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VALIDATION OF PRODUCTIVITY ANALYSIS FOR DATA LIMITED STOCKS 
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SUMMARY 

Regional Fisheries Management Organisations have the responsibility to manage not just the 
main commercial stocks but also by caught species that may be endangered, threatened or 
protected and the associated communities. Although ICCAT has over a hundred species in its 
database, only 15 stocks have been formally assessed. This is due either to lack of data, capacity 
or management recommendations. The lack of formal assessments may hamper progress towards 
Ecosystem-Based Fisheries Management. We, therefore, evaluate estimates of and proxies for 
productivity for data-limited stocks. We do this by evaluating potential methods using data-rich 
stocks as a benchmark. 

RÉSUMÉ 

Les organisations régionales de gestion des pêcheries sont chargées de gérer non seulement les 
principaux stocks commerciaux, mais aussi les espèces capturées accidentellement qui peuvent 
être en danger, menacées ou protégées, ainsi que les communautés associées. Bien que l’ICCAT 
dispose de plus de cent espèces dans sa base de données, seuls 15 stocks ont fait l'objet d'une 
évaluation officielle. Cela est dû soit à un manque de données, de capacités ou de 
recommandations de gestion. L'absence d'évaluations formelles peut entraver les progrès vers 
une gestion des pêcheries basée sur l’écosystème. Nous évaluons donc les estimations et les 
approximations de la productivité pour les stocks limités en données. Nous le faisons en évaluant 
des méthodes potentielles en utilisant des stocks riches en données comme référence. 

RESUMEN 

Las Organizaciones Regionales de Ordenación Pesquera tienen la responsabilidad de gestionar 
no sólo los principales stocks comerciales, sino también las especies capturadas de forma fortuita 
que pueden estar en peligro, amenazadas o protegidas y las comunidades asociadas. Aunque 
ICCAT tiene más de un centenar en su base de datos, sólo 15 stocks han sido evaluadas oficial-
mente. Esto se debe a la falta de datos, capacidad o recomendaciones de ordenación. La falta de 
evaluaciones oficiales puede obstaculizar los progresos hacia la ordenación pesquera basada en 
los ecosistemas. Por lo tanto, en este documento se evalúan las estimaciones de la productividad 
de los stocks con datos limitados y sus aproximaciones. Esto lo hacemos evaluando los posibles 
métodos utilizando como referencia los stocks ricos en datos. 

KEYWORDS 

Data Poor, Ecosystem-Based Fisheries Management, Ecological Risk Assessment; 
Productivity, Value-of-Information 

1 Centre for Environmental Policy, Imperial College London, London, United Kingdom. 
2 ICCAT Secretariat, Corazón de María, 8. 28002 Madrid, SPAIN  



158 

1. Introduction 
 
ICCAT has recently amended its Convention (PLE_108/2019) to include, inter alia, that the Commission and its 
Members, in conducting work under this Convention, shall be responsible: 
 

for the study of the populations of tuna and tuna-like fishes and elasmobranchs that are oceanic, pelagic, 
and highly migratory, hereinafter referred to as “ICCAT species”, and such other species caught while 
fishing for ICCAT species  
 

Regional Fisheries Management Organisations (RFMOs) like ICCAT have increasingly to assess not only the 
main target species but also bycaught Endangered, Threatened and Protected (ETP) species and the associated 
ecological communities affected while fishing for the target species. In many cases, however, the data available 
are insufficient to use traditional stock assessment methods based on catch and age data and indices of abundance. 
For example, although ICCAT list over a hundred species in its database, currently only 15 tuna and billfish species 
have been formally assessed. This is due to inefficient processes, lack of data, capacity or management 
recommendations. This lack of formal assessments may hamper progress towards assessing ETP species.  
 
By-catch is, therefore, a growing concern for Regional Fisheries Management Organisations (RFMOs), and the 
fishing fleets who increasingly wish to be Marine Stewardship Council (MSC) certified. For example, most of the 
bycatch of species in the tuna fisheries has never been studied, partly due to the limited data available since a large 
part of their catches are not recorded (Lucena-Frédou, et al., 2017). Consequently, stock status and life-history 
characteristics for the majority of these teleosts are mostly unknown. 
 
Growing concerns over the impact of the tuna fisheries on bycatch species (King and McFarlane, 2003) have led 
RFMOs to develop holistic approaches to the assessment and management of all exploited species. Several 
approaches have been developed, for example, to use life history information to rank species according to their 
intrinsic sensitivities to threats such as fishing (Dulvy et al., 2004, Reynolds et al., 2005).  One approach is 
Productivity and Susceptibility Analysis (PSA; Hobday et al., 2007, 2011) which estimates the vulnerability of a 
stock based on its biological productivity and susceptibility to fishing. The approach relies on the relationship 
between the life history characteristics of a stock and its productivity, and its susceptibility to being caught in a 
fishery. 
 
This study aims to validate methods used to estimate the productivity of unassessed, i.e. data-poor species, by 
testing them on data-rich stocks where estimates of productivity are available from formal stock assessments. 
 
 
2. Material and Methods 

 
We used the RAM legacy database, a compilation of stock assessment results for commercially exploited marine 
populations from around the world (https://www.ramlegacy.org) to obtain estimates of productivity based on target 
reference points, i.e. maximum sustainable yield (MSY) and the fishing mortality (FMSY) that would achieve it.  
The stock assessment results in the legacy database have been used extensively in management, and many global 
studies have made extensive use of the database (e.g. Hilborn at al., 2020, Rosseau, et al., 2019). We use this well-
studied dataset as a benchmark to evaluate the performance of techniques currently used to estimate productivity. 
We then evaluate the Value-of-Infomation (VoI), e.g. which is more important for determining bias and precision, 
the data or expert (prior) knowledge? 
 
A number of life-history characteristics have been used as proxies for productivity, i.e. maximum Size (Lmax) or 
Linfinity, the von Bertalanffy growth coefficient (k), size at first maturity (L50), and the ratio   L50:Linfinity. We used 
life-history parameters from Fish Base, for the data-rich stocks in the RAM legacy database and compared these 
to the estimates HMSY , the harvest rate corresponding to FMSY. Since for data-rich stocks, FMSY is a good estimate 
of productivity.  
 
We then calculated the population growth rate (r) under a variety of assumptions, corresponding to the steepness 
of the stock-recruitment relationship (h), selection pattern (i.e. logistic dome-shaped, or flat) and natural mortality. 
 
  

https://www.iccat.int/com2019/ENG/PLE_108_ENG.pdf
https://www.ramlegacy.org/
https://www.ramlegacy.org/
https://www.ramlegacy.org/


159 

2.1 Population Growth Rate 
 

Age structured operating models for the 29 simulated stocks were created using the Fisheries Library in R (FLR, 
Kell et al., 2007) package FLife (https://github.com/flr/FLife).  
 
Input parameters used were the allometric length-weight parameters (𝑎𝑎, 𝑏𝑏), von Bertalanffy growth parameters 
𝐿𝐿∞, 𝑘𝑘 and 𝑡𝑡0, and the length or age at 50% maturity (𝐿𝐿50, 𝑎𝑎50). These input values are given in Table S1. Table 
S2 gives further parameters characterising the operating models of the 29 simulated stocks. 
 
Missing input parameters can be estimated by FLife using empirical relationships; namely 
 
 𝑘𝑘 = 𝐿𝐿∞−0.63  
 
(Gislason et al., 2008) and 
 
 𝐿𝐿50 = 0.72𝐿𝐿∞0.93  
 
(Beverton, 1992). However, in the present study, these equations were not used because empirical estimates were 
available for each simulated stock. 
 
2.1.1 Growth 

 
Growth was modelled with the von Bertalanffy growth equation 
 
 𝐿𝐿𝑡𝑡 = 𝐿𝐿∞�1 − 𝑒𝑒−𝑘𝑘(𝑡𝑡−𝑡𝑡0)�  
 
with 1 ≤ 𝑡𝑡 ≤ 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚.   
 
2.1.2 Natural morality 

 
Natural mortality 𝑀𝑀 was modelled as length-dependent according to equation 2 in Gislason et al. (2010):  
 
 𝑙𝑙𝑙𝑙(𝑀𝑀𝐿𝐿) = 0.55 − 1.61𝑙𝑙𝑙𝑙(𝐿𝐿) + 1.44𝑙𝑙𝑙𝑙(𝐿𝐿∞) + 𝑙𝑙𝑙𝑙 (𝑘𝑘)  
 
To derive natural mortality at age, the von Bertalanffy growth equation is used. 
 
2.1.3 Maturity 

 
Maturity at age 𝑚𝑚𝑡𝑡 is modelled with a sigmoid function:  
 
𝑚𝑚𝑡𝑡 = {0, 𝑖𝑖𝑖𝑖𝑡𝑡 < (𝑎𝑎50 − 5) 𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠

1+19
(𝑎𝑎50−𝑡𝑡)
𝑡𝑡95

, 𝑖𝑖𝑖𝑖(𝑎𝑎50 − 5) ≤ 𝑡𝑡 ≤ (𝑎𝑎50 + 5)𝑡𝑡𝑠𝑠𝑠𝑠𝑚𝑚, 𝑖𝑖𝑖𝑖𝑡𝑡 > (𝑎𝑎50 + 5)  

 
with 𝑡𝑡𝑠𝑠𝑠𝑠𝑚𝑚 = 1 (maximum maturity value) and 𝑡𝑡95 = 1 (steepness of maturity curve). 
 
2.1.4 Selectivity 

 
Fisheries selectivity 𝑠𝑠𝑡𝑡 at age is modelled with a flexible double normal function where the first age with full 
selectivity is set to 𝑎𝑎50: 
 

 𝑠𝑠𝑡𝑡 = {2−�
𝑡𝑡−𝑡𝑡1
𝑠𝑠𝑠𝑠 �

2

, 𝑖𝑖𝑖𝑖𝑡𝑡 < 𝑡𝑡12−�
𝑡𝑡−𝑡𝑡1
𝑠𝑠𝑠𝑠 �

2

, 𝑖𝑖𝑖𝑖𝑡𝑡 ≥ 𝑡𝑡1  
 
Where 𝑡𝑡1 = 𝑎𝑎50 + 𝑡𝑡95. The selection pattern was set to an asymptotic selectivity pattern by setting 𝑠𝑠𝑠𝑠 = 5000 
and 𝑠𝑠𝑙𝑙 = 1 

https://github.com/flr/FLife
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2.1.5 Recruitment 
 

Recruitment (𝑅𝑅) is modelled with the Beverton-Holt stock-recruitment 
 
 𝑅𝑅 = 𝛼𝛼𝛼𝛼

𝛽𝛽+𝛼𝛼
  

 
Reformulated in terms of steepness ℎ (the proportion of expected recruitment produced at 20% virgin spawning-
stock biomass 𝑆𝑆0 relative to virgin recruitment 𝑅𝑅0), this gives 
 
 𝑅𝑅 = 0.8𝑅𝑅0ℎ𝛼𝛼

0.2𝛼𝛼0(1−ℎ)+(ℎ−0.2)𝛼𝛼
  

 
The population growth rate (r) was estimated from the Leslie Matrix (A), a transition matrix with columns 
representing age classes (Caswell 1989) i.e 
 
     𝑁𝑁𝑡𝑡+1 = 𝐴𝐴𝑁𝑁𝑡𝑡 
 
Where Nt is a vector describing the age composition of the population at time (t). The 1st row of the matrix 
corresponds to fertility rate by age (𝑖𝑖𝑖𝑖), and the sub-diagonal the survival probabilities (𝑠𝑠𝑖𝑖) to the end of age i, i.e. 
 

   A=

⎣
⎢
⎢
⎢
⎡
𝑠𝑠0𝑖𝑖1 𝑠𝑠0𝑖𝑖2 ⋯ 𝑠𝑠0𝑖𝑖𝑚𝑚−1 𝑠𝑠0𝑖𝑖𝑚𝑚
𝑠𝑠1 0 ⋯ 0 0
0 𝑠𝑠2 ⋯ 0 0
⋮ ⋯ ⋱ 0 0
0 0 ⋯ 𝑠𝑠𝑚𝑚−1 0 ⎦

⎥
⎥
⎥
⎤

 

  
r can then be derived from λ, the dominant eigenvalue of A: 
 

𝑠𝑠 = 𝑙𝑙𝑙𝑙𝑙𝑙(𝜆𝜆) 
 

For a given value of r, the population doubling time is: 
 
  𝑇𝑇𝑑𝑑 = 𝑙𝑙𝑙𝑙𝑙𝑙 (2)

𝑙𝑙𝑙𝑙𝑙𝑙
(1 + 𝑠𝑠) 

 
As well as a base case, five scenarios were run to evaluate the sensitivity of the estimates of r to the assumed values 
of steepness, natural mortality, and selection pattern. The base case assumed a steepness value of 0.9 and that 
selection pattern was the same as the maturity ogive. The five scenarios were i) steepness = 0.7; ii) flat selection 
pattern, iii) dome shape selection pattern; iv) higher M; and v) lower M.  
 
2.2. Screening 
 
When developing indicators, the total number should be minimised and be complementary and non-redundant 
(Shin et al. 2010, Kershner et al. 2011). They should also be robust proxies for corresponding ecosystem attributes 
or pressures (Fulton et al. 2005). They, therefore, need to be screened using appropriate selection criteria. 
 
Screening potential indicators and reference levels can be performed using Receiver Operating Characteristic or 
ROC curves (Green and Swets, 1966). A ROC analysis compares the true positive rate (TPR) with a false positive 
rate (FPR) for different reference levels. Distinguishing between TPR and FPR is important since risks are 
asymmetric, i.e. gains and losses due to failing to act when management action is required are not the same as 
taking action unnecessarily. 
 
The ROC curve can be thought of as a plot of power as a function of the Type 1 Error of the decision rule. When 
the probability distributions for both detection and false alarm are known, the ROC curve is generated by plotting 
the cumulative distribution function (area under the probability distribution of the discrimination threshold) of the 
detection probability in the y-axis versus the cumulative distribution function of the false-alarm probability on the 
x-axis. ROC analysis, therefore, provides a tool to select the best candidate indicators. 
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An example of a ROC curve is shown in Figure 1, and demonstrates several things, namely: 
 

− It shows the trade-off between TPR (or sensitivity) and FPR (or specificity), as any increase in TPR will 
be accompanied by a decrease in FPR. 

− The closer the curve is to the left-hand border and then the top border of the ROC space, the more accurate 
the test. 

− The closer the curve comes to the y=x line of the ROC space, the less accurate is the test. 
− The area under the curve is a measure of a test’s accuracy. An area of 1 represents a perfect test; an area 

of .5 represents a worthless test.  
− The slope of the tangent line at a cut point gives the likelihood ratio (LR) for that value of the test. 

 
To construct ROC curves, we assumed that the objective of the PSA was to identify stocks/species of concern, i.e. 
those that fell within the lower 10th percentile of productivity estimated by HMSY. The task was then to identify the 
reference level that when classifying the low productivity stocks would maximise the TPR and minimise the FPR. 
 
 
3. Results 
 
Figure 2 shows the relationships between r, HMSY, and the shape of the Pella-Tomlinson production function from 
data-rich assessments, with data-poor estimates of r (r.lh) and the life history parameters Linfinty, k and L50: Linfinty. 
Inspection of the plots and the correlations in the top row show there do appear to be relationships, e.g. the 
correlation between HMSY and k is 0.35, although these are relatively noisy. 
 
The relationship between data-poor estimates of population growth rate r under the different scenarios is shown in 
Figure 3. Although the absolute estimates of r change under the different scenarios, the correlations are high and 
so the rankings of productivity by species are little affected. It appears that the assumed level of M has the biggest 
impact and that the rankings are robust to uncertainty about steepness and selection pattern. 
 
The ROC curves for life-history parameters and the base case value of r are shown in Figure 3. The best classifier 
is given by the line that contains the point that maximises the TPR and minimises the FPR. The best proxies for 
productivity are therefore r, rc, L50:Linfinity and k. Where rc is the conditional population growth rate (i.e. the growth 
rate at FMSY).  
 
The ROC curves for different scenarios for estimation of r are shown in Figure 4. r is a robust proxy for 
productivity since despite uncertainly about the actual dynamics classification skill is high and is little effect by 
uncertainty about the dynamics. 
 
 
4. Discussion and Conclusions 
 
The empirical indicators appear to work well, particularly L50:Linfinity and k, and perform nearly as well as those 
based on r. 
 
r appears to be a robust proxy for productivity. 
 
A benefit of using a modelled derived quantity is that quantity for use in management can more easily be derived, 
e.g. population doubling time which could be used as part of a management advice framework. 
The use of life-history parameters appears to be able to rank unassessed species according to their intrinsic 
sensitivities to threats such as fishing. 
 
Despite the low correlations between HMSY and some of the life history parameters identification of the low 
productivity stocks were good. This was because when ranking, it is only the tails of the distributions that are 
considered.  
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Figure 1.  Receiver Operator Characteristic curve, showing an example of a classifier, the y=x line represents a 
model with no skill. 
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Figure 2. Relationships between 𝑠𝑠, 𝐻𝐻𝑀𝑀𝛼𝛼𝑀𝑀, and the shape of the Pella-Tomlinson production function from data-
rich assessments, with data-poor estimates of 𝑠𝑠 (r.lh) and life history parameters LInfinity, 𝑘𝑘 and 𝐿𝐿50

𝐿𝐿∞
. 
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Figure 3. Relationship between data-poor estimates population growth rate (𝑠𝑠) under the different scenarios. 
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Figure 4. ROC curves for life-history parameters and derived quantities. 

 
Figure 5. ROC curves for different scenarios for estimation of 𝑠𝑠. 
 


