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SUMMARY 

 
Bayesian State-Space Surplus Production Models were fitted to South Atlantic blue shark tuna 
catch and CPUE data using the ‘JABBA’ R package. The thirty-six distinct scenarios were based 
on a life history parameters, steepness and model weighting. All scenarios were based on a Pella-
Tomlinson production function from an Age-Structured Equilibrium Model (ASEM). All 
scenarios showed similar trends for the trajectories of B/BMSY

 and F/FMSY over time. In general, 
B/BMSY showed a decreasing pattern in the first half of the time series followed by a slight increase 
after 1998. The F/FMSY showed a general pattern with a sharp increasing trend during 1990s, 
followed by stable trend. Kobe stock status plots had shown median quantities estimated for the 
last data year in the green quadrant. However, the scenarios based on a more conservative values 
of steepness (0.5) were more pessimistic than others.    
 

RÉSUMÉ 
 
Des modèles de production excédentaire état-espace de type bayésien ont été ajustés aux données 
de capture et de CPUE du requin peau bleue de l'Atlantique Sud au moyen du progiciel JABBA R. 
Les trente-six scénarios étaient basés sur les paramètres du cycle vital, la pente et la pondération 
du modèle. Tous les scénarios étaient basés sur une fonction de production Pella-Tomlinson d'un 
modèle d'équilibre structuré par âge (ASEM). Tous les scénarios affichaient des tendances 
similaires pour les trajectoires de B/BPME et F/FPME au fil du temps. En général, B/BPME présentait 
une tendance à la baisse dans la première moitié de la série temporelle, suivie d'une légère 
augmentation après 1998. F/FPME présentait un schéma général de forte tendance à la hausse au 
cours des années 1990, suivie d'une tendance stable. Les diagrammes de l'état du stock de Kobe 
montraient les quantités médianes estimées pour la dernière année de données dans le quadrant 
vert. Toutefois, les scénarios fondés sur des valeurs plus conservatrices de la pente (0,5) étaient 
plus pessimistes que les autres 
 

RESUMEN 
 

Se ajustaron modelos bayesianos de producción de excedentes estado-espacio a los datos de 
captura y CPUE de tiburón azul del Atlántico sur utilizando el paquete R "JABBA". Los treinta 
y seis escenarios distintos se basaron en los parámetros del ciclo vital, la inclinación y la 
ponderación del modelo. Todos los escenarios se basaron en una función de producción de Pella-
Tomlinson a partir de un modelo en equilibrio estructurado por edad (ASEM). Todos los 
escenarios mostraron tendencias similares para las trayectorias de B/BRMS y F/FRMS a lo largo 
del tiempo. En general, la B/BRMS mostró un patrón decreciente en la primera mitad de la serie 
temporal, seguido de un ligero aumento después de 1998. La F/FRMS mostró un patrón general 
con una marcada tendencia al alza durante la década de 1990, seguida de una tendencia estable. 
Los gráficos de Kobe sobre el estado del stock mostraban las cantidades medias estimadas para 
el último año de datos en el cuadrante verde. Sin embargo, los escenarios basados en valores 
más conservadores de inclinación (0,5) fueron más pesimistas que los demás 
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1. Introduction 
 

Blue shark is an oceanic-epipelagic species that can be found close to the coast in some areas and at certain times, 
particularly where the shelf is narrow or even in ports and marinas. It is found in deep waters of tropical, warm 
and temperate seas from the surface to a depth of at least 1,291.1 m, with greater abundancy in areas outside the 
platform (ICCAT, 2022). It is an oceanic and epipelagic species distributed in all oceans, in tropical, subtropical 
and temperate waters between 62ºN and 54ºS (ICCAT, 2022). As a function of its wide distribution, blue shark 
has been intensively exploited by various fisheries around the world. For management purposes, the International 
Commission for the Conservation of Atlantic Tunas (ICCAT) considers three distinct stocks in Atlantic Ocean, 
the North, South and Mediterranean stock (ICCAT, 2022). Aimed in the South Atlantic blue shark stock, nine 
longline fisheries fleets (EU-Spain, EUPortugal, Chinese Taipei, Namibia, Brazil, Japan, Uruguay, China (P.R.) 
and South Africa) made 99% of the total landings between 1990 and 2014 (ICCAT, 2022). 
 
The last South Atlantic blue shark stock assessment was carried out in 2015 (ICCAT, 2015) and included outputs 
from distinct production models frameworks. The synthesis of the assessment indicated that the South Atlantic 
blue shark stock was not overfished (B2013/BMSY=1.50 to 1.96) and not experiencing overfishing (F2013/FMSY= 0.04 
to 0.50) (ICCAT, 2015). On the other hand, estimates obtained with the state-space BSP were generally less 
optimistic, especially when process error was not included, predicting that the stock could be overfished 
(B2013/BMSY= 0.78 to 1.29) and that overfishing could be occurring (F2013/FMSY = 0.54 to 1.19) (ICCAT, 2015). 
 
Here, we present the 2023 preliminary stock assessment results for South Atlantic blue shark stock based on the 
Bayesian State-Space Surplus Production Model framework, JABBA (Just Another Bayesian Biomass 
Assessment; https://github.com/jabbamodel/JABBA; Winker et al., 2018). The JABBA model is a fully 
documented, open-source R package (https://github.com/JABBAmodel) that has been formally included in the 
ICCAT stock catalogue (https://github.com/ICCAT/software/wiki/2.8-JABBA) and has been widely applied in a 
number of recent ICCAT stock assessments, including: South Atlantic blue shark (ICCAT, 2016b), Mediterranean 
albacore (ICCAT, 2017c), South Atlantic swordfish (ICCAT, 2017a; Winker et al., 2018), Atlantic shortfin mako 
shark stocks (south and north) (ICCAT, 2017d; Winker et al., 2017, 2019a), Atlantic blue marlin (Mourato et al., 
2019), Atlantic bigeye tuna (Winker et al., 2019b), Atlantic white marlin (Mourato et al., 2020), Atlantic yellowfin 
tuna (Sant’Ana et al., 2020), Mediterranean swordfish (Winker et al. 2020; ICCAT, 2017b) and South Atlantic 
albacore (Winker et al., 2020b). 
 
This preliminary assessment of the South Atlantic blue shark stock is guided by the SCRS work plan. Some insights 
for an uncertainty grid scenario was built based on the discussions and recommendations that raised during the 
2023 Blue shark Data Preparatory Meeting. In this way, extensive model diagnostics, retrospective pattern analysis 
and model prediction skillness were provided to evaluate the fitted models. In addition, this document explores 
the sensitivity of the base case scenarios to the inclusion of alternative and additional standardized CPUE indices 
that have been made available for this assessment. 
 
 
2. Material and Methods 

 
2.1 JABBA inputs 
 
This stock assessment is implemented using the Bayesian state-space surplus production model framework called 
JABBA (Winker et al., 2018), which is now available as ‘R package’ that can be installed from 
github.com/jabbamodel/JABBA. JABBA’s inbuilt options include: (1) automatic fitting of multiple CPUE time 
series and associated standard errors; (2) estimating or fixing the process variance, (3) optional estimation of 
additional observation variance for individual or grouped CPUE time series, and (4) specifying a Fox, Schaefer or 
Pella-Tomlinson production function by setting the inflection point BMSY/K and converting this ratio into a shape 
parameter m, (5) extensive diagnostic procedures and associated plots (e.g. residual run tests) and (6) a routine to 
conduct retrospective analysis. A full JABBA model description, including formulation and state-space 
implementation, prior specification options and diagnostic tools is available in Winker et al. (2018). 
 

2.2 Fishery data 
 

The ICCAT Secretariat provided fishery catch data for South Atlantic blue shark from 1971 to 2022 (Figure 1). 
Relative abundance indices were made available. These indices cover various periods and represent the main 
longline fleets operating in the South Atlantic Ocean (e.g. Spain, Japan, Chinese-Taipei, Brazil and Uruguay 
longline fleets). The Brazil and Uruguay index was made available in a form of joint index. A summary of the 
available indices is described below: 

https://github.com/jabbamodel/JABBA
https://github.com/JABBAmodel
https://github.com/ICCAT/software/wiki/2.8-JABBA
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− Spain LL index – 1997 to 2021; 
− Japan LL index – 1994 to 2021; 
− Chinese-Taipei LL index – 2007 to 2021; 
− Joint LL index (Brazil and Uruguay) – 1992 to 2021. 

 
The CV's for each index was treated as a source of uncertainty to model weighting process. Thus, the scenarios 
tested were (a) using the original CV’s from the standardizations; (b) re-estimate the CV’s based on the Courtney 
et al. (2016), and; (c) fixed in 20% and gave the opportunity to model-based weighting internally.  
 
2.3 Model specifications 
 
The model specifications were based on three main sources of uncertainties. The first one was based on the life-
history parameters presented during the Blue shark data preparatory meeting and included by the results from the 
preliminary SS3 runs; Second source was based on the impact of the steepness on the productivity parameters (r 
and BMSY/K). For this source was used the confidence interval and central tendency proposed by Cortes et al. 
(2023) (h = 0.5, h = 0.8 and h = 0.9), and; The last source of uncertainty, as described before, it was tested the 
model weigthing process (Table 1).  
 
The priors of K was kept similar to those used in the last assessment of the species. For this parameter, it was used 
vaguely informative lognormal prior with a large CV of 30% and a central value that corresponds to eight times 
the maximum total catch, which is consistent with parameterization procedures followed when using other 
platforms such as Catch-MSY (Martell and Froese, 2013) or SPiCt (Pederson and Berg 2017). For r, were 
developed priors distribution with an associated shape parameter of a Pella-Tomlinson production function from 
an Age-Structured Equilibrium Model (ASEM) approach with Monte-Carlo simulations (Winker et al., 2019b). 
The stock parameters used here were based on the proposals made by Cortes et al. (2023) and those proposed by 
Cardoso et al. (2023) as inputs for the ASEM models included the uncertainty grid configuration citet before and 
presented in Table 1. The stock parameters used as inputs for the ASEM models included the following 
configuration: (a) Maximum age equal to 16 and 22 years with the corresponding natural mortality values, and; 
(b) steepness values equal to 0.5, 0.8 and 0.9. This approach resulted in more informative priors to r following a 
lognormal distribution (Table 1; Figure 2) and the shape parameter m directly derived from the ASEM output of 
BMSY/B0 (Table 1; see details in Winker et al., 2019). Table 1 provides a summary of all scenarios initially tested.  
 
For all scenarios, the same initial depletion prior (φ= B1950/K) was defined by a beta distribution with mean = 0.9 
and CV of 5%. All catchability parameters were formulated as uninformative uniform priors. Even as, the process 
error of log(By) in year y for all scenarios were defined by an inverse-gamma distribution with shape parameter 
equal to 0.001 and rate parameter equal to 0.001. 
 
JABBA is implemented in R (R Development Core Team, https://www.r-project.org/) with JAGS interface 
(Plummer, 2003) to estimate the Bayesian posterior distributions of all quantities of interest by means of a Markov 
Chains Monte Carlo (MCMC) simulation. The JAGS model is executed from R using the wrapper function jags() 
from the library r2jags (Su and Yajima, 2012), which depends on rjags R package. In this study, three MCMC 
chains were used. Each model was run for 30,000 iterations, sampled with a burn-in period of 5,000 for each chain 
and thinning rate of five iterations. Basic diagnostics of model convergence included visualization of the MCMC 
chains using MCMC trace-plots as well as Heidelberger and Welch (1992), Geweke (1992), and Gelman and 
Rubin (1992) diagnostics as implemented in the coda package (Plummer et al., 2006). 
 
2.4 Model diagnostics and sensitivity runs 
 
To evaluate CPUE fits, the model predicted CPUE indices were compared to the observed CPUE. JABBA-residual 
plots were used to examine (1) colour-coded lognormal residuals of observed versus predicted CPUE indices for 
all fleet together with (2) boxplots indicating the median and quantiles of all residuals available for any given year; 
the area of each box indicates the strength of the discrepancy between CPUE series (larger box means higher 
degree of conflicting information), and (3) a loess smoother through all residuals aids to detect the presence 
systematic residual patterns. In addition, it depicts the root-mean-squared-error (RMSE) as a goodness-of-fit 
statistic. We conducted a runs test to quantitatively evaluate the randomness of residuals (Carvalho et al., 2017). 
The runs test diagnostic was applied to residuals of the CPUE fit on log-scale using the function runs.test in the R 
package tseries, considering the 2-sided p-value of the Wald-Wolfowitz runs test. The runs test results can be 
visualized within JABBA using a specifically designed plot function that illustrates which time series passed or 
failed the runs test and highlights individual data points that fall outside the three-sigma limits (e.g., Anhøj and 
Olesen, 2014). 
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To check for systematic bias in the stock status estimates, we also performed a retrospective analysis for the first 
scenario (ASEM_SS3_F_h_0.5) of each model weighting uncertainty source of the grid, by sequentially removing 
one year of data at a time over a period of eight years (n = 8), refitting the model after each data removal and 
comparing quantities of interest (i.e. biomass, fishing mortality, B/BMSY, F/FMSY, B/B0 and MSY) to the reference 
model that is fitted to full data time series. To compare retrospective bias between the models, we computed 
Mohn’s (1999) rho (ρ) statistic, specifically the commonly used formulation defined by Hurtado-Ferro et al. (2014). 
 
Although the above model diagnostics are important to evaluate the goodness of fit to the data and the consistency 
of benchmarking retrospectively, providing scientific advice should also involve checking that the model has 
prediction skill of future states under alternative management scenarios. To do this, the model-free hindcasting 
cross-validation (HCXval) technique by Kell et al. (2016) was applied, where observations are compared to their 
predicted future values. The HCXval algorithm has in common with retrospective analysis that requires the same 
two routine procedures of sequential removal the observations and re-fitting the model to the so truncated data 
series, but HCXval involves the additional steps of projecting ahead over the missing years and then cross-
validating these forecasts against observations to assess the model’s prediction skill. A robust statistic for 
evaluating prediction skill is the Mean Absolute Scaled Error (MASE) proposed by Hyndman and Koehler (2006), 
which scales the mean absolute error of prediction residuals to a naïve baseline prediction, where a ‘prediction’ is 
said to have ‘skill’ if it improves the model forecast when compared to the naïve baseline. A widely used baseline 
forecast for time series is the ‘persistence algorithm’ that takes the value at the previous time step to predict the 
expected outcome at the next time step as a naïve in-sample prediction, e.g., tomorrow’s weather will be the same 
as today’s. The MASE score scales the mean absolute error of the prediction residuals to the mean absolute error 
of a naïve in-sample prediction. A MASE score higher than one can then be interpreted such that the average 
model forecasts are no better than a random walk. Conversely, a MASE score of 0.5 indicates that the model 
forecasts twice as accurately as a naïve baseline prediction; thus, the model has prediction skill. 
 
Additionally, the analysis included sensitivity model runs based on forward stepwise inclusion of each index one-
by-one in the model. Taking as prior the Spain LL index in the small model. The general idea with this comparative 
analysis was to evaluate the possible effects of the inclusion of each index over estimated biomass dynamic of this 
stock. Finally, an additional nine scenarios were implemented based on the exploration of time-blocks in relative 
abundance indices as a form to evaluate possible influences of recent targeting to this species and stock. 
 
 
3 Results and Discussion  
 
In the sections Tables and Figures are presented the results of the first runs that will be presented and updated 
during the Blue shark stock assessment meeting.  
 

The MCMC convergence tests by Heidelberger and Welch (1992), Geweke (1992), and Gelman and Rubin (1992) 
were passed by all estimable key parameters for all models. Adequate convergence of the MCMC chains was also 
corroborated by visual inspection of trace plots (results available on request), which showed good mixing in 
general (i.e., moving around the parameter space). 
 

Figure 3 displays the fitting of the model to each of the four standardized CPUE indices for the thirty-six scenarios. 
In all scenarios, the models capture the overall trends in the relative abundance indices, except for a few outlier or 
influential points noted in the Chinese-Taipei, Brazil-Uruguay, and Japan longline indices. By applying time-
blocks, the model's performance improves, leading to a better capture of the input data's tendencies. But still 
remaining the same outliers issues observed before. 
 

Figure 4 displays the log-residuals runs tests results for each CPUE and scenario. Green panels indicate CPUE 
indices that passed the runs test with no evidence of a non-random residual pattern (p > 0.05), while red panels 
indicate a failed runs test. The inner shaded area shows 3-sigma limits around the overall mean as suggested by 
Anhøj and Olesen (2014), and red circles identify each specific year where the residuals are larger than the 
threshold limit. The test revealed that the Japanese standardized CPUE had non-random residuals, without time-
block applied to the relative abundance indices. For those scenarios with an internal model weighting, the Spain 
index also showed non-random residual patterns. Moreover, for scenarios based on time-block and internal model-
weighting, only the Spain index exhibited non-random residual issues. The goodness-of-fit were comparable 
among all scenarios, in general, the RMSE statistics were consistent ranging from 23.1% to 26.6% (Figure 5). In 
general, the annual process error deviation estimated for all scenarios shown a similar stochastic pattern with a 
constant average centered around the zero and 95% credibility intervals always covering the zero value (Figure 6), 
which suggest no evidence of structural model misspecifications. Despite not being statistically significant, there 
seemed to be a slight upward trend towards the end of the series. This trend was less noticeable in the scenarios 
that were adjusted with time-block and internal model-weighting. 
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Overall, the various scenarios produced similar trends for the trajectories of B/BMSY and F/FMSY over time 
(Figure 7; Figure 8). However, scenarios with higher values of steepness tended to show more positive outcomes 
than those with lower steepness values. The B/BMSY trajectory showed a decrease between 1985 and 1995 in all 
scenarios tested, but after that period, the trends varied depending on the model-weighting decision implemented. 
Scenarios based on the original CV values or Francis correction proposal showed an increase between 1996 and 
2011, followed by a small decline at the end of the series (Figures 7A and 7B). Scenarios fitted with model-
internal weighting only showed a stable trend between 1996 and 2005, followed by further increase, stabilization, 
and a smooth decline at the end of the time series (Figure 7C). The model-internal weighting with time-block 
structure showed a more stable trend after 1996. The F/FMSY trajectory showed a sharp increase at the same time 
that the B/BMSY trajectory decreased (Figure 8). For all scenarios evaluated here, the models do not evidenced 
periods of overfishing (F/FMSY > 1) or even the stock are being overfished (B/BMSY < 1) (Figure 7; Figure 8). 
 
The results of an eight year retrospective analysis applied to the first scenario (ASEM_SS3_F_h_0.5) for each of 
the four model weighting process tested were depicted in Figure 9, respectively. In general, a negligible 
retrospective pattern were observed. The estimated Mohn’s rho for all stock quantities fell within the acceptable 
range of -0.15 and 0.20 (Hurtado-Ferro et al., 2014; Carvalho et al., 2017) and these results confirm the absence 
of an undesirable retrospective pattern (Table 2). The hindcasting cross-validation results for all updated indices 
show predictions within limits of the 95% CRI’s suggesting a good prediction skills for the scenario tested within 
distinct model weighting structure (Figure 10). However, the mean absolute scaled error (MASE) estimated were 
above of the reference level (MASE > 1) for Japan index when fitted with original weighting and Francis correction 
(MASE > 2) and for Chinese-Taipei index when fitted with model-internal weighting with time-block approach 
(MASE > 3). And slightly above (1 < MASE < 2) for Japan index when fitted with model-internal weighting and 
Japan and Spain indices when they fitted using model-internal weighting with time-block. 
 
The results of the sensitivity analysis based on forward stepwise indices in scenarios S01, S10 and S19 are shown 
in Figure 11. These results shown a similar trend when the stepwise process were implemented for S01 and S10. 
For S19 scenario, the stepwise process shown some changes in the middle term period. Although, the begging and 
end of the time-series do not shown high discrepancy based on the interactive inclusion of the relative abundance 
indices tested. 
 
The Kobe biplots for all scenarios were shown in Figure 12. All scenarios show optimistic status with probabilities 
of the stock are being stable on green area (Figure 12). However, these results are preliminary and will need to be 
further explored during the blue shark stock assessment meeting. 
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Table 1. Summary of the uncertainty grid scenarios for South Atlantic blue shark. 

Scenario Type Model Weighting r BmsyK 

S01 ASEM_SS3_F_h_0.5 Original CV lognormal(0,226, 0,324) 0,35 

S02 ASEM_SS3_F_h_0.8 Original CV lognormal(0,278, 0,352) 0,23 

S03 ASEM_SS3_F_h_0.9 Original CV lognormal(0,282, 0,374) 0,18 

S04 ASEM_SS3_M_h_0.5 Original CV lognormal(0,293, 0,34) 0,34 

S05 ASEM_SS3_M_h_0.8 Original CV lognormal(0,366, 0,378) 0,22 

S06 ASEM_SS3_M_h_0.9 Original CV lognormal(0,377, 0,415) 0,16 

S07 ASEM_CT_Both_h_0.5 Original CV lognormal(0,122, 0,288) 0,37 

S08 ASEM_CT_Both_h_0.8 Original CV lognormal(0,148, 0,295) 0,26 

S09 ASEM_CT_Both_h_0.9 Original CV lognormal(0,149, 0,297) 0,22 

S10 ASEM_SS3_F_h_0.5 Courtney et al (2016) lognormal(0,226, 0,324) 0,35 

S11 ASEM_SS3_F_h_0.8 Courtney et al (2016) lognormal(0,278, 0,352) 0,23 

S12 ASEM_SS3_F_h_0.9 Courtney et al (2016) lognormal(0,282, 0,374) 0,18 

S13 ASEM_SS3_M_h_0.5 Courtney et al (2016) lognormal(0,293, 0,34) 0,34 

S14 ASEM_SS3_M_h_0.8 Courtney et al (2016) lognormal(0,366, 0,378) 0,22 

S15 ASEM_SS3_M_h_0.9 Courtney et al (2016) lognormal(0,377, 0,415) 0,16 

S16 ASEM_CT_Both_h_0.5 Courtney et al (2016) lognormal(0,122, 0,288) 0,37 

S17 ASEM_CT_Both_h_0.8 Courtney et al (2016) lognormal(0,148, 0,295) 0,26 

S18 ASEM_CT_Both_h_0.9 Courtney et al (2016) lognormal(0,149, 0,297) 0,22 

S19 ASEM_SS3_F_h_0.5 Internal Model Weight lognormal(0,226, 0,324) 0,35 

S20 ASEM_SS3_F_h_0.8 Internal Model Weight lognormal(0,278, 0,352) 0,23 

S21 ASEM_SS3_F_h_0.9 Internal Model Weight lognormal(0,282, 0,374) 0,18 

S22 ASEM_SS3_M_h_0.5 Internal Model Weight lognormal(0,293, 0,34) 0,34 

S23 ASEM_SS3_M_h_0.8 Internal Model Weight lognormal(0,366, 0,378) 0,22 

S24 ASEM_SS3_M_h_0.9 Internal Model Weight lognormal(0,377, 0,415) 0,16 

S25 ASEM_CT_Both_h_0.5 Internal Model Weight lognormal(0,122, 0,288) 0,37 

S26 ASEM_CT_Both_h_0.8 Internal Model Weight lognormal(0,148, 0,295) 0,26 

S27 ASEM_CT_Both_h_0.9 Internal Model Weight lognormal(0,149, 0,297) 0,22 

S28 ASEM_SS3_F_h_0.5 Internal Model Weight – Time block lognormal(0,226, 0,324) 0,35 

S29 ASEM_SS3_F_h_0.8 Internal Model Weight – Time block lognormal(0,278, 0,352) 0,23 

S30 ASEM_SS3_F_h_0.9 Internal Model Weight – Time block lognormal(0,282, 0,374) 0,18 

S31 ASEM_SS3_M_h_0.5 Internal Model Weight – Time block lognormal(0,293, 0,34) 0,34 

S32 ASEM_SS3_M_h_0.8 Internal Model Weight – Time block lognormal(0,366, 0,378) 0,22 

S33 ASEM_SS3_M_h_0.9 Internal Model Weight – Time block lognormal(0,377, 0,415) 0,16 

S34 ASEM_CT_Both_h_0.5 Internal Model Weight – Time block lognormal(0,122, 0,288) 0,37 

S35 ASEM_CT_Both_h_0.8 Internal Model Weight – Time block lognormal(0,148, 0,295) 0,26 

S36 ASEM_CT_Both_h_0.9 Internal Model Weight – Time block lognormal(0,149, 0,297) 0,22 
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Table 2. Summary Mohn’s rho statistic computed for a retrospective evaluation period of eight years for  the firs 
four scenarios of each model weighting fitted to the South Atlantic blue shark stock assessment 2023. The more 
the values diverge from the zero, the stronger is the retrospective bias. Values falling between -0.15 and 0.2 are 
widely deemed as acceptable retrospective bias (Huerto et al., 2014). 

Scenario 
Stock Quantity 

B F B/BMSY F/FMSY Proc(B) MSY 

S01 -0.771 0.094 -0.006 0.045 -0.004 -0.027 
S10 -0.077 0.100 -0.002  0.028 -0.006 -0.012 
S19 -0.045 0.050 0.0002 0.014 -0.009 -0.013 
S20 -0.118 0.140 -0.081 0.152 -0.010 -0.048 
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Figure 1. Catch time series in metric tons (t) between 1971 and 2022 for South Atlantic blue shark. 
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Figure 2. Comparison between r and BMSY/K priors distributions derived from Age-Structured Equilibrium Models 
(ASEM) approach. 
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(a) Original weighting 
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(b) Courtney et al (2016)  
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(c) Model-internal weighting 
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(d) Model-internal weighting – Time block 
 
Figure 3. Time series of observed (circle) with error 95% Cis (error bars) and predicted (solid line) CPUE of South 
Atlantic blue shark for the Bayesian state-space surplus production model JABBA for each scenario fitted. Dark 
shaded grey areas show 95% credibility intervals of the expected mean CPUE and light shaded grey areas denote 
the 95% posterior predictive distribution intervals. 
 
 
 



680 

(a) Original weighting 
 



681 

(b) Courtney et al (2016) 
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(c) Model-internal weighting 
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(d) Model-internal weighting – Time block 
 
Figure 4. Runs tests to quantitatively evaluate the randomness of the time series of CPUE residuals for each 
scenario fitted for the South Atlantic blue shark. Green panels indicate no evidence of lack of randomness of time-
series residuals (p>0.05) while red panels indicate the opposite. The inner shaded area shows three standard errors 
from the overall mean and red circles identify a specific year with residuals greater than this threshold value (3x 
sigma rule). 
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(a) Original weighting 
 



685 

(b) Courtney et al (2016) 
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(c) Model-internal weighting 
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(d) Model-internal weighting – Time block 
 

Figure 5. JABBA residual diagnostic plots for alternative sets of CPUE indices examined for each scenario fitted 
for the South Atlantic blue shark. Boxplots indicate the median and quantiles of all residuals available for any 
given year, and solid black lines indicate a loess smoother through all residuals. 
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(a) Original weighting 
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(b) Courtney et al (2016) 
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(c) Model-internal weighting 
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(d) Model-internal weighting – Time block 
 

Figure 6. JABBA residual diagnostic plots for alternative sets of CPUE indices examined for each scenario fitted 
for the South Atlantic blue shark. Process error deviates (median: solid line) with shaded grey area indicating 95% 
credibility intervals. 
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(a) Original weighting 
 



693 

(b) Courtney et al (2016) 
 



694 

(c) Model-internal weighting 
 



695 

(d) Model-internal weighting - Time block 
 

Figure 7. Trends in biomass relative to BMSY (B/BMSY) for each scenario from the Bayesian state-space surplus 
production JABBA model fits to South Atlantic blue shark. 
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(a) Original weighting 



697 

(b) Courtney et al (2016) 



698 

(c) Model-internal weighting 



699 

(d) Model-internal weighting - Time block 
 

Figure 8. Trends in biomass relative to FMSY (F/FMSY) for each scenario from the Bayesian state-space surplus 
production JABBA model fits to South Atlantic blue shark. 
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(a) Original weighting 
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(b) Courtney et al (2016) 
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(c) Model-internal weighting 
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(d) Model-internal weighting - Time block 
 

Figure 9. Retrospective analysis conducted for the first scenario of each model-weighting process tested for South 
Atlantic blue shark, by removing one year at a time sequentially (n=8) and predicting the trends in biomass and 
fishing mortality (upper panels), biomass relative to BMSY (B/BMSY) and fishing mortality relative to FMSY (F/FMSY) 
(middle panels) and biomass relative to K (B/K) and surplus production curve (bottom panels) from the Bayesian 
state-space surplus production model fits. 
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(a) Original weighting 
 



705 

(b) Courtney et al (2016) 

(c) Model-internal weighting 



706 

 

(d) Model-internal weighting - Time block 
 

Figure 10. Hindcasting cross-validation results (HCxval) for the first scenario of each model-weighting process 
tested for South Atlantic blue shark, showing one-year-ahead forecasts of CPUE values, performed with eight 
hindcast model runs relative to the expected CPUE. The CPUE observations, used for cross-validation, are 
highlighted as color-coded solid circles with associated light-grey shaded 95% confidence interval. The model 
reference year refers to the end points of each one-year-ahead forecast and the corresponding observation (i.e., 
year of peel + 1). 
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(a) Original weighting 
 



708 

(b) Courtney et al (2016) 
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(c) Model-internal weighting 
 

Figure 11. Sensitivity analysis performed for the first scenario of each model-weighting process tested for South 
Atlantic blue shark showing the trends in biomass and fishing mortality (upper panels), biomass relative to BMSY 
(B/BMSY) and fishing mortality relative to FMSY (F/FMSY) (middle panels) and biomass relative to K (B/K) and 
surplus production curve (bottom panels). 
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(a) Original weighting 
 



711 

(b) Courtney et al (2016) 
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(c) Model-internal weighting 
 



713 

(d) Model-internal weighting - Time block 
 

Figure 12. Kobe phase plot showing estimated trajectories (1971-2022) of B/BMSY and F/FMSY for the Bayesian 
state-space surplus production model for the South Atlantic blue shark. Different grey shaded areas denote the 
50%, 80%, and 95% credibility interval for the terminal assessment year. The probability of terminal year points 
falling within each quadrant is indicated in the figure legend. 


