, tuna, rays, whale shark) was the recorded set-specific catch with purse seine 283 
net length, net volume and vessel length as nonproportional effort proxies (Davies & Jonsen, 284 
2011) being 3 of the 22 potentially informative predictors. We also explored binary data versions 285 
for some species based on whether there was either 0 or > 0 set-specific catch modelled with a 286 
Bernoulli likelihood, which is a special case of a binomial likelihood but now with a single trial 287 
(Congdon, 2003). We then used recent developments in interpretable ML (Lundberg et al., 288 
2020) using SHAP-based summary plots to help derive insight into the predictor functional form 289 
and any informative interactions with other predictors. SHAP is an acronym of sorts for Shapley 290 
additive feature explanations (Lundberg et al., 2020) where “feature” is a ML term synonymous 291 
with the term “predictor”. A SHAP value is the average or expected marginal contribution of that 292 
predictor value to the predicted set-specific model outcome while averaging over all other 293 
predictors in the model. SHAP values have many desirable properties including being additive 294 
so that they sum to the total model output where a higher SHAP value is unambiguously 295 
indicative of a more important predictor.  296 

In our context, higher SHAP values imply greater contribution of a specific predictor to 297 
the catch rate. A SHAP summary plot then comprises a density summary of the predictive 298 
contribution of each predictor included in a model — it is a more robust form of the commonly 299 
used variable importance plot (Janitza et al., 2018) but is a marginal effect with the density 300 
summarizing the entire 109,396 purse seine set-specific values. SHAP values account for all 301 
predictive information in a specific feature that result from interactions and dependencies with 302 
other features or predictors in the model. The SHAP summary plots were derived here using (1) 303 
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the kernelshap R package (Mayer & Watson, 2023) to calculate SHAP values for each of the 304 
109,396 sets within each of the 4 species-specific predictive models followed by (2) SHAP 305 
summary visualization using the shapviz R package (Mayer, 2023). Importantly, this predictor 306 
screening step of our workflow helped identify the minimal set of meaningful predictors for 307 
inclusion in the next more computationally demanding but more inference-focused Bayesian 308 
geoGAMM modelling step.  309 
 310 
2.2.5. Bayesian statistical modelling approach 311 
We used a Bayesian inference workflow (Gabry et al., 2019) based on spatially-explicit 312 
generalized additive multilevel regression models or geoGAMMs (Kammann & Wand, 2003) 313 
with the model likelihood based on either a zero-inflated or a distributional (hurdle-type) model 314 
structure to account for the purse seine sets with zero-catch (“skunk” sets) conditioned on 315 
potential informative covariates or predictors (Kneib et al., 2023: see Schaefer et al., 2021 for an 316 
eastern Pacific  tuna purse seine fishery modelling example). This Bayesian approach to 317 
statistical modelling provides a powerful way to account for uncertainty in the data, the model 318 
parameters and the model structure using probability theory (van de Schoot et al., 2021). The 319 
Bayesian modelling workflow used here comprised: (1) prior predictive checks to assess the 320 
adequacy of the priors used for (2) a robust statistical model accounting for data constraints and 321 
potential predictors of catch rates followed by (3) graphical posterior predictive checks of the 322 
adequacy of the statistical model(s) fitted to the purse-seine set-specific catch data for each 323 
species.  324 

More specifically, we used cubic smoothing splines (Wood, 2006) to account for possible 325 
nonlinear functional form of the predictors such as PDO, vessel length and the purse seine net 326 
length. The structured spatial effect of the individual purse seine set geolocations was estimated 327 
in the geoGAMMs aggregated over all sampling years using a 2D Gaussian Process surface 328 
with Matérn covariance kernel (Gelfand & Schliep, 2016). Group-level (or random) effect 329 
structures (intercepts-only) included in the models were the identity of the 743 onboard-vessel 330 
observers and the identity of the 157 vessels to account for any correlated or observer- and/or 331 
vessel-specific heterogeneity in the catch rates not accounted for by the other predictors. Any 332 
potential excess zero catch (“skunk” sets) was accounted for explicitly in the models by using a 333 
hurdle-negative binomial model likelihood for both the silky shark and ray Bayesian distributional 334 
geoGAMMs, a hurdle-lognormal likelihood for the tuna catch weight model and a zero-inflated 335 
negative binomial likelihood for the whale shark catch model. The posterior samples for all 336 
models were sourced from 4 chains and 2500 iterations after a warmup of 1000 iterations per 337 
chain. Therefore, the posterior for each estimate comprised 10,000 samples or draws that were 338 
used to derive the 95% quantile-based uncertainty intervals.  339 

These distributional geoGAMMs were fit using the Stan computation engine (Carpenter 340 
et al., 2017) using the brms R interface for Stan (Bürkner, 2017) but with the cmdstanr 341 
backend (Gabry & Češnovar, 2022). All geoGAMMs were implemented using weakly informative 342 
regularizing priors (Lemoine, 2019) with prior predictive graphical summaries used to assess 343 
adequacy of the priors (Gabry et al., 2019). Model convergence was assessed using parameter-344 
specific diagnostics such as multiple chain rank plots, bulk and tail effective sample size metrics 345 
and a rank-based Rhat statistic (Vehtari et al., 2021). All diagnostics reflected convergence of all 346 
models used here. Further evaluation of the best-fit-model was assessed using graphical 347 
posterior predictive checks (Gelman et al., 2014; Gabry et al., 2019). All inference was then 348 
based on the best-fit model.  349 

Throughout the entire study workflow, we used the tidyverse R meta-package 350 
(Wickham et al., 2019) for data pre- and post-processing, the terra R package for spatial data 351 
processing (Hijmans, 2023), the rnaturalearth  (Massicotte & South, 2023) and 352 
sf(Pebesma, 2018) R packages for sourcing the regional map data and vector based mapping, 353 
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and the ggplot2 R package (Wickham, 2016) for visualizations with the viridis color palette 354 
from the colorspace R package (Zeileis et al., 2019) that was used for SHAP plots and 355 
mapped spatial prediction surfaces. The patchwork R package (Pedersen, 2022) was used for 356 
all multi-panel plot layouts. 357 
 358 
 359 
3. RESULTS 360 
 361 
3.1. Prior Species-specific Predictor Screening 362 
The most appropriate ML algorithm to be applied to each species-specific dataset identified 363 
using AutoML was a gradient boosting machine using LightGBM (Ke et al., 2017) for the four 364 
explored species (silky shark, tuna, rays, whale shark). The predictive performance for all four 365 
metrics using LightGBM was ranked very close to that for stacked ensembles (that comprise a 366 
complex mix of both best-in-each-algorithm-class and all algorithms) and far better ranking than 367 
for either random forest or XGBOOST (another gradient boosting algorithm) and substantially 368 
better than for either a generalized linear model (GLM) or neural nets. ML models with gradient 369 
boosting-based regression or classification using the LightGBM engine were then applied to 370 
each data catch set for the four species that were identified as best modelled using gradient 371 
boosting by AutoML. The performance metric ranking plot for silky shark is shown as one 372 
species-specific example in Figure S3. Then, set-specific SHAP-based explanations or 373 
predictions were derived for each of those species and summarized in SHAP summary plots to 374 
help identify the most important marginal predictor effects of species-specific catch. As one 375 
example, we show the SHAP predictor summary plots for skipjack tuna, the main target species, 376 
using both a Bernoulli likelihood model (0 or > 0 catch) and the landed weight of the skipjack 377 
catch model. These two models combined would be equivalent to a hurdle-lognormal likelihood 378 
model in inferential statistical modelling.  379 

The SHAP summary plot for binary set-specific skipjack catch (0,>0) is shown in Figure 380 
S4 where the top two predictors in descending order of importance were mean depth to the 381 
seafloor and the purse seine net length. Increasing net length results in higher probability of 382 
skipjack catch while fishing in deeper waters results in decreasing probability of any skipjack 383 
catch (and hence a higher probability of a set with no captured skipjack). The SHAP summary 384 
plot for set-specific skipjack catch >0 is shown in Figure S5 where the top 5 predictors were 385 
purse seine net mesh size, hour of the day when the skiff was off, the specific vessel, net length 386 
and the PDO index in the 12 months prior. Increasing mesh size was associated with higher 387 
landed weight of skipjack and decreasing landed weight during the daytime. Importantly, this 388 
ML-based predictor screening step helped to identify the minimal set of meaningful predictors 389 
for this large and highly dimensional dataset for consideration in the next Bayesian regression 390 
modelling step — where different predictor effects were apparent for all four species, revealed 391 
using those SHAP summaries. 392 
 393 
3.2. Modelling the Expected Species-specific Catch 394 
Expected silky shark catch conditioned on a minimal set of non-spatial potentially informative 395 
predictors guided by the prior ML-based predictor screening is shown in Figure 2. Silky shark 396 
catch increased over the 22-year period (Figure 2a). Silky shark catch was lower for anchored 397 
FAD sets (Figure 2b) — moreover, lower anchored FAD catch occurred during all 4 of the 5-398 
year time periods (Figure 2c), and silky shark catch was higher in drifting FAD and in other 399 
associated sets than in free school sets. Silky shark catch was also a significant nonlinear 400 
function of both a major ocean productivity proxy (PDO index, Figure 2d) and the set-specific 401 
cruise speed (higher set-specific catch increases with vessel cruise speed, Figure 2e). Silky 402 
shark catch was not a function of fishing effort measured as purse seine net length (Figure 2f). 403 
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The hurdle component (0 vs > 0 catch) of the distributional regression model was a nonlinear 404 
function of the purse seine mesh size (Figure 2g) — zero silky shark catch more likely a function 405 
of small mesh size. The three posterior predictive check tests for the silky shark distributional 406 
geoGAMM with hurdle-negative binomial likelihood were density overlay, maximum prediction 407 
and the expected proportion of sets with zero catch. All three predictive check tests reflected 408 
adequate silky shark model fit and are shown here as one species-specific example (Figure S6).  409 

Expected tuna catch conditioned on a minimal set of non-spatial potentially informative 410 
predictors is shown in Figure 3. The tuna catch was apparently stable over the 22-year period 411 
(Figure 3a) but this was not the case when set type was taken into account. Tuna catch 412 
increased over the 22-years for all set types other than for anchored FAD sets (Figure 3c). Tuna 413 
catch was a significant nonlinear function of the time of the day when initiating a set (based on 414 
skiff departure time) with lower catch apparent during the later afternoon and early evening 415 
(Figure 3e). Tuna catch was not a function of either PDO (Figure 3d), fishing effort measured as 416 
net length (Figure 3f) or net mesh size (Figure 3g). The hurdle component (0 vs > 0 catch) of the 417 
distributional regression model was apparently (1) not a significant nonlinear function of fishing 418 
effort measured as net volume (Figure 3h) but was apparently (2) a function of the depth to 419 
seafloor with higher likelihood of positive catch further from the coast, especially around seafloor 420 
depths ca. 2000-2500m, and conversely more likely to have a tuna catch skunk set closer to the 421 
coast in areas with shallower depths (Figure 3i).  422 

Expected ray catch (combined catch of various ray species) conditioned on a minimal 423 
set of non-spatial potentially informative predictors is shown in Figure 4. The ray catch was not 424 
a significant function of the minimal set of informative predictors except perhaps for the hurdle 425 
component, where positive catch appears more likely as mesh size increases (Figure 4f).  426 

Expected whale shark catch conditioned on a minimal set of non-spatial informative 427 
predictors is shown in Figure S7 and was not a significant function of the minimal set of 428 
informative predictors. 429 
 430 
3.3. Spatial Prediction Surfaces for Marine Spatial Planning 431 
The geolocation of the purse seine set was a more informative predictor of the catch of all four 432 
explored species (silky shark, tunas, rays, whale shark) than most of the non-spatial potentially 433 
informative predictors shown in Figures 2-4 and Figure S7. The residual spatial effects for each 434 
of the four geoGAMM-modelled species are shown in Figures 5-8.  435 

The geospatial pattern for the silky shark catch that was conditioned on a minimal set of 436 
predictors (including set geolocation) indicates that relatively higher catch rates occurred mainly 437 
in the PNG EEZ southward in the Solomon Sea and a secondary warmspot (i.e., area with a 438 
relatively high, but not the highest, catch rate) was in the Bismarck Sea region off northern PNG 439 
centred around Manus Island. However, there were lower silky shark catch rates in the western 440 
section of the Solomon Sea and the southern Bismark Sea (Figure 5). 441 

The tuna species geospatial catch pattern on the minimal set of predictors (including set 442 
geolocation) indicates that relatively higher model-unaccounted catch occurred in the north-443 
western FSM EEZ at around 100N and in the southeastern PNG EEZ, both in areas with 444 
relatively low fishing effort (i.e., marginal fishing grounds) (Figure 6). Tuna warmspots straddled 445 
the equator in the northwestern zone of the PNG EEZ, Nauru EEZ and western two-thirds of the 446 
Kiribati EEZ around the Gilbert Islands, with an apparent warmspot in a marginal part of the 447 
fishing grounds in the Coral Sea (Figure 6). 448 

The geospatial pattern for the catch of ray species indicates that relatively higher 449 
catches occurred mainly in the southern section of the Solomon Sea spanning the EEZs of both 450 
PNG and the Solomon Islands. There was decreasing ray catch rates when moving north and 451 
northeast across the study area fishing grounds (Figure 7).  452 

There was little residual geospatial pattern remaining for the modelled whale shark catch 453 
rate except perhaps in the southern Solomon Sea in the PNG EEZ and possibly in the Coral 454 
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Sea in a marginal section of fishing grounds. A possible warmspot was apparent, following a 455 
horizontal band slightly north of the equator within the northern PNG EEZ and zones of the 456 
southern FSM EEZ (Figure 8). 457 

There was insufficient catch data for odontocete and hard-shelled marine turtle species, 458 
so the catch geospatial pattern of these two groups was summarized using 2D hexagonal 459 
binning of the mean catch rate (mean number per set) per hexagon cell to explore any apparent 460 
spatial effect. Hard-shelled turtles and odontocetes were very rare capture events, where only 461 
0.6% and 1.4% of sets had one or more hard-shelled turtle or odontocete capture, respectively 462 
(Table 1). This explains why most 0.5 x 0.5 degree hexbins have a mean of 0 catch per set 463 
(yellow areas of Figures S8, S9). Sparse hard-shelled marine turtle interactions occurred across 464 
the fishing grounds, with generally lower catch rates in the PNG EEZ relative to the other zones 465 
of the study area (FSM, Solomons, and Nauru EEZs and Gilbert Islands portion of the Kiribati 466 
EEZ). Sparse odontocete interactions also occurred across the fishing grounds, with small 467 
areas of hot and warmspots scattered throughout the study area.  468 
 469 
 470 
4. DISCUSSION 471 
 472 
4.1. Static and Dynamic Area-based Management 473 
ABMTs hold substantial potential to balance socioeconomic benefits derived from fisheries and 474 
costs to at-risk species exposed to bycatch fishing mortality (Gilman et al., 2019a; Mannocci et 475 
al., 2020; Lopetegui-Eguren et al., 2022). Mean field prediction surfaces defined catch rate 476 
hotspots for principal market tunas, silky sharks, rays and whale sharks, informing the 477 
development of candidate static spatial management strategies that reduce catch risk of at-risk 478 
species without causing unacceptable costs to catch rates of target species. Focusing effort by 479 
the PNG and Philippines purse seine fishery in the western Solomon Sea and the southern 480 
Bismark Sea, which are within the core area of the fishing grounds within the PNG EEZ, would 481 
reduce overlap with catch rate hotspots for silky sharks, rays and whale sharks without affecting 482 
catch rates of target species. Furthermore, shifting effort away from the core fishing grounds in 483 
the Bismark Sea and the Solomon Sea: (1) northwards up to but south of the equator in the 484 
PNG EEZ, (2) eastwards around the equator in the Nauru EEZ and Kiribati EEZ in the Gilbert 485 
Islands, and (3) into a marginal area of the fishing grounds around 100N in the western zone of 486 
the FSM EEZ would reduce also overlap with catch rate hotspots for silky sharks, rays and 487 
whale sharks, and would also increase catch rates of principal market tunas. Two tuna catch 488 
rate warmspots overlapped warmspots of at-risk species, for whale sharks in the northwestern 489 
zone of the PNG EEZ, and for silky sharks, rays and whale sharks in the Coral Sea in the 490 
southeastern PNG EEZ.  491 

Additional research on the economic and operational viability of alternative static spatial 492 
management strategies is a priority, particularly for proposed strategies that shift fishing effort to 493 
areas that are more distant from ports for smaller vessels that make relatively short trips closer 494 
to seaports in PNG. Additional research could also assess the spatial distribution of the size 495 
frequency distribution of the principal market tuna catch. Decisions on fishing grounds may be 496 
based in part on past behavior and habit, so that despite evidence of higher target species catch 497 
rates, and of promising predictors (environmental conditions, physical features) for high catch 498 
rates occurring outside historical core fishing grounds, fleet participants may be hesitant to 499 
change conventional practices (Davies et al., 2014).  500 

Results did not identify opportunities for temporally dynamic spatial management of 501 
target and bycatch catch rates. Time of day of initiating sets was an important predictor for tuna 502 
catch rate (declining after about 3pm, Fig. 2d), but not for any assessed at-risk bycatch species. 503 
Previous studies that explored time of day effects on attendance at drifting FADs found that 504 
target tunas and silky sharks unfortunately make excursions away from the FADs, likely to 505 
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forage, at similar times (mainly during the night time) (Filmalter et al., 2011; Schaefer and Fuller, 506 
2013; Forget et al., 2015; Restrepo et al., 2016). Temporal predictors at scales of within a month 507 
(moon phase), season, and interannual El Nino Southern Oscillation phase did not explain any 508 
species-specific catch rates. At a decadal scale, silky shark catch rates were higher with higher 509 
PDO index values, with a 12-month lag, reflecting warmer regional SST (Houk et al., 2020). The 510 
PDO is associated with north-to-south variability in SST and productivity across the tropical and 511 
temperate Pacific Ocean, which can strengthen and weaken responses to ENSO phases 512 
(Newman et al., 2016; Houk et al., 2020). Lags in responses in species-specific catch rates to 513 
the PDO climate cycle are likely due to delays in ocean productivity, recruitment and biomass 514 
responses to ocean temperature effects (Lehodey et al., 1997, 2006; Saba et al., 2007). Silky 515 
sharks occur within the upper mixed layer, which extends to about 110 m in the western and 516 
central Pacific Ocean (Hutchinson et al., 2015). Variability in the vertical depth distribution of 517 
silky sharks in response to PDO phase is not likely explained by PDO, as silky sharks likely 518 
occur at shallower depths than most purse seine maximum net depths of about 200 m (Itano et 519 
al., 2012) during all PDO phases. Additional research could assess whether locations of 520 
species-specific catch rate-defined hotspots, warmspots and coldspots vary by climate cycle 521 
phase, which could inform the design of spatially-mobile spatial management strategies where 522 
fishery closed areas might vary in location during different climate cycle phases.  523 

A large proportion of total odontocete captures occurred in a small number of sets with 524 
relatively numerous captures of dolphin species (common dolphin, false killer whale, bottlenose 525 
dolphin, striped dolphin and rough-toothed dolphin). Odontocete captures mainly occurred as 526 
multiple captures per set, with 92% of the total captured odontocetes occurring in sets with ≥2 527 
captures per set, and over half of total odontocete captures occurring in 212 outlier sets with 528 
between 10 and 120 odontocete captures per set (0.2% of total sets). Real time fleet 529 
communication and move-on rules (Gilman et al. 2006; Little et al. 2015; Holland and Martin 530 
2019) and avoiding sets on dolphin schools (unintentional and intentional) might hold potential 531 
to reduce odontocete catch rates in this fishery.  532 

Conversely, a large proportion of sets with one or more ray, turtle, whale shark or silky 533 
shark capture had relatively few captures per set. Whale shark captures occurred primarily as 534 
singletons (1 per set), accounting for 84% of total captures. A third of ray captures occurred as 535 
singletons, and 87% of total ray captures occurred in sets with between 1 and 10 ray captures 536 
per set. Hard-shelled turtle captures also occurred primarily as singletons, with 85% of total 537 
captures occurring as singletons. Half of silky shark captures occurred in sets with between 1 538 
and 14 captures per set, and 30% of total silky shark catch occurred in sets with between 1 and 539 
7 captures per set. Real-time spatial management approaches likely hold less promise for these 540 
species with non-clustered interactions. Additional research could be conducted to determine 541 
whether there is a higher probability of captures in consecutive sets (i.e., is there a higher 542 
probability of a capture in a set that had a capture event in a previous set by that vessel) to 543 
explore the potential of species-specific move-on rules. 544 

The geospatial and vertical distributions of pelagic marine predators, and in some cases 545 
distributions of different size classes and sexes within species, including when and where they 546 
aggregate, are some of the attributes that determine their susceptibility to capture in tropical 547 
tuna purse seine and other surface fisheries (Hobday et al., 2011). Industrial purse seine 548 
fisheries targeting mainly skipjack and yellowfin tunas, as well as bigeye tuna, occur primarily in 549 
the tropics of the eastern Atlantic Ocean, western Indian Ocean and eastern and western Pacific 550 
Ocean (Hall & Roman, 2013). Pelagic predator distributions, local abundance and aggregating 551 
behavior are defined by environmental variables such as temperature and dissolved oxygen, 552 
depth of the thermocline, and availability of their prey (Musyl et al. 2003, 2011; Lopetegui-553 
Eguren et al., 2022). Pelagic predators have different environmental preferences and tolerances 554 
(Lehodey et al., 2011; Muhling et al., 2011; Brodziak and Walsh, 2013). Larval and juvenile 555 
tunas have a narrower range of environmental variables in which they can live than adults, while 556 
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optimal temperatures are narrowest and warmest for spawning tunas (Lehodey et al., 2011; 557 
Bromhead et al., 2015). Distributions and aggregation behaviors are also determined by 558 
physical features that determine biophysical structure. These features include bathymetric 559 
structures such as shallow seamounts, reefs, shelf breaks, and islands, atolls and coastal 560 
features that create small-scale eddies and fronts (i.e., Island Mass Effect) (Worm et al., 2003; 561 
Morato et al., 2010), as well as natural and artificial drifting and anchored floating objects, 562 
discussed below. Dynamic hydrographic features also affect distributions and aggregation 563 
locations, including currents and frontal systems, upwelling plumes, and eddies (Hyrenbach et 564 
al. 2000; Gove et al., 2016). These static and dynamic features structure the distribution of 565 
nutrients, levels of primary productivity, and the distributions and aggregations of prey species 566 
of pelagic apex predators (Hyrenbach et al. 2000, Vandeperre et al. 2014, Kavanaugh et al. 567 
2016).  568 
 569 
4.2. Operational Predictors 570 
Catch composition varies by purse seine set type (Dagorn et al. 2013; Hall & Roman 2013; 571 
Peatman et al. 2017; Pons et al., 2023). Set type was found to be an informative predictor only 572 
for silky shark catch rate, which was significantly lower in anchored FAD sets than the three 573 
other set types, and significantly higher in drifting FAD and in other associated sets (e.g., drifting 574 
logs, drifting algae, live and dead large marine organisms, marine debris such as crates, pallets 575 
and nets) than in free school sets. Summarized in the Methods section, over the study time 576 
series, the fishery has increasingly conducted free school sets, making up a mean of 84% of 577 
sets made annually during the most recent five years.  578 

Relative to free-swimming tuna schools chasing prey, sets on relatively slower-moving 579 
drifting FADs and logs catch a larger number and weight of nontarget species per set and per 580 
unit weight of target tunas (Hall & Roman 2013; Torres-Irineo et al. 2014; Gaertner et al. 2016; 581 
Peatman et al. 2017; Lezama-Ochoa et al. 2017; Pons et al., 2023). Shark catch rates, in 582 
number or weight of captures per set, are higher in drifting FAD and log sets than in free school 583 
sets (Amande et al. 2008, 2010; Clarke et al., 2011; Lopetegui-Eguren et al., 2022). However, 584 
when applying a catch rate of the weight of caught sharks per weight of principal market tunas, 585 
shark catch rates in school and associated sets are the same order of magnitude (ISSF, 2017). 586 
Set type is also an informative predictor of catch rates of principal market tuna species as well 587 
as other at-risk species, such as higher Mobulid ray and leatherback turtle catch rates in free 588 
school sets compared to associated sets (Dagorn et al. 2013; Hall & Roman 2013). Thus, 589 
multispecies conflicts result from managing set type (Gilman et al., 2019b). Not assessed in this 590 
study, set type is also an informative predictor of the body size of the catch, where drifting FAD 591 
and other associated sets catch smaller fish, including juvenile yellowfin and bigeye tunas, 592 
relative to free school sets (Dagorn et al., 2013; Fonteneau et al. 2013; Hoyle et al., 2014; 593 
Restrepo et al. 2017).  594 
 Sets with a smaller mesh size of the main section of the net were more likely to have no 595 
silky shark or ray catch. Mesh size was not an informative predictor for tunas (or whale sharks). 596 
This suggests that mesh size might be a manageable operational variable to reduce bycatch 597 
risk of silky sharks and rays without posing a cost to economic viability. Mechanistic studies 598 
have found that purse seine nets with smaller mesh sizes tend to have slower sink rates, faster 599 
drifting speeds, shallower maximum depths, slower pursing speeds, and a different net 600 
geometry than nets with larger mesh sizes (Misund et al., 1992, Kim et al., 2007; Hosseini et al., 601 
2011; Widagdo et al., 2015; Tang et al., 2019). Mesh size might be correlated with other gear 602 
designs and characteristics that affect catchability (by affecting sink rate, drifting speed, fishing 603 
depth, pursing speed, net geometry as well as flow interference) such as the twine material, 604 
diameter and density, and net handing ratio and stiffness (Zhou et al., 2019). Purse seine nets 605 
with smaller meshes might have lower catch efficiency by increasing the risk of skunk sets and 606 
escapement of a portion of encircled schools. Purse seines with smaller meshes might also 607 
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have a lower risk of entangling some large species, such as documented for sharks and marine 608 
turtles in netting used as appendages of drifting FADs (Hall & Roman, 2013; Poisson et al., 609 
2016; Pons et al., 2023) and for dolphins in tuna purse seines (a dolphin bycatch mitigation 610 
method for tuna purse seine fisheries uses smaller mesh netting in the upper section of tuna 611 
purse seine nets to reduce the risk of entanglement when fishers employ a backdown procedure 612 
to release dolphins from the net, Barham et al., 1977; Hall & Roman, 2013).  613 

Vessel cruise speed was an informative predictor for the expected silky shark catch rate. 614 
Slower vessel speeds may have a higher probability of skunk sets or catching partial schools, 615 
particularly for free school sets (Gaertner et al., 1999; Hall & Roman, 2013). And, faster vessels 616 
might have larger searching areas, increasing the probability of encountering a free swimming 617 
school or school associated with another vessel’s drifting FAD or other type of drifting floating 618 
object (Gaertner et al., 1999). This operational variable is unsuitable for bycatch management 619 
because restricting vessel speed could impose a large cost to fishing efficiency.  620 
 621 
4.3. Input versus Output Controls 622 
The purse seine fishery is subject to input controls of limits on the number of fishing days, 623 
number of vessels, number of activated and instrumented drifting FADs, and a FAD seasonal 624 
closure (PNA, 2020, WCPFC, 2021), but not output limits. Therefore, a catch rate unit of catch 625 
per set as employed in this study (conditioned by all predictors) is appropriate for evaluating 626 
alternative bycatch management strategies, including informing spatial management options. 627 
Given an objective of minimizing bycatch of at-risk species, selecting fishing zones with lowest 628 
at-risk species captures per set would be a suitable spatial management approach under this 629 
current management framework with only input controls.  630 

If output controls were used, for either or both target species and at-risk bycatch 631 
species, then the ratio of at-risk to target species catch would be appropriate. Under a 632 
management framework with a bycatch threshold, zones with the lowest ratio of at-risk species 633 
bycatch to commercial species catch would maximize target catch within the constraints of the 634 
bycatch limit. With a target species cap, zones with this same low ratio would minimize 635 
threatened species catch. 636 
 637 
4.4. Catch Data Uncertainty 638 
The observer data collection methods create uncertainty in the purse seine catch records. This 639 
includes selectivity bias from grab sampling to estimate the catch of target tuna species - 640 
however, since 2008 the observer program has employed a combination of grab and spill 641 
sampling to address this selectivity bias (Lawson 2013; Hoyle et al., 2014). Methods employed 642 
by observers to estimate the catch of non-target species can also introduce substantial 643 
uncertainty (Hutchinson et al., 2015; Briand et al., 2018; Forget et al., 2021). For example, 644 
observer sampling protocols to estimate bycatch by counting non-target catch from one brail or 645 
counting discards for a sample of catch sorting time and extrapolating linearly to the total 646 
number of brails and to total sorting time in a set, respectively, can introduce error (Briand et al., 647 
2018). Observers of the SPC/FFA Regional Observer Programme use visual inspections to 648 
estimate the number and weight of bycatch species, as time permits, while sampling the target 649 
tuna catch on the upper deck (Itano et al., 2019; Forget et al., 2021). The small sample of non-650 
target catch may be unrepresentative of the underlying catch from the total set, and monitoring 651 
only from the upper work deck will result in undercoverage bias as small species and small 652 
individuals within species of non-target catch may be detected primarily on the lower well deck 653 
(Forget et al., 2021). Observers may have a more difficult time quantifying bycatch on vessels 654 
that do not use a hopper to sort catch after brailing onto the deck before the catch goes down a 655 
chute to a lower deck for sorting and storage in wells (Poisson et al., 2014; Hutchinson et al., 656 
2015). The SPC/FFA Regional Observer Programme tasks observers with recording the weight 657 
or number of each captured non-target species, as well as the number or weight of species of 658 
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special interest that are observed inside or touching the net that are not subsequently landed on 659 
deck (SPC & FFA, 2018). Observers are directed to only record the number of a species that 660 
were captured when it is possible for the observer to obtain an accurate count, and observers 661 
are to record an estimated weight only when a large volume of a species was captured (SPC & 662 
FFA, 2018). As conducted previously to estimate the precision between estimates of target 663 
catch through grab and spill sampling (Lawson, 2013), research to identify bias in non-target 664 
species-specific observer catch estimates is a priority to produce accurate estimates of catch 665 
rates and extrapolated fleetwide magnitudes, especially in purse seine fisheries with low 666 
observer coverage rates (Amande et al., 2012). Developments in fisheries electronic monitoring 667 
systems used in purse seine fisheries might improve the accuracy of bycatch estimates (Briand 668 
et al., 2018; Forget et al., 2021).  669 
 670 
4.5. Conclusions 671 
Static and dynamic ABMTs hold substantial potential to balance socioeconomic benefits derived 672 
from fisheries and ecological costs to at-risk species exposed to bycatch fishing mortality in blue 673 
water fisheries (Gilman et al., 2019a). The PNG and Philippines western Pacific purse seine 674 
fishery causes bycatch mortality of several threatened species including silky sharks (Clarke et 675 
al., 2018), Mobulid rays (Croll et al., 2015), dolphins (Nelms et al., 2021) and marine turtles 676 
(Wallace et al., 2010, 2011).  677 

This study analyzed observer program data to estimate the effect of the spatial and 678 
temporal distribution of fishing effort on target and at-risk species-specific catch rates based on 679 
fitting spatially-explicit generalized additive multilevel regression models within a Bayesian 680 
inference framework. The findings identified areas within existing core fishing grounds where 681 
hotspots for silky sharks, rays and whale sharks could be avoided without affecting target catch, 682 
and areas outside of the core fishing grounds where there are higher tuna catch rates that 683 
would reduce the overlap with hotspots for these same at-risk species. However, the economic 684 
and operational viability of these spatial management strategies, especially where effort would 685 
be shifted more substantially further away from seaports, needs to be assessed.  686 

Unlike for silky sharks, whale sharks, rays and turtles, a small subset of sets had 687 
disproportionately large numbers of odontocete captures. Real time fleet communication and 688 
move-on rules, and avoiding sets on dolphin schools, might be effective approaches to mitigate 689 
odontocete bycatch.   690 

ABMTs are one of a suite of approaches to manage purse seine bycatch of at-risk 691 
species, where an ensemble of measures is often needed to achieve objectives (Selig et al., 692 
2017). Management of significant operational predictors such as set association type and mesh 693 
size present additional opportunities to balance catch rates of at-risk bycatch and target 694 
species. Introducing fleetwide or vessel-based output controls that effectively constrain the 695 
fishery would alter the spatial management strategy to focus on zones with the lowest ratio of 696 
at-risk bycatch to target tuna catch. The findings presented here on the spatial exposure of at-697 
risk and target species to this western Pacific Ocean tuna purse seine fishery support the 698 
development of evidence-informed policy to apply spatial management as part of an ensemble 699 
of complementary bycatch management measures to meet objectives for balancing benefits 700 
from target species catch with costs to at-risk bycatch species. 701 
 702 
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TABLES 1105 
 1106 
Table 1. Study sample sizes, PNG and Philippines tuna purse seine fishery in the western 1107 
Pacific Ocean, 109,396 sets, 2001-2022. Catch in metric tonnes for tunas and number for other 1108 
species/groups. SKJ=skipjack tuna, YFT=yellowfin tuna, BET=bigeye tuna, FAL=silky shark. 1109 

Set type 
(N, number 

of sets) Metric SKJ YFT BET FAL Rays 
Odonto-

cetes 
Whale 
sharks 

Hard-
shelled 
turtles 

Free school 
(69,984) 

Catch 950,887 563,124 20,111 80,411 6,352 2,171 564 378 

% of 
sets 
with >0 
capture 

46.0 40.6 5.2 15.0 4.5 0.6 0.8 0.5 

Catch 
per set 13.6 8.0 0.3 1.1 0.091 0.031 0.008 0.005 

Drifting 
FAD 
(9,498) 

Catch 273,039 72,601 18,181 23,811 973 1,004 34 77 

% of 
sets 
with >0 
capture 

92.2 89.4 45.7 36.9 6.0 1.8 0.4 0.8 

Catch 
per set 28.7 7.6 1.9 2.5 0.102 0.106 0.004 0.008 

Anchored 
FAD 
(13,081) 

Catch 178,670 100,071 18,842 8,056 776 1,292 7 81 

% of 
sets 
with >0 
capture 

86.3 87.4 37.9 16.7 3.8 1.4 0.1 0. 6 

Catch 
per set 13.7 7.7 1.4 0.6 0.059 0.099 0.001 0.006 

Other 
associated 
(13,238) 
and set 
type not 
recorded 
(3,595) 

Catch 321,804 173,019 17,193 46,444 1,838 2,943 662 180 

% of 
sets 
with >0 
capture 

77.1 78.9 25.4 33.4 5.5 4.2 3.9 0.9 

Catch 
per set 19.1 10.3 1.0 2.8 0.109 0.175 0.039 0.011 

Total 
(109,396) 

Catch 1,724,400 908,815 74,327 158,722 9,939 7,410 1,267 716 

% of 
sets 
with >0 
capture 

59.6 56.3 15.7 20.0 4.7 1.4 1.2 0.6 

Catch 
per set 15.8 8.3 0.7 1.5 0.091 0.068 0.012 0.007 
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FIGURE CAPTIONS 1111 
 1112 
Figure 1. PURSE SEINE SETS. Geospatial intensity of the 109,396 sets deployed in a PNG and 1113 
Philippines tuna purse seine fishery over a 22-year period (2001-2022), which is summarized using 2D 1114 
hexagonal binning with 0.2-degree spatial resolution. The seaward margins of the 5 EEZs included in the 1115 
study sample are shown by the thin black outlined polygons.  1116 
 1117 
Figure 2. SILKY SHARK. Graphical summary of the Bayesian distributional geoGAMM with hurdle-1118 
negative binomial likelihood fitted to the silky shark catch data. Panel a shows the estimated conditional 1119 
effect of period (comprising four 5-year time periods) on the set-specific catch rate. Panel b shows the 1120 
conditional effect of the purse seine set type on the catch rate. Panel c shows the conditional interaction 1121 
effect of set type within each 5-year period effect. Panel d shows the conditional 12-month-lagged Pacific 1122 
Decadal Oscillation index effect. Panel e shows the conditional effect of set-specific vessel cruise speed. 1123 
Panel f shows the conditional effect of fishing effort using purse seine net length as a fishing effort proxy. 1124 
Panel g shows the conditional effect of purse seine mesh size on catch for the hurdle component. Solid 1125 
dot=posterior mean, vertical bar = 95% credible interval, solid curve = mean nonlinear trend, shaded 1126 
polygon = 95% pointwise credible interval.  1127 
 1128 
Figure 3. TUNAS (skipjack, yellowfin and bigeye tunas). Graphical summary of the Bayesian 1129 
distributional geoGAMM with hurdle-lognormal likelihood fitted to the combined tuna species landed 1130 
weight data. Panel a shows the estimated conditional effect of period (comprising four 5-year time 1131 
periods) on the set-specific catch rate. Panel b shows the conditional effect of the purse seine set type on 1132 
the catch rate. Panel c shows the conditional interaction effect of set type within each 5-year period 1133 
effect. Panel d shows the conditional 12-month-lagged Pacific Decadal Oscillation index effect. Panel e 1134 
shows the conditional effect of time of the day when the skiff closed the purse seine net. Panel f shows 1135 
the conditional effect of fishing effort using purse seine net length as a fishing effort proxy. Panel g shows 1136 
the conditional effect of purse seine mesh size. Panel h shows the conditional effect of fishing effort using 1137 
purse seine net volume as a fishing effort proxy on catch for the hurdle component. Panel i shows the 1138 
conditional effect of ocean depth (bathymetry) on set-specific catch for the hurdle component. Solid 1139 
dot=posterior mean, vertical bar = 95% credible interval, solid curve = mean nonlinear trend, shaded 1140 
polygon = 95% pointwise credible interval.  1141 
 1142 
Figure 4. RAYS. Graphical summary of the Bayesian distributional geoGAMM with hurdle-negative 1143 
binomial likelihood fitted to the catch data for combined ray species. Panel a shows the estimated 1144 
conditional effect of period (comprising four 5-year time periods) on the set-specific catch rate. Panel b 1145 
shows the conditional effect of the purse seine set type on the catch rate. Panel c shows the conditional 1146 
interaction effect of set type within each 5-year period effect. Panel d shows the conditional 12-month-1147 
lagged Pacific Decadal Oscillation index effect. Panel e shows the conditional effect of fishing effort using 1148 
purse seine net length as a fishing effort proxy. Panel f shows the conditional effect of purse seine mesh 1149 
size on catch for the hurdle component. Solid dot=posterior mean, vertical bar = 95% credible interval, 1150 
solid curve = mean nonlinear trend, shaded polygon = 95% pointwise credible interval.  1151 
 1152 
Figure 5. RESIDUAL SPATIAL EFFECT (silky shark). Residual spatial effect from the distributional 1153 
geoGAMM model fitted to the silky shark catch data conditioned on various predictors over the 22-year 1154 
period (2001-2022). Highlights any geospatial pattern in the silky shark catch not accounted for by the 1155 
other predictors. The seaward margins of the 5 EEZs covered by this fishery shown by the thin black 1156 
outlined polygons. 1157 
 1158 
Figure 6. RESIDUAL SPATIAL EFFECT (skipjack, yellowfin and bigeye tunas). Residual spatial effect 1159 
from the distributional geoGAMM model fitted to the combined tuna species landed weight data 1160 
conditioned on various predictors over the 22-year period (2001-2022). Highlights any geospatial pattern 1161 
in tuna catch not accounted for by the other predictors. The seaward margins of the 5 EEZs covered by 1162 
this fishery shown by the thin black outlined polygons. 1163 
 1164 
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Figure 7. RESIDUAL SPATIAL EFFECT (ray species). Residual spatial effect from the distributional 1165 
geoGAMM model fitted to the combined ray species catch data conditioned on various predictors over the 1166 
22-year period (2001-2022). Highlights any geospatial pattern in ray catch not accounted for by the other 1167 
predictors. The seaward margins of the 5 EEZs covered by this fishery shown by the thin black outlined 1168 
polygons. 1169 
 1170 
Figure 8. RESIDUAL SPATIAL EFFECT (whale shark). Residual spatial effect from the distributional 1171 
geoGAMM model fitted to the whale shark catch data conditioned on various predictors over the 22-year 1172 
period (2001-2022). Highlights any geospatial pattern in whale shark catch not accounted for by the other 1173 
predictors. The seaward margins of the 5 EEZs covered by this fishery shown by the thin black outlined 1174 
polygons. 1175 
 1176 
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