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Seabirds are facing increasing threats in both marine and terrestrial habitats, and many populations have experienced dramatic declines over
past decades. Fisheries bycatch is the most pervasive at-sea threat and is of increasing concern in fisheries management and marine conserva-
tion. We predicted spatial and temporal heterogeneities of seabird bycatch probability in the US Atlantic pelagic longline fishery (PLL)
through an interactive Barrier model based on observer data from the National Marine Fisheries Service Pelagic Observer Program. The
Barrier model prevents bias caused by physical barriers such as coastlines by defining the spatial correlation function as a collection of paths
between points and eliminating any paths across physical barriers. The integrated nested Laplace approximations methodology and stochastic
partial differential equations approach were applied to fit the model, greatly reducing execution time. Seabird bycatch had a hotspot of high
bycatch probability in the mid-Atlantic bight in most years, and the hotspot varied in presence and location yearly. The inter-annual varia-
tions in bycatch hotspot are correlated with Gulf Stream meanders. Special area and time fishing restrictions predicted by relationships with
Gulf Stream positions might enable the US Atlantic PLL to avoid peak areas and periods of seabird bycatch and thereby support seabird
conservation.
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Introduction
Half of all seabird species are in decline, and species listed in the

Agreement on the Conservation of Albatrosses and Petrels are

among the most threatened (Croxall et al., 2012). The most recent

assessment of the global threat status of seabirds, using the

International Union for Conservation of Nature red list criteria,

revealed that, of the 359 seabird species, 31% (110 species) are

globally threatened and a further 11% (40 species) are near threat-

ened (BirdLife International, 2018). The major threats to seabirds

include invasive alien species, bycatch in fisheries, climate change,

overfishing, hunting or tapping and disturbance (Dias et al.,

2019). Bycatch in fisheries is recognized as the most pervasive at-

sea threat faced by seabird populations (Lewison et al., 2012;

Phillips et al., 2016; Rodrı́guez et al., 2019), with observed impacts

on up to 100 species of marine birds (Dias et al., 2019). Seabirds

come into conflict with fisheries when they forage behind vessels

for food. Birds ingest baited hooks or become entangled with lines

and then are drowned as gear sinks (Brothers, 1999; Gilman,

2001). Many seabird species, such as albatrosses and petrels, are

particularly vulnerable to fisheries incidental mortality due to long

natural life spans and low reproduction rates (Warham, 1990,

1996). These population characteristics cause increases in adult

mortality to have more severe adverse population impacts than

the loss of young birds, even leading to population collapse

(Croxall and Rothery, 1991; Igual et al., 2009). Understanding the

factors influencing the probability of seabirds being caught as by-

catch is central to both the sustainable management of longline

fisheries and the conservation of seabird populations.
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Multiple factors have been reported to influence seabird by-

catch rate, such as geographic location, season, time of day,

fishing effort, and bait type (Trebilco et al., 2010; Li and Jiao,

2013). Large-scale climate indices, such as El Ni~no-Southern

Oscillation (ENSO) in the eastern Pacific, North Atlantic

Oscillation (NAO) in the North Atlantic, Atlantic

Multidecadal Oscillation (AMO) in the North Atlantic and

Gulf Stream meanders in the western North Atlantic, have

been proposed to influence spatial–temporal patterns of by-

catch and bycatch susceptibility (Durant et al., 2004; Barbraud

et al., 2012; Gilman et al., 2016). For example, changes in wind

patterns and oceanographic conditions might affect the forag-

ing efficiency and distribution of seabirds, influencing the

overlap of birds and fishing distributions; unfavourable ocean-

ographic conditions might decrease regional ocean productiv-

ity, resulting in more starving birds foraging around vessels,

thus increasing bycatch risk. Knowledge of relationships of by-

catch patterns or their drivers to climate cycles is useful to

identify bycatch “hotspots” and to help design voluntary or

mandatory changes in the deployment of effort to reduce sea-

bird bycatch risk.

In this study, we (i) predict the temporal and spatial heteroge-

neity of seabird bycatch probability through an interactive

Bayesian hierarchical model using the 1992–2017 pelagic long-

line fishery (PLL) observer data in the three contiguous US

Atlantic pelagic longline fishing zones with highest seabird by-

catch—the northeast coast (NEC; 60–71�W, 35–42�N), the mid-

Atlantic bight (MAB; 71–82�W, 35–41�N), and the south

Atlantic bight (SAB; 71–82�W, 30–35�N)—and (ii) analyse the

influence of climate variability on the spatiotemporal distribu-

tion of the probability of catching a seabird. Special attention is

given to the impacts of NAO, AMO, and the Gulf Stream be-

cause we hypothesized that the distributions of seabird bycatch

is related to these climate indices. We selected the interactive

Bayesian hierarchical modelling approach to allow us to apply

multiple levels of detail to describe seabird bycatch probability in

time and space.

Methods
Seabird bycatch data from Pelagic Observer Program
The Pelagic Observer Program (POP) at the National Marine

Fisheries Service Southeast Fisheries Science Center has moni-

tored the US PLL in the North Atlantic since 1992 (Beerkircher

et al., 2005; Diaz et al., 2009). In the program, randomly selected

fishing trips are accompanied by an observer, who records de-

tailed information on fishing effort, fish species, target catch, gear

specification, bycatch, and environmental conditions. The fishery

operates in 11 specified fishing zones (Figure 1a) and targets

tunas (Tunnus spp.), swordfish (Xiphias gladius), dolphinfish

(Coryphaena hippurus), and sharks (Selachimorpha) (Lee and

Brown, 1998). Prior to August 2004, two types of hooks (i.e. J-

hook and circle hook) were used in this fishery, but J-hooks were

used on �99% of all sets. Since August 2004, exclusive circle

hook use has been legally mandated (69 Federal Register 40734).

The POP attempted to cover 8% of PLL trips in each fishing zone

and each calendar quarter (Diaz et al., 2009) to improve the pre-

cision of bycatch estimates to a 20–30% coefficient of variation

after 2004 [NMFS (National Marine Fisheries Service), 2003;

Moore et al., 2009]. We analysed 6469 longline sets of the POP

data from 1992 to 2017 in the NEC, MAB, and SAB. Only 77 sets

caught 149 seabirds; therefore, �99% zero observations were pre-

sent in the POP data (Figure 1b). Among those identified seabirds

in this program, gulls (Larus sp.) were the most frequently cap-

tured, followed by shearwaters (Procellariidae spp., especially

great shearwaters, Ardenna gravis) and northern gannets (Morus

bassanus) (Table 1). Seabird bycatch rates in the three zones

showed obvious spatial and temporal patterns: 62% of seabirds

were caught in the MAB, 99% of seabirds were caught in summer

through winter, and a peak in catch occurred in 1997.

Covariate effects
The potential explanatory variables for model development are

listed in Table 2. Year was included as a random factor in

catch/bycatch analysis to explore inter-annual variation. Season

Figure 1. (a) Spatial distribution of observed longline sets (grey area) and those with seabirds caught (red strips) in all fishing zones from
1992 to 2017. (b) Spatial distribution of observed longline sets (grey area) and those with seabirds caught (red strips) in three east coast zones
from 1992 to 2017. Abbreviations are as follows: 1, northeast district; 2, north central Atlantic; 3, tuna north; 4, tuna south; 5, NEC; 6, Sargasso
region; 7, Caribbean region; 8, MAB; 9, SAB; 10, Florida east coast; 11, Gulf of Mexico.
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was included to explore intra-annual variation. Target species

represented the different fishing practices used for each, e.g.

bait type and line depth (Li et al., 2012, 2016). Water tempera-

ture would affect prey availability, creating redistribution, or

changed feeding behaviour of seabird populations (Durant

et al., 2004). Bait type was hypothesized to impact seabird by-

catch (Watson et al., 2005; Trebilco et al., 2010). A recent study

in the same region demonstrated hook type could significantly

influence seabird bycatch, although its influence might be con-

founded by other factors, such as bait type, fishing location,

season and target species (Li et al., 2012). Wind and wave ac-

tion might have effects on seabird flight and, therefore, on their

abundance in the area (Løkkeborg, 2003; Weimerskirch et al.,

2012). Most seabirds are visual feeders and forage during day-

time, so setting longlines at night, as when targeting swordfish,

could reduce the number of birds attacking baited hooks

(Løkkeborg, 2011). Deeper setting might limit bird access to

baited hooks (Løkkeborg, 2011). In longline fisheries, seabirds

are vulnerable to being hooked during the short period between

when hooks leave the vessel and when hooks sink beyond the

diving ranges of seabirds (Brothers, 1991; Løkkeborg, 2011);

therefore, additional weights, by helping hooks sink more rap-

idly, might reduce the duration of bait availability to birds and

bird vulnerability to hooking (Gladics et al., 2017). Discards

from vessels may attract scavenging seabirds to the area of a

longline fishing operation, where they are trapped and drowned

by taking bait on hooks or becoming tangled in line (Brothers,

1999). Number of hooks, set duration, haul duration, and soak

duration were incorporated into analyses to determine the

impacts of these variations in fishing effort on seabird bycatch.

Some fishing-correlated factors including hook type, hook

depth, set time, and bait type were confounded with other

Table 1. A list of seabird species caught in the POP by area.

Family Species NEC MAB SAB Total

Laridae Herring gull (Larus argentatus) 3 13 1 17
Laughing gull (Larus atricilla) 0 0 1 1
Black-backed gull (Larus marinus) 0 10 0 10
Other Laridae spp. 2 21 0 23

Procellariidae Great shearwater (Ardenna gravis) 7 18 0 25
Cory’s shearwater (Calonectris diomedea) 0 1 1 2
Northern fulmar (Fulmarus glacialis) 0 1 0 1
Other Procellariidae spp. 1 2 0 3

Sulidae Northern gannet (Morus bassanus) 3 8 4 15
Pelecanidae Brown pelican (Pelecanus occidentalis) 0 0 0 0
Oceanitidae Wilson’s storm petrel (Oceanites oceanicus) 0 1 0 1
Stercorariidae Arctic skua (Stercorarius parasiticus) 0 0 0 0
Unidentified Aves 28 11 12 51

Table 2. Potential explanatory variables included in the models.

Variables Type Categories/mean Unit

Year Categorical 1992–2017 –
Season Categorical Winter, spring, summer, fall –
Target species Categorical Mixed species, swordfish, tuna, shark, dolphinfish –
Longitude Continuous �73.86 �W
Latitude Continuous 36.25 �N
Water temperature Continuous 23.62 �C
Water depth Continuous 789.60 m
Wind speed Continuous 12.69 kn
Wind direction Continuous 173.30 �

Wave height Continuous 3.67 ft
Hook type Categorical Circle hook (13/0, 16/0, 18/0, 20/0), J-hook (7/0, 8/0, 9/0, 10/0, 11/0, 13/0, 14/0) –
Number of hooks Continuous 720 –
Set speed Continuous 6.85 kn
Hook depth Continuous 17.88 m
Additional weight Continuous 1.10 lbs
Set duration Continuous 3.13 hr
Haul duration Continuous 5.71 hr
Soak duration Continuous 8.52 hr
Bait type Categorical Mackerel, squid
Set time Categorical Day (6:30–19:30 spring, 5:30–19:30 summer, 7:00–18:30 fall, 7:30–18:00 winter), night
Haul time Categorical Day (same as set time), night
Discard rate Continuous 18 Inds/set
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factors, such as year and target species (Supplementary Figure

S1), which might blur the influence of these fishing-correlated

factors on seabird bycatch.

Model framework
A set of Bayesian hierarchical models were developed to analyse

POP bycatch presence–absence data. A binomial probability dis-

tribution governed the binary outcome of whether at least one

seabird was caught. The probability model described the proba-

bility of producing a bycatch event with a logit link:

logit pð Þ ¼ interceptþ f yearð Þ þ f seasonð Þ þ f target speciesð Þ
þ
X

si xið Þ þ ns;

where p is the probability of catching a seabird; f(year), f(season),

and f(target species) are random effects; xi is the ith explanatory

variable; si is a smooth function for the ith explanatory variable,

defined through a first-order random walk (RW1) process (Rue

and Held, 2005; for details, see Supplementary material); and ns

represents the spatial effect modelled through the stochastic par-

tial differential equation (SPDE) approach. A set of models were

also extended to a spatiotemporal interaction model with

time-varying spatial heterogeneity, in which ns in the above equa-

tion is replaced with ns;t to represent the spatiotemporal

autocorrelation.

The spatial effect was in the form of a Gaussian random field

(GRF) that was defined by a mean function (assumed to be 0)

and a covariance function (Banerjee et al., 2014). Given the prox-

imity of our data to the northeast US coast, we defined the co-

variance function as a collection of paths between two points

through a simultaneous autoregressive (SAR) model, instead of a

correlation function on the distance (Bakka et al., 2019). The

paths that crossed the physical barriers were then eliminated, so

the distance between two points was not the shortest distance,

but an indirect result of the new collection of available paths

(Bakka et al., 2019). This model, called a Barrier model, had the

capability to address the effects of physical barriers but required

no more computational time than the non-Barrier model (Bakka

et al., 2019).

Model fitting and comparison
In Bayesian statistics, traditional Markov Chain Monte Carlo

(MCMC) algorithms may take a long computational time when

dealing with a continuous spatial field (Rue et al., 2009a; Banerjee

et al., 2014). As an alternative, a new statistical approach, inte-

grated nested Laplace approximations (INLA) methodology,

saves computational time by approximating the marginal poste-

rior (Rue and Held, 2005; Lindgren et al., 2011). In particular, the

SPDE approach implemented in the INLA framework provides

an effective solution to simulate a spatial effect by representing a

continuous spatial process as a discretely indexed spatial process

(Rue and Held, 2005; Lindgren et al., 2011). The first step in the

SPDE approach was to construct a triangular mesh to cover the

spatial region (Figure 2). Compared with a regular grid, the trian-

gular mesh set smaller size triangles in areas with more observa-

tions and larger ones in areas with fewer observations, which

saved computational costs and increased the accuracy of the spa-

tial effect where there were observations. The POP data were then

projected onto the mesh. Sparse basis functions were evaluated

over the adjacent mesh nodes and used to approximate the spatial

effect. The mesh included some extension beyond the outer

points to avoid “boundary effects”, i.e. larger variance at the

boundary (Lindgren and Rue, 2015).

All analyses were performed using the R and R-INLA package

(Rue et al., 2009b). The INLA procedure estimated the marginal

posterior distributions of random effects and the parameters in-

volved in the model. There are different options offered in

R-INLA with which to approximate the marginal posterior distri-

butions, and we used the most accurate one—the Laplace

(Martins et al., 2013). The default and recommended settings for

priors were adopted (Held et al., 2010; Lindgren and Rue, 2015;

Simpson et al., 2017; Fuglstad et al., 2019; Bakka et al., 2019).

These priors were non-informative priors and had little influence

on the posterior distributions; hence, results mostly came from

the data (for details on the priors, see the Supplementary

material).

Models with different covariates and spatiotemporal effects

were compared based on deviance information criterion (DIC;

Spiegelhalter et al., 2002) and Watanabe–Akaike information cri-

terion (WAIC; Watanabe, 2010). The DIC is defined as

DIC ¼ �D þ pD;

where �D is the posterior mean of the deviance of the model and

pD is the effective number of parameters in the model

(Spiegelhalter et al., 2002).

The WAIC is defined as

WAIC ¼ �2� ðLPPD� pDÞ;

where LPPD is the log posterior predictive density (Watanabe,

2010).

The DIC has been popular recently, but it is known to have

some problems. For example, DIC can produce a negative esti-

mate of pD . Such problems may arise partly from not being fully

Bayesian in that DIC is based on a point estimate (van der Linde,

Figure 2. Mesh created in the present study. The blue line is the
domain boundary. The SPDE edge effects are moved outside the
domain of interest using an extension with larger triangles.
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2005; Plummer, 2008). The WAIC is fully Bayesian and, there-

fore, uses the entire posterior distribution, so it is recommended

over the DIC criterion (Gelman et al., 2014). The WAIC was

computed to validate the DIC in this study.

Climate indices and correlation analyses
The NAO index was obtained from NCAR (2019). The winter

(i.e. December–February mean) NAO index was incorporated

into our analysis because the signal:noise ratio of NAO was stron-

gest in winter (Hurrell et al., 2003). The annual AMO index based

on the Kaplan sea surface temperature data set was from ESRL

(2019). The annual Gulf Stream North Wall (GSNW) index was

obtained from Dr Arnold H. Taylor (Plymouth Marine

Laboratory, pers. comm.). The GSNW index is derived from

principal component analysis of the monthly latitudinal position

of the GSNW at six longitudes as the Gulf Stream leaves the

northeast coast of the United States at about Cape Hatteras.

Clear spatial patterns of seabird bycatch have been observed in

the POP data of the three zones, with most seabirds caught along

the coastline (Figure 1b). As a first step towards diagnosing the

potential drivers of the spatiotemporal distribution of seabird by-

catch probability, the relationships between different climate in-

dices and the pattern of seabird bycatch probability, shown as the

year effect on bycatch probability and the geographic coordinates

of the hotspot centre each year, were analysed through their

cross-correlation function (CCF), a statistical approach com-

monly used to investigate the possible time-lagged dependence

between two variables (Shumway and Stoffer, 2011). A p-value of

�0.05 for the CCF test was considered significant.

Results
Model comparison and selected explanatory variables
The DIC and WAIC values of models with different covariates

and spatiotemporal effects are presented in Table 3. Model

performance improved by incorporating year, season, target spe-

cies, water temperature, and set time; therefore, these were the se-

lected covariates incorporated into the final model. The

probability model that was fitted with a spatial effect that varied

across years (M22) performed better than the model with a con-

stant spatial effect (M21), implying that the spatial patterns of

seabird bycatch in the three zones varied among years.

The year effect on logit(p) showed clear inter-annual variations

and peaked around 1997 (Figure 3a). Most of the seabird bycatch

was estimated to occur during summer through winter, with the

highest bycatch probability in winter and the lowest probability

in spring (Figure 3b). Longline sets targeting dolphinfish were es-

timated to produce the majority of the seabird bycatch; longline

sets targeting mixed species, sharks, and tuna produced relatively

intermediate values; and longline sets targeting swordfish had the

lowest seabird bycatch probability (Figure 3c). There was a nega-

tive relationship between water temperature and seabird bycatch

probability (Figure 3d). Daytime setting was associated with

higher bycatch probability compared with night setting

(Figure 3e).

Spatiotemporal effect
The mean and standard deviation of the spatial effect on log-

it(p) from the best model (M22) are shown in Figure 4. The

mean spatial effect varied from year to year (Figure 4a).

Excluding years with zero seabird observed caught (i.e. 1996,

2008, 2012 and 2013), the hotspots of high bycatch probability

were in the MAB in most years, including 1992–1994, 2002–

2004, 2006, 2007, 2009–2011, 2014, 2015 and 2017 (Figure 4a).

The hotspots were in the NEC in 1995, 1997, 1998, 2000, and

2001 and in the SAB in 1999, 2005, and 2016 (Figure 4a). In

some years, the hotspots were located near the boundaries of

fishing zones (Figure 4a). The pattern of uncertainty was driven

by the amount of information. Uncertainty estimates revealed

Table 3. DIC and WAIC values for models with different covariates and spatiotemporal effects.

Model Model structure DIC WAIC DDIC DWAIC

M22 Intercept þ year þ season þ target species þ water temperature þ set time þ ns;t 637.03 652.94 0 0
M21 Intercept þ year þ season þ target species þ water temperature þ set time þ ns 725.99 729.79 88.96 76.85
M18 Intercept þ year þ season þ target species þ water temperature þ set time 729.62 732.63 92.59 79.69
M20 Intercept þ year þ season þ target species þ water temperature þ set time þ discard rate 730.01 733.18 92.98 80.24
M19 Intercept þ year þ season þ target species þ water temperature þ set time þ haul time 731.08 734.24 94.05 81.30
M16 Intercept þ year þ season þ target species þ water temperature þ soak duration 742.09 744.76 105.06 91.82
M9 Intercept þ year þ season þ target species þ water temperature þ hook type 743.33 745.86 106.30 92.92
M5 Intercept þ year þ season þ target species þ water temperature þ water depth 744.85 747.13 107.82 94.19
M12 Intercept þ year þ season þ target species þ water temperature þ hook depth 745.81 748.33 108.78 95.39
M14 Intercept þ year þ season þ target species þ water temperature þ set duration 746.29 748.42 109.26 95.48
M11 Intercept þ year þ season þ target species þ water temperature þ set speed 746.30 748.47 109.27 95.53
M4 Intercept þ year þ season þ target species þ water temperature 746.13 748.48 109.10 95.54
M10 Intercept þ year þ season þ target species þ water temperature þ number of hooks 746.50 748.69 109.47 95.75
M15 Intercept þ year þ season þ target species þ water temperature þ haul duration 746.54 748.80 109.51 95.86
M13 Intercept þ year þ season þ target species þ water temperature þ additional weight 746.68 748.83 109.65 95.89
M6 Intercept þ year þ season þ target species þ water temperature þ wind speed 746.76 748.91 109.73 95.97
M7 Intercept þ year þ season þ target species þ water temperature þ wind direction 746.50 748.96 109.47 96.02
M8 Intercept þ year þ season þ target species þ water temperature þ wave height 746.88 749.03 109.85 96.09
M17 Intercept þ year þ season þ target species þ water temperature þ bait type 747.20 749.44 110.17 96.50
M3 Intercept þ year þ season þ target species 761.03 763.08 124.00 110.14
M2 Intercept þ year þ season 770.13 771.10 133.10 118.16
M1 Intercept þ year 799.44 800.09 162.41 147.15

Abbreviations are as follows: ns , constant spatial effect; ns; t , spatial effect with a different realization every year. Models are ordered according to their DWAIC.

672 R. Bi et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/77/2/668/5704436 by guest on 25 M
arch 2021



relatively low uncertainty along the coastline where most long-

line operations take place, and higher uncertainty farther away

from the coastline (Figure 4b).

Correlations with climate indices
Time series plots of all climate indices and geographic coordi-

nates of the centre of a hotspot are shown in Supplementary

Figure S2. We performed cross-correlation analyses of the latitude

and longitude of the hotspot of seabird bycatch in each year with

large-scale climate indicators. Significant correlation with the lati-

tude of hotspot centre was found only in one case: the GSNW in-

dex of 2 years past displayed a significant positive effect on the

latitude of the seabird bycatch hotspot; the higher the GSNW, the

more northerly the latitude of the hotspot (Table 4). There was

no significant correlation between climate indices and longitude

of the hotspot centre (Table 4). The year effect on logit(p) derived

from the model was correlated with one climate indicator; signifi-

cant positive correlation was found between the year effect and

the winter NAO index of 2 years past (Table 4; cross-correlation

plots in Supplementary Figure S3).

Discussion
Influence of explanatory variables
Our analyses captured the impacts of year, season, target species,

water temperature, and set time on seabird bycatch probability.

Although additional weight on hooks has been found to reduce

seabird bycatch in other studies (e.g. Gladics et al., 2017), its in-

fluence is not significant in the present study, possibly due to the

limited records on added weight (i.e. 1377 longline sets without

records on additional weight) and no detailed information on

weight locations. Discard rate did not significantly affect seabird

bycatch probability in the current study. Vessels that routinely

discharge discards might attract a larger number of seabirds, in-

creasing bycatch risk (Brothers, 1999); however, discharging on

the opposite side of the vessels from the setting or hauling sta-

tions might draw seabirds’ attention from baited hooks and re-

duce bycatch (Cherel et al., 1996). The impacts of factors, such as

hook depth, hook type, and bait type, were not significant, possi-

bly because effects of these factors were confounded by their cor-

relations with other factors, such as year and target species

(Supplementary Figure S1). For example, >99% of longline sets

were with J-hook before 2004, �61% of longline sets were with J-

hook in 2004 and all longline sets were with circle hook after

2004 (Supplementary Figure S1a). The lack of comparison of

both types of hook in the same fishing period limited our ability

to assess their influence.

The year effect on logit(pÞ decreases after 2004, when the circle

hook replaced the J-hook (Supplementary Figure S1a). In the pre-

sent study, the commonly used sizes for circle hooks were 16/0

(1825 longline sets) and 18/0 (2059 longline sets) and for J-hooks

were 8/0 (472 longline sets) and 9/0 (715 longline sets). Larger

hooks might be more difficult for birds to swallow and so reduce

bycatch, and, in support, a correlative study found a negative re-

lationship between hook size and seabird bycatch rate (Moreno

et al., 1996). Shape may be even more important. A previous

study in the same region found that use of the 8/0 J-hook led to

the highest probability of catching a seabird (Li et al., 2012).

Another potential explanation for the declines from the 1990s to

present is that the decreases in fleets of trawlers that fish for silver

hake, Atlantic cod, and other groundfish in the Northwest

Atlantic resulted in a reduced prey base for seabirds that scavenge

for these species at trawlers off the US east coast, leading to a de-

crease in seabird abundance (Lear, 1998; Veit et al., 2015). The

seabird bycatch rate is positively related to seabird abundance

(Zhou et al., 2019).

Most seabird longline bycatch species, such as herring gulls

(Larus argentatus) and great shearwaters, return to their breeding

colonies in spring (Harrison, 1983; Onley and Scofield, 2013), so

they are less likely to be among the spring bycatch along the US

Figure 3. Effects of explanatory variables on seabird bycatch probability [logit(p)] from the interactive Barrier model. Points and solid lines
represent posterior mean values; error bars and dashed lines represent 95% credible intervals. Abbreviations of seasons are as follows: W,
winter; S, spring; Sum, summer; F, fall. Abbreviations of target species are as follows: M, mixed species; SW, swordfish; T, tuna; SH, shark; D,
dolphinfish.
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east coast. The North Atlantic near the northeast coast of the

United States is the wintering grounds of these species (Harrison,

1983), increasing their chances of being caught during winter in

this area.

The influence of water temperature might have been through

the food web. A negative relationship of abundance with water

temperature has been reported for Calanus finmarchicus, a

particularly valuable Calanus in the copepod–sand lance–seabird

food chain (Grieve et al., 2017). Increased prey availability under

low water temperature may attract more seabirds, increasing the

overlap with fisheries and thus increasing bycatch risk. Night

setting produced lower probability of seabird bycatch, since

most of the vulnerable seabirds are diurnal foragers (Løkkeborg,

2011).

Figure 4. (a) Posterior mean and (b) standard deviation of the spatial effect of logit(p) from the interactive Barrier model (represented by
ns;t in the model). Abbreviations are as follows: 5, NEC; 8, MAB; 9, SAB. Years with zero seabirds caught are 1996, 2008, 2012, and 2013.
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The longline sets targeting dolphinfish produced the highest

probability of catching a seabird, while longline sets targeting

swordfish produced the lowest probability. In the POP data, long-

line sets targeting dolphinfish occurred in shallower waters

(Supplementary Figure S1f), which increased seabird attack rates

on baited hooks. More than half of longline sets targeting

swordfish were set at night (Supplementary Figure S1k), when

seabird bycatch is less likely.

Spatiotemporal patterns of seabird bycatch
The spatial effect introduced into this study is particularly appro-

priate for seabirds because of their wide distribution along the

Figure 4. Continued.
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coast. Previous studies have detected clear spatial and temporal

variations of seabird bycatch in longline fisheries (Brothers et al.,

1999; Jiménez et al., 2010; Li et al., 2016). The spatial effect cap-

tures spatial autocorrelation and can improve the accuracy of

estimates of seabird bycatch probability (Dormann et al., 2007).

The highest seabird bycatch probability occurs in the MAB

area in most years and may be associated with the high seabird

activity and diversity in this region. The interaction of high fresh-

water inflow, expanded hard bottom, and converging ocean cur-

rents in this region (Chapman et al., 1986; Steimle and Zetlin,

2000) creates frontal zones that support great biodiversity and

fish productivity and then attract more seabirds and, likely, more

large pelagic fishes, which attract more intensive pelagic longline

fishing. The presence of at least 49 seabird species at the outer

continental shelf off Cape Hatteras near the boundary of the SAB

with the MAB has been documented (Lee, 1999).

Climate influence
We found that a higher GSNW index of 2 years past was associ-

ated with a more northerly position of the seabird bycatch hot-

spot. During a year with a higher GSNW index, the warm Gulf

Stream follows a more northerly track, and the warm condition

may depress the supply of Calanus copepods for sand lance

through an effect on their food source (Grieve et al., 2017), which

could negatively influence seabirds, probably with a time lag. In

the absence of prey in their usual foraging location, seabirds

might migrate more northerly to forage. When separating from

the coast at about Cape Hatteras and flowing eastward into the

open ocean, the Gulf Stream meanders can result in intense long-

lived mesoscale eddies, whose dynamics partly control foraging

behaviour and displacement of marine top predators, including

large fishes, birds, turtles and marine mammals, and then influ-

ence the distribution of pelagic longline fishing (Kai et al., 2009;

Scales et al., 2018). Seabirds could track these mesoscale eddies to

locate food patches (Kai et al., 2009). The increased overlap with

fisheries in the northern area would increase bycatch risk.

During a year following a winter dominated by a positive

NAO, sea surface temperatures are warmer along the east coast of

the United States, depressing the abundance of the natural food

of seabirds. The low prey availability might increase bycatch risk

since, in the absence of their natural food, starving seabirds are

more likely to forage around vessels.

Model evaluation and management implication
The models presented here provide an example of how to ad-

dress spatiotemporal heterogeneity in ecological phenomena.

The Bayesian hierarchical spatiotemporal models were fitted

through INLA and SPDE. The INLA, SPDE and their R interface

allowed us to develop sophisticated models more easily. The

INLA decreases the computational costs compared with MCMC

simulation techniques and the SPDE directly models geo-

referenced data (Rue and Held, 2005; Rue et al., 2009b; Held

et al., 2010; Lindgren et al., 2011). The Barrier model, which

interprets the Matérn correlation as a collection of paths between

two points through an SAR model and formulates the new SAR

as an SPDE, can deal with very complex barriers and reduce the

computational cost compared with MCMC algorithms in the

same way as the stationary model (Bakka et al., 2019).

Spatiotemporal heterogeneity is a common phenomenon for

most species, and omitting such spatiotemporal structure may

bias results (Cosandey-Godin et al., 2015; Pennino et al., 2014; Li

et al., 2016; Bi et al., 2019).

Seabird bycatch estimates along the east coast of the United

States through summer to winter are statistically higher than in

other POP PLL statistical fishing zones and in spring. Long-term

climate ocean oscillations show clear links with the spatiotemporal

patterns of seabird bycatch probability. We can infer from correla-

tions with these cyclical variables that an appropriate regional and

temporal modification of fishing effort, either voluntarily by the

fleet or through management actions, might significantly reduce

seabird bycatch in the US Atlantic. Possible strategies to reduce

seabird bycatch might include the implementation of real-time

seabird bycatch hotspot avoidance in the fishing industry by

means of model predictions based on long-term climate ocean

oscillations (Hobday et al.,2011), incorporated with increased fleet

communication to help vessels avoid areas or time periods when

seabirds aggregate [FAO (Food and Agriculture Organization of

the United Nations), 2009; Bethoney et al., 2017].

Table 4. Cross-correlation coefficients between latitude, longitude, year effect and climate indices, and the corresponding p-values.

Climate index Lag

Latitude Longitude Year effect

Coefficient p-Value Coefficient p-Value Coefficient p-Value

NAO 0 �0.22 0.27 �0.22 0.25 0.046 0.81
�1 �0.38 0.053 �0.24 0.22 �0.17 0.40
�2 0.10 0.60 0.055 0.78 0.46 0.020*
�3 0.37 0.057 0.37 0.058 0.14 0.49

AMO 0 �0.018 0.93 0.0040 0.98 �0.14 0.49
�1 �0.24 0.22 �0.38 0.054 �0.24 0.22
�2 �0.31 0.11 �0.30 0.13 �0.26 0.18
�3 �0.13 0.49 �0.11 0.59 �0.24 0.23

GSNW 0 �0.017 0.93 �0.020 0.92 0.010 0.96
�1 0.26 0.19 0.20 0.32 0.069 0.73
�2 0.44 0.025* 0.38 0.052 0.33 0.089
�3 0.18 0.35 0.28 0.16 0.18 0.36

Lag ¼ 0 means climate index in the current year, lag ¼ -1 means climate index of the previous year, lag ¼ -2 means climate index of 2 years past, and lag ¼ -3
means climate index of 3 years past.
*p-Value50.05.
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In summary, seabird bycatch in the US Atlantic PLL shows

clear spatial and temporal variations. The inter-annual variations

in bycatch hotspot are correlated with the north–south move-

ments of the Gulf Stream, which are likely correlated with the

NAO and the Gulf Stream position in the past; high values of the

NAO index, which correspond to stronger westerly and trade

winds, favour more northerly paths of the Gulf Stream (Taylor

and Stephens, 1998). A regulation of real-time seabird bycatch

hotspot avoidance based on Gulf Stream positions could mitigate

seabird bycatch.

Supplementary data
Supplementary material is available at the ICESJMS online ver-

sion of the manuscript.
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