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a  b  s  t  r  a  c  t

At-haulback  mortality  of  blue  shark  (Prionace  glauca)  captured  by  the  Portuguese  pelagic  longline  fish-
ery targeting  swordfish  in  the  Atlantic  was  modeled.  Data  was  collected  by  onboard  fishery  observers
that  monitored  762  fishing  sets  (1 005  486  hooks)  and  recorded  information  on  26  383  blue  sharks.  The
sample size  distribution  ranged  from  40  to 305  cm  fork  length,  with  13.3%  of  the  specimens  captured
dead  at-haulback.  Data  modeling  was  carried  out  with  Generalized  Linear  Models  (GLM)  and  Gener-
alized Estimation  Equations  (GEE),  given  the fishery-dependent  source  of  the  data.  The  explanatory
variables  influencing  blue  shark  mortality  rates  were  year,  specimen  size,  fishing  location,  sex,  season
and branch  line  material.  Model  diagnostics  and  validation  were  performed  with  residual  analysis,  the
Hosmer–Lemeshow  test,  a  receiver  operating  characteristic  (ROC)  curve,  and  a 10-fold  cross  validation
procedure.  One  important  conclusion  of this  study  was  that  blue  shark  sizes  are  important  predictors

for  estimating  at-haulback  mortality  rates,  with  the  probabilities  of  dying  at-haulback  decreasing  with
increasing  specimen  sizes.  The  effect  in  terms  of  odds-ratios  are  non-linear,  with  the  changing  odds-
ratios  of  surviving  higher  for the  smaller  sharks  (as  sharks  grow  in  size)  and  then  stabilizing  as  sharks
reach  larger  sizes.  The  models  presented  in this  study  seem  valid  for predicting  blue  shark  at-haulback
mortality  in  this  fishery,  and  can  be  used  by fisheries  management  organizations  for  assessing  the  efficacy
of management  and  conservation  initiatives  for  the  species  in  the  future.
. Introduction

In the Atlantic Ocean several pelagic shark species are common
ycatch on pelagic longline fisheries (e.g. Buencuerpo et al., 1998;
etersen et al., 2009; Simpfendorfer et al., 2002) but information
n their life history, population parameters and the effects of fish-
ries on these populations is still limited. Generally, elasmobranchs
ave K-strategy life cycles, characterized by slow growth rates and

ong lives, and reduced reproductive potential with few offspring
nd late maturity. The natural mortality rates are usually low, and
ncreased fishing mortality may  have severe consequences on these
opulations with declines occurring even at relatively low levels
f fishing mortality (Smith et al., 1998; Stevens et al., 2000). Of
he several elasmobranch species caught in surface pelagic long-

ine fisheries, the blue shark (Prionace glauca,  L. 1758), is the most
requently caught species, and can represent more than 50% of the

∗ Corresponding author. Tel.: +351 289 700 520; fax: +351 289 700 535.
E-mail addresses: rpcoelho@ipma.pt, coelho.ruip@gmail.com (R. Coelho).

165-7836/$ – see front matter ©  2013 Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.fishres.2013.02.010
© 2013 Elsevier B.V. All rights reserved.

total fish catch, and 85–90% of the total elasmobranch catch (Coelho
et al., 2012a).

Previous studies have focused elasmobranch mortality dur-
ing fishing operations, with many carried out for coastal species
caught in trawl fisheries (e.g. Mandelman and Farrington, 2007;
Rodriguez-Cabello et al., 2005). For pelagic elasmobranchs,
Campana et al. (2009) analyzed blue sharks captured by the Cana-
dian pelagic longline fleet and studied both the short term mortality
(recorded at-haulback) and the longer term mortality (recorded
with satellite telemetry). Also for the NW Atlantic, Diaz and Serafy
(2005) worked with data from the U.S. pelagic fishery observer pro-
gram and analyzed factors affecting the live release of blue sharks.
Additionally, several authors have addressed the possible effects
of gear modifications such as hook style and leader material on
both the catch rates and mortalities of pelagic elasmobranchs (e.g.
Afonso et al., 2011, 2012; Kerstetter and Graves, 2006; Yokota et al.,
2006).
Knowledge on the at-haulback mortality (recorded at time of
fishing gear retrieval) can be used to evaluate conservation and
management measures that include the prohibition to retain par-
ticular vulnerable species, such as those recently implemented
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y some tuna Regional Fisheries Management Organizations (tRF-
Os). In particular and for the Atlantic Ocean, the International

ommission for the Conservation of Atlantic Tunas (ICCAT) has
ecently implemented mandatory discards for the bigeye thresher
ICCAT Rec. 09-07), the oceanic whitetip (ICCAT Rec. 10-07),
ammerheads (ICCAT Rec. 10-08) and silky sharks (ICCAT Rec.
1-08). However, at-haulback fishing mortality remains largely
nknown, and therefore the efficiency of such measures also
emains unknown. Considering that all specimens of these par-
icular species are now being discarded, fishing mortality is still
ccurring due to at-haulback mortality, as part of the catch is
lready dead at time of fishing gear retrieval and is therefore being
iscarded dead (Coelho et al., 2012b).

At-haulback mortality studies are also important as they can be
ncorporated into stock assessments, such as the study by Cortés
t al. (2010), which used an ecological risk assessment analysis for
leven species of elasmobranchs captured in pelagic longlines in
he Atlantic Ocean. With this analysis, both the susceptibility and
he productivity of each species are analyzed in order to rank and
ompare their vulnerability to the fishery. One of the parameters
hat can be included in the susceptibility component is the proba-
ility of survival after capture, which can in part be calculated from
he mortality at-haulback.

This study had two main objectives: (1) to predict at-haulback
ortality of blue sharks captured in the Portuguese pelagic longline

shery targeting swordfish in the Atlantic Ocean, comparing GLM
nd GEE models and, (2) to identify and interpret variables that
ignificantly influence the blue shark at-haulback mortality rates.

. Materials and methods

.1. Data collection

Data for this study was collected by fishery observers from
he Portuguese Sea and Atmospheric Research Institute (IPMA, I.P.)
laced onboard Portuguese longliners targeting swordfish along
he Atlantic Ocean. The fishing gear typically used by this fleet
onsists of a standard monofilament polyamide mainline set for
shing at depths of 20–50 m below the surface. Usually the line is
et with five branch lines between pairs of buoys, with each branch
ine having approximately 18 m in length and a hook in the ter-

inal tackle. The hooks used by the fleet are typically stainless
teel J-style hooks, baited either with squid (Illex spp.) or mackerel
Scomber spp.). Both monofilament and multifilament wire branch
ines are used, but only one type is used per fishing set. Gear deploy-

ent traditionally begins at around 17:00, with haulback starting
he next day from about 06:00. Data was collected between August
008 and December 2011, and during that period information from

 total of 762 longline sets, corresponding to 1 005 486 hooks, was
ollected. The study covered a wide geographical area (from both
emispheres) of the Atlantic Ocean (Fig. 1).

For every specimen caught, the onboard fishery observers
ecorded the species, specimen size (FL, fork length measured to the
earest lower cm), sex and at-haulback condition (alive or dead at
ime of fishing gear retrieval). The condition of the sharks at fishing
ear retrieval (alive or dead) was categorized based on any respon-
iveness from the sharks indicating that specimens were alive.
or each longline set carried out some additional information was
ecorded, including date, geographic location (coordinates: latitude
nd longitude), number of hooks deployed in the set, and branch
ine material used (monofilament or wire). Sea Surface Tempera-

ure (SST) was  interpolated from satellite data using the known date
nd location of each fishing set, applying the algorithm described
y Kilpatrick et al. (2001), and using the Marine Geospatial Ecology
ools (MGET) developed by Roberts et al. (2010).
Fig. 1. Location of the longline fishing sets analyzed in this study along the Atlantic
Ocean. The scale bar is represented in nautical miles (NM).

2.2. Description of the data

The length frequency distribution of male and female
blue sharks was analyzed, and compared with a 2-sample
Kolmogorov–Smirnov test and a Mann Whitney rank sum test.
Those non-parametric tests were chosen after calculating the skew-
ness and kurtosis coefficients, and confirming that the data were
non-normal with a Lilliefors test. The proportions of dead and alive
blue sharks were calculated for each level of each categorical vari-
able (trip, sex, year, quarter, vessel, branch line material), and the
differences in the proportions were compared with contingency
tables and chi-square statistics (using Yates’ continuity correction
in the cases of 2 × 2 tables). For this preliminary contingency table
data analysis, the continuous variables FL, latitude, longitude and
SST were categorized by their quartiles.

2.3. Data modeling

Generalized Linear Models (GLMs) and Generalized Estimation
Equations (GEEs) were used to model blue shark at-haulback mor-
tality, and compare the odds of a shark being dead at-haulback
given the various variables considered. The response variable was
the condition of the specimens at time of haulback (Yi: binominal
variable, i.e., dead or alive), and for this study we  considered that
the event occurred if the shark died during the fishing operation.
Therefore, the response variable was coded with 1 for sharks dead
at-haulback and with 0 for sharks alive at-haulback.

Each captured shark (Yi) follows a Bernoulli distribution with pi
(probability of success/dying at-haulback = �i), and can be specified
as:

Yi∼B(1, �i)

With the expected value and the variance defined by:

E(Yi) = �i
Var(Yi) = �i × (1 − �i)
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The relationship (link function) between the mean value of Yi
nd the model covariates considered for this model was  the logit,
nd the model was therefore defined by:

ogit(�i) = log
(

�i

1 − �i

)
= ˇ0 + ˇ1x1,i + ˇ2x2,i + · · · + ˇkxk,i

here xi are the model covariates and  ̌ are the coefficients that
ere estimated by maximum likelihood.

The explanatory variables initially considered were the speci-
en  size (FL in cm), specimen sex, fishing location (latitude and

ongitude in decimal degrees), year (2008–2011), quarter of the
ear (4 quarters), vessel identity, branch line material (wire or
onofilament) and SST (decimal degrees in ◦C).
The first modeling approach was carried out with GLMs. The uni-

ariate significance of each explanatory variable was determined
y the Wald statistic and with likelihood ratio tests, comparing
ach univariate model with the null model. The significant vari-
bles were then used to construct a simple effect multivariate
LM, with the non-significant variables (at the 5% level) eliminated
onsecutively from the model. At this stage, the covariates that
ad been eliminated in the first step were further tested, in order
o determine an eventual significance within the framework of a

ultivariate model, as recommended by Hosmer and Lemeshow
2000). Once a final multivariate simple effects model was  obtained,
ach pair of possible first degree interactions was tested. The
nteractions were considered for inclusion in the final model if com-
arison of models with and without interaction were significant at
% level, using Wald statistics and likelihood ratio tests.

The GLM assumptions in terms of both the continuous and
ategorical explanatory variables were assessed. Regarding the
ontinuous variables, GLMs assume that those are linear with the
redictor (in this case the logit) and such linearity was  assessed
y categorizing the continuous variables by their quartiles, as
escribed by Hosmer and Lemeshow (2000), and by analysing
AM plots. If evidences of non-linearity were present, then mul-

ivariate fractional polynomial transformations were calculated
nd the transformed variables were used in the models instead of
he original values, following the methods developed by Royston
nd Altman (1994) and recommended by Hosmer and Lemeshow
2000). Regarding the categorical variables, GLMs assume that all
evels of the categorical covariates have sufficient information in
he binomial response to allow contrasts in the data and achieve

odel convergence. These assumptions follow the contingency
ables and chi-square tests assumptions, in which the contingency
ables should not have cells with zero values, or more than 25% of
he cells with predicted values lower than 5. These assumptions
ere validated by building contingency tables for all categorical

ariables considered.
Another assumption in the GLM modeling approach is that the

ata in the sample is independent, in this case that the Yi correspond
o a succession of independent Bernoulli trials. Given that the data
sed in this study are fisheries-dependent (collected from the com-
ercial fishery), it is plausible to consider that this assumption was

ot validated. Therefore, an alternative modeling approach with
eneralized Estimation Equations (GEE) models was considered,
s this technique allows for a working correlation to be calculated
ithin the data. Within this GEE model framework the fishing sets
ere considered as the grouping variable, meaning that the data

ould be considered to be clustered and not independent within
ach fishing set. This allowed for a model formulation in which the
lue shark at-haulback mortality data recorded within each fishing

et carried out by each particular vessel in each particular fishing
rip did not require the assumption of independence. With this GEE

odel formulation, the correlation structure of the data within each
et was assumed to be of the type exchangeable, as this seems to be
arch 145 (2013) 66– 75

the most adequate correlation structure for clustered data (Halekoh
et al., 2006).

The final GLM and GEE models were calculated, and an exam-
ple of interpretation is presented for the probabilities of a shark
dying at-haulback with varying specimen sizes, as well as for the
odds-ratios of at-haulback mortality for increasing specimen sizes
by 10 cm FL classes. The probabilities were calculated as the inverse-
logit functions of the final equations considered, and the odds-ratios
as the exponential values of the differences (in 10 cm FL sizes) in
the logits. Both the point estimates and the 95% confidence intervals
are presented. For these examples, all other variables, including the
interactions with FL, were considered to be on their baseline levels.

2.4. Diagnostics and goodness-of-fit

A residual analysis using Pearson and Deviance residuals was
used to search for outliers, and the Cooks distances and DfBetas
were used to identify eventual values with influence in the esti-
mated parameters. Model goodness-of-fit was assessed with the
Hosmer and Lemeshow test, that groups the observations into 10%
quantiles (deciles) according to their predicted values, and uses a
chi-square test for comparing the observed versus predicted val-
ues in each group (Hosmer and Lemeshow, 2000). Additionally, the
Nagelkerke coefficient of determination (R2) (Nagelkerke, 1991)
was  also calculated. The discriminative capacity of the models was
determined by the Area Under the Curve (AUC) value of the Receiver
Operating Characteristic (ROC) curves, with the calculation of the
model sensitivity (capacity to correctly detect the event = mortality
at-haulback), and model specificity (capacity to correctly exclude
sharks not dead at-haulback).

Cross validation was carried out with a k-fold cross validation
procedure (with k = 10) to estimate the expected level of fit of the
models to new data, and to assess eventual over-fitting problems.
Because the models in this study are of the binomial type, the cross
validation procedure was used to estimate the misclassification
error rate, with the procedure randomly partitioning the original
sample into k-subsamples, and then retaining one subsample as
the validation dataset and using the remaining k − 1 subsamples as
training datasets to build the models. The cross-validation proce-
dure was repeated k times, with each of the k subsamples used one
time as the validation dataset, and the use of k = 10 was chosen as
this seems to be an adequate value for models using large datasets
(Fushiki, 2011). Finally, a bootstrapped cross validation procedure
was  also used to calculate new AUC values, that were compared to
the original AUC calculated using the entire dataset.

All statistical analysis for this study was carried out with the
R Project for Statistical Computing version 2.14.1 (R Development
Core Team, 2011). Many functions are available directly in the core
R Program, but some analysis required additional libraries, includ-
ing library “gmodels” (Warnes, 2011a) for the contingency table
analysis, library “gplots” (Warnes, 2011b) for some of the graphics
produced, library “moments” (Komsta and Novomestky, 2012) for
data summaries including the kurtosis and skewness coefficients,
library “gam” (Hastie, 2011) for the GAM models and plots, library
“mfp” (Ambler and Benner, 2010) for the multivariate fractional
polynomials transformations, library “geepack” (Halekoh et al.,
2006) for the GEE models, library “Epi” (Carstensen et al., 2011)
for the ROC curve plots, and library “boot” (Canty and Ripley, 2011)
for the cross validation procedure.

3. Results
3.1. Description of the catches

A total of 26 383 blue shark specimens were captured and
recorded during the sampling period. Of those, complete capture
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nformation including at-haulback condition, size, sex, date and
oordinates of the capture was available for 24 958 specimens
94.6% of the blue shark catch) and the analyses were therefore
erformed on those specimens. Of the specimens analyzed, 54.2%
ere females, with the remaining 45.8% corresponding to males.

he females mean size in the sample was 199.5 cm FL (SD = 31.7)
ith the size distribution ranging from 40 to 305 cm FL, while the
ales had a mean size of 194.5 (SD = 36.9) and the size distribution

anged from 69 to 295 cm FL. The size distribution of males and
emales was significantly different (2-sample K–S test: D = 0.06, p-
alue < 0.001). Likewise, the ranks of the sizes of males and females
ere also significantly different (Mann–Whitney test: W = 7.9e + 7,

-value = 0.002). The non-normality in the size data was confirmed
ith a Lilliefors test (D = 0.030, p-value < 0.001), with the data hav-

ng a skewness coefficient of −0.41 (negatively asymmetrical) and
 kurtosis coefficient of 4.99 (leptokurtic data).

.2. Proportions of at-haulback mortality

In general terms 13.3% of the blue shark specimens that
ere captured during this study were dead at-haulback. In

erms of the categorical variables, the proportions of alive:dead
lue sharks were significantly different between all levels
f the covariates that were considered, specifically fishing
rip (chi-square = 2092.5, df = 13, p-value < 0.001), sexes (chi-
quare = 94.4, df = 1, p-value < 0.001), year (chi-square = 1191.2,

f = 3, p-value < 0.001), quarter (chi-square = 193.8, df = 3, p-
alue < 0.001), vessel (chi-square = 181.3, df = 1, p-value < 0.001)
nd branch line material (chi-square = 39.4, df = 1, p-value < 0.001)
Fig. 2).

ig. 2. Proportions of blue sharks at-haulback condition (alive vs. dead) with the variou
ontinuous variables are categorized by their quartiles.
arch 145 (2013) 66– 75 69

Regarding the continuous variables, and considering the data
grouped by the quartiles, the proportions of alive:dead sharks were
significantly different between sizes (chi-square = 833.5, df = 3, p-
value < 0.001), latitude (chi-square = 643.2, df = 3, p-value < 0.001)
and longitude (chi-square = 323.3, df = 3, p-value < 0.001), but not
when considering SST (chi-square = 2.8, df = 3, p-value = 0.419)
(Fig. 2). Moreover, the SST was also found to be correlated with
latitude (Pearson correlation: r = 0.605, p-value < 0.001; Spearman
correlation: � = 0.581, p-value < 0.001), and with longitude (Pear-
son correlation: r = −0.363, p-value = 0.001; Spearman correlation:
� = −0.353, p-value < 0.001), which could create multicollinearity
problems if both the SST and the geographical coordinates were
used in the multivariate models. Since geographical coordinates
were available for all fishing sets while SST was  only available for
part of the sets, the SST variable was  discarded and not used in the
final models.

3.3. Simple effects GLM and GEE models

In the simple effects multivariate GLM all the variables initially
considered were significant at the 5% level, except the vessel effect
that was  not significant. For the variable quarter, the overall effect
was  significant but no differences were found between quarters
1 and 2 (Wald statistic: z = −0.323; p-value = 0.747) and quarters
1 and 4 (Wald statistic: z = 0.578; p-value = 0.563). Therefore, this
variable was  simplified into a binomial variable, coded with: season

1 = quarter 3; season 2 = quarters 1, 2 and 4.

By analysing the functional form of the continuous explanatory
variables with GAM plots it was possible to see that at-haulback
mortality tended to decrease with increasing specimen size, toward

s categorical and continuous explanatory variables considered in this study. The
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Several possible 1st degree interactions between the variables
were significant at the 1% level, and therefore a GLM with signif-
icant interactions was created. In this model, year and specimen
size were still the most important explanatory variables, followed

Table 1
Deviance table for the simple effects GLM for the binomial response (alive or dead)
status of blue sharks at-haulback. Resid.DF are the residual degrees of freedom and
Resid.dev is the residual deviance. Significance of the terms is given by the p-values
of  the chi-square test. The “.t” notations after the continuous variables (FL, Lat and
Long) represent the utilization of the transformed variables in the models.

Parameter Df Deviance Resid.DF Resid.dev p-Value

Null 24 957 19 561
FL.t 1 645.24 24956 18915 <0.001
Latitude.t 1 273.10 24 955 18 642 <0.001
Longitude.t 1 251.79 24 954 18 390 <0.001
ig. 3. Generalized Additive Model (GAM) plots with the shape of the continuous
ortality.

orthern latitudes and eastern longitudes (Fig. 3). The non-linearity
f those continuous variables was verified with multivariate frac-
ional polynomials models, and in those only the longitude was
ignificantly linear, while the specimen size and latitude were
on-linear variables that needed to be transformed before being

ncluded in the GLM and GEE models. By applying the multivariate
ractional polynomial transformations to those three continuous
ariables, the best candidate alternatives to the transformations of
he functional forms were:

ize (FL) :
(

FL
100

)−0.5
+ log

(
FL

100

)

atitude : log
(

Lat + 34.1
10

)
+

(
Lat + 34.1

10

)3

ongitude :
(

Long + 43.8
10

)

The transformation regarding the longitude is a simple scale
ransformation, while the transformations for specimen size and
atitude refer to transformations in the functional form. These
ransformed variables were used in the models instead of the orig-
nal values.

The results of the simple effects GLM parameters in terms of sig-
ificance are given in the analysis of deviance presented in Table 1,
here it is possible to see the contribution of each parameter for

xplaining part of the deviance observed in the blue shark at-
aulback mortality. The parameters that are contributing more for
he model deviance explanation are the effects of the year and

pecimen size, followed by the geographical location of the cap-
ure. Finally, the effects of season, branch line material and sex are
ontributing less for the blue shark at-haulback mortality deviance
xplanation, but are still significant variables in the model (Table 1).
natory variables (FL, latitude and longitude) for modeling blue shark at-haulback

When applying GEE models to those variables, and considering
the fishing sets as the grouping (cluster) variable, the estimated cor-
relation value was  low (alpha = 0.058, SE = 0.019), and the estimated
parameters were very similar between the GLM and GEE models,
with only some minor differences (Table 2). The overall parameter
interpretation would be similar with both modeling approaches,
given that the parameters were consistently positive or negative
when comparing the models. The only major difference in these
multivariate simple effects models was that the effect of sex was
significant in the GLM but not significant (at the 5% level) within
the GEE framework (Table 2).

3.4. Models with interactions
Year 3 908.63 24 951 17 482 <0.001
Season 1 11.06 24 950 17 471 <0.001
Branchline 1 7.07 24 949 17 464 0.008
Sex  1 12.71 24 948 17 451 <0.001
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Table  2
Multivariate simple effects GLM and GEE model parameters (coefficients and standard errors) for the binomial response (alive or dead) status of blue sharks at-haulback.
Significance of the explanatory variables is given by the Wald statistic with the respective p-values. The “.t” notations after the continuous variables (FL, Lat and Long)
represent the utilization of the transformed variables in the models.

Variable Generalized Linear Model Generalized Estimating Equation

Estimate SE Wald p-Value Estimate SE Wald p-Value

Intercept 3.952 0.347 11.4 <0.001 4.297 0.493 75.9 <0.001
FL.t  −4.186 0.226 −18.5 <0.001 −4.295 0.343 156.4 <0.001
Lat.t  −0.007 0.000 −14.5 <0.001 −0.007 0.001 60.0 <0.001
Long.t  −0.252 0.024 −10.4 <0.001 −0.211 0.048 19.5 <0.001
Year2009 0.508 0.109 4.7 <0.001 0.411 0.178 5.3 0.021
Year2010 1.604 0.096 16.8 <0.001 1.340 0.175 58.6 <0.001
Year2011 1.796 0.092 19.5 <0.001 1.702 0.159 114.3 <0.001
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Season2 −0.196 0.065 −3.0 

BranchWire −0.199 0.087 −2.3 

SexMale 0.148 0.041 3.6 

y location, season, branch line material and sex. In terms of inter-
ctions, specimen size was significantly interacting with longitude
nd year; specimen sex was interacting with longitude and season;
ongitude was interacting with season; and branch line material

as interacting with year (Table 3). The interactions between lon-
itude and season, and between year and branch line material seem
o be particular significant in this model, with relatively high values
f deviance (Table 3).

With regards to the multivariate GEE using interactions (again
sing the fishing set as the grouping variable), and similarly to what
ad been observed in the simple effect GEE, the correlation within
he fishing sets were low (alpha = 0.051, SE = 0.022), and the param-
ters estimated with both the GLM and GEE models were similar,
ith consistently positive or negative parameters (Table 4). In this

ase, the major differences between using GLM or GEE approaches
ere the loss of significance of the interactions between season and

ex, and between size and longitude (Table 4).
By using significant interactions, the interpretation needs to

ake into account the effects of the main variable and the interac-
ing variable at the same time. Regarding the interaction between
ize and year, the at-haulback mortality for all size classes tended
o increase along the years, but the relative increase was differ-
nt between sizes, with the smaller specimens having a sharper
ncrease in mortality for the more recent years (Fig. 4a). In terms
f the relation between size and longitude, the at-haulback mor-

ality remained at relatively low levels for the larger size classes
hroughout the entire longitude range, while a peak of at-haulback

ortality was observed for the smaller size classes toward the east-
rn longitudes (Fig. 4b). The sex was significantly interacting with

able 3
eviance table for the GLM model with significant 1st degree interactions for the
inomial response (alive or dead) status of blue sharks at-haulback. Resid.DF are the
esidual degrees of freedom and Resid.dev is the residual deviance. Significance of
he terms is given by the p-values of the chi-square test. The “.t” notations after the
ontinuous variables (FL, Lat and Long) represent the utilization of the transformed
ariables in the models.

Parameter Df Deviance Resid.DF Resid.dev Pr (>Chi)

Null 24 957 19 561
FL.t 1 645.24 24 956 18 915 <0.001
Lat.t  1 273.1 24 955 18 642 <0.001
Long.t 1 251.79 24 954 18 390 <0.001
Year 3 908.63 24 951 17 482 <0.001
Season 1 11.06 24 950 17 471 0.001
Branch line 1 7.07 24 949 17 464 0.008
Sex  1 12.71 24 948 17 451 <0.001
FL.t:Long.t 1 13.62 24 947 17 437 <0.001
FL.t:Year 3 41.96 24 944 17 395 <0.001
Long.t:Season 1 71.25 24 943 17 324 <0.001
Long.t:Sex 1 15.06 24 942 17 309 <0.001
Year:Branch line 3 80.81 24 939 17 228 <0.001
Season:Sex 1 8.71 24 938 17 220 0.003
03 −0.230 0.101 5.2 0.023
22 −0.281 0.119 5.6 0.018
01 0.059 0.046 1.7 0.197

season and longitude, and on both cases the mortality of males
tended to be higher than for females, but with small differences in
the changing patterns (Fig. 4c and d). There was  also an interaction
between season and longitude, with changes in the mortality rates
along the longitude gradient during the seasons of the year (Fig. 4e).
The last 1st degree interaction considered was  between branch line
material and year, where it was possible to see that in general the at-
haulback mortality when using monofilament remained relatively
high between 2008 and 2011 (except for 2010, when a decrease
was  observed), while an increasing trend along the time period
was  observed for wire branch lines (Fig. 4f).

By using the final GLM for prediction and interpretation of the
effects of specimen size on the mortality rates, it was  possible to
see that the probabilities of a specimen dying at-haulback decrease
with increasing specimen size, but the rate at which the probabili-
ties decrease is higher for smaller specimens (Fig. 5). By interpreting
the odds-ratios (in this case calculated for an increase of 10 cm FL
in specimen size), it is possible to see that as a shark increases in
size the odds of dying decrease, but these odds are non-linear and
vary with the size. For example, for a blue shark close to the size of
birth (e.g. 50 cm FL) an increase of 10 cm FL in size would result in
the odds of dying decreasing by 22%, with 95% CI varying between
14% and 30% (Fig. 5). On the other hand, for a larger adult blue shark
with 250 cm FL, an increase of 10 cm FL in size would result in the
odds of dying decreasing by only 11%, with 95% CI varying between
7% and 15% (Fig. 5).

3.5. Diagnostics and goodness-of-fit

The final validation with the residual analysis did not show
any values that could be significant outliers. The Cooks distances
identified a few data points with values relatively higher than the
remaining, but those points did not had an impact in the estimated
model parameters and therefore were not removed from the final
model.

In terms of model goodness-of-fit, both the simple effects and
the GLM with interactions passed the Hosmer and Lemeshow
test, with the simple effects GLM having chi-square = 11.8 (p-
value = 0.162) and the model with interactions having a slightly
better fit (chi-square = 9.6, p-value = 0.295). The same type of
improvement was  observed for the Nagelkerke R2 values, with the
simple effects GLM having an R2 of 0.149 and the model with inter-
actions producing a higher R2 of 0.165. Finally the discriminative
capacity of the models also improved by adding the interactions,
with the simple effects GLM having an AUC of 0.741, and the

model with interactions a higher AUC value of 0.750 (IC95% = 0.742,
0.758), with a sensitivity of 74% and a specificity of 65%, for a cut
point of 0.144 (Fig. 6). Those ranges of AUC discriminative values are
considered acceptable, according to Hosmer and Lemeshow (2000).
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Table 4
Multivariate GLM and GEE parameters of the models with significant 1st degree interactions (coefficients and standard errors) for the binomial response (alive or dead)
status  of blue sharks at-haulback. Significance of the explanatory variables is given by the Wald statistic with the respective p-values. The “.t” after the continuous variables
(FL,  Lat and Long) represent the utilization of the transformed variables in the models.

Variable Generalized Linear Model Generalized Estimating Equation

Estimate SE Wald p-Value Estimate SE Wald p-Value

Intercept 3.90 1.26 3.1 0.002 2.50 1.39 3.2 0.073
FL.t  −4.24 0.88 −4.8 <0.001 −3.21 0.98 10.8 0.001
Lat.t  −0.01 0.00 −13.4 <0.001 −0.01 0.00 52.8 <0.001
Long.t −0.96 0.29 −3.3 0.001 −0.50 0.42 1.4 0.231
Year2009 7.85 1.67 4.7 <0.001 6.49 1.90 11.6 0.001
Year2010 2.32 1.34 1.7 0.083 2.61 1.58 2.7 0.100
Year2011 5.70 1.35 4.2 <0.001 5.52 1.44 14.6 <0.001
Season2 0.85 0.18 4.7 <0.001 0.78 0.27 8.3 0.004
BranchWire −1.26 0.21 −6.0 <0.001 −1.25 0.27 22.3 <0.001
SexMale 0.17 0.17 1.0 0.301 0.30 0.16 3.6 0.056
FL.t:Long.t 0.83 0.20 4.1 <0.001 0.51 0.30 2.9 0.087
FL.t:Year2009 −5.47 1.19 −4.6 <0.001 −4.51 1.37 10.8 0.001
FL.t:Year2010 −1.85 0.94 −2.0 0.050 −2.07 1.10 3.5 0.060
FL.t:Year2011 −3.61 0.96 −3.8 <0.001 −3.52 1.03 11.8 0.001
Long.t:Season2 −0.49 0.05 −9.0 <0.001 −0.44 0.09 21.9 <0.001
Long.t:SexMale −0.12 0.04 −3.0 0.003 −0.13 0.04 12.1 0.001
Year2009: BranchWire 0.04 0.29 0.1 0.894 0.01 0.37 0.0 0.983
Year2010: BranchWire 2.12 0.30 7.0 <0.001 1.94 0.42 21.3 <0.001
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Year2011: BranchWire 1.42 0.24 6.0 

Season2:SexMale 0.36 0.12 3.0 

The 10-fold cross validation procedure resulted in an estimated
rediction error of 13.4% for the multivariate simple effects GLM,
nd a similar prediction error of 13.3% for the model with inter-
ctions. The bootstrapped cross-validation procedure resulted in
n AUC = 0.748, which is very similar to the original AUC using the
ntire dataset (0.750) and also validates the models. Additionally,
ll bootstrapped GLM also passed the Hosmer and Lemeshow test
p-value > 0.05 on all cases) for model goodness-of-fit.

. Discussion

This study focused on the parameters affecting blue shark at-
aulback mortality in a large scale swordfish pelagic longline
shery in the Atlantic Ocean. In general, 13.3% of the blue shark
apture was dead at-haulback, but it was possible to determine
hat several variables had significant effects on this mortality rates
nd a predictive statistical model was produced.

Several studies have previously addressed blue shark at-
aulback mortality in pelagic longline fisheries, including the works
f Diaz and Serafy (2005) and Campana et al. (2009) in the Atlantic,
nd Moyes et al. (2006) in the Pacific. For the Canadian fleet in the
orthwest Atlantic, Campana et al. (2009) estimated the blue shark
t-haulback mortality in the 12–13% range as measured by fish-
ry observers, which is relatively similar to the 13.3% estimated
n our study. However, using telemetry technology to account for
he post-release mortality, Campana et al. (2009) also reported that
he actual mortality values could be closer to 20% due to the added
ost-release mortality. In the Pacific Ocean, Moyes et al. (2006) also
ddressed post-release mortality using satellite telemetry, and in
he case of blue shark noted that the survivorship of sharks landed
n an apparently healthy condition was likely to be high. This means
hat our estimates of 13.3% mortality probably represent accurately
he at-haulback mortalities of blue shark in the Portuguese pelagic
ongline fishery, but at this stage the total mortalities (that also
eed to account for post release mortality) still remain unknown.

The most significant factors affecting mortality in our study
ere the year effect, followed by specimen size. The yearly vari-
tions may  be related with inter-annual variability inherent to the
pecies or the fishery spatial/seasonal patterns, or eventual changes
n the fishery that may  be contributing to changes in these rates. It
hould be mentioned, however, that the data analyzed in this study
<0.001 1.41 0.30 22.1 <0.001
0.003 0.14 0.12 1.5 0.226

was  collected by the fishery observer program that tries to cover
the geographical/seasonal variability of the fleet in terms of catch
rates, but it is a fishery-dependent source of data that cannot cover
those geographical/seasonal patterns in a truly balanced design.

With regards to the specimen size, the probabilities and odds-
ratios show that the larger specimens have lower probabilities
of being dead at-haulback than the smaller specimens. However,
these effects are non-linear, with the odds-ratios of surviving
higher for the smaller specimens (as they grow in size) and then
tending to stabilize as the sharks reach larger sizes. Some previ-
ous studies had already looked into effects of specimens sizes in
the mortality rates (e.g. Diaz and Serafy, 2005; Campana et al.,
2009), and similar results were reached, with decreasing proba-
bilities of at-haulback mortality as the specimens increase in size.
These results have a direct effect on eventual management and con-
servation initiatives such as the establishment of minimum and/or
maximum landing sizes, as the efficiency of such measures will
have specific effects depending on the shark sizes. For example,
the establishment of a minimum landing size would have a limited
conservation effect, as the smaller specimens are the ones that have
higher probabilities of dying due to the fishing process, and would
therefore tend to be discarded already dead.

Even though the models created and presented seem to be
valid and perform well for predicting blue shark at-haulback mor-
tality rates (as verified by the residual analysis, goodness-of-fit,
and cross-validation procedures), some limitations need to be
addressed and considered. One characteristic of our study was that
the hook style effect was  not considered, mainly because the Por-
tuguese longline fleet uses exclusively J-style hooks. Therefore, the
values reported in our study refer specifically to fisheries using this
type of hooks, while other pelagic longline fleets may  use differ-
ent hooks such as circle and/or tuna hooks. Some previous studies
have reported that blue shark mortality rates were higher with J-
style hooks when compared to circle hooks (Carruthers et al., 2009),
while on the other hand Coelho et al. (2012a) reported that for
the elasmobranch species more commonly discarded (e.g. bigeye
thresher and crocodile shark) the hook style (J-style vs. circle hooks)

seemed unrelated to at-haulback mortality. Likewise, Kerstetter
and Graves (2006) also showed that even though several target and
bycatch species seemed to have higher rates of survival at-haulback
with circle hooks, the effects were not statistically significant for
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ig. 4. Interactions plots (from the GLM) between (a) specimen size (FL) with year;
ith  longitude and (f) branch line material with year. The specimen sizes are categ

ost species. On the contrary, Afonso et al. (2011) compared J-
tyle with circle hooks in the south-western Atlantic Ocean and
oncluded that circle hooks were efficient in reducing the mortal-
ty rates of most species caught, both in pelagic and coastal longline
sheries, observing at the same time that the catch rates of some
pecies, including the blue shark, were higher with circle hooks.
n the North Pacific Ocean, however, Yokota et al. (2006) showed
hat the hooks (circle vs. tuna hooks) had little effect on the catch
ates and mortalities of blue shark. This variability in results seems
o support the fact that specific studies and assessments should be
arried out specifically for each fishery and fleet in question.

One possible shortcoming in our study was the fact that the

shing gear soaking time was not considered, with several pre-
ious studies (e.g. Campana et al., 2009; Diaz and Serafy, 2005;
organ and Burgess, 2007) having demonstrated that the soaking

ime was a significant variable for predicting at-haulback mortality
ecimen size with longitude; (c) sex with season; (d) sex with longitude; (e) season
 by the deciles and the longitudes are categorized by the quartiles.

on elasmobranchs. Besides the fishing gear soaking time, Morgan
and Carlson (2010) also demonstrated that the capture time (mea-
sured with hook timers) was also influential in the mortality rates of
some demersal shark species captured in bottom longline fisheries.
Finally, and even though in our study the gangion material had a
relatively small effect on the mortality rates, other authors have
shown that some components of longline gear may  interact to influ-
ence catch rates and relative mortality estimates (e.g. Afonso et al.,
2012; Ward et al., 2008). As suggested by these authors, it could be
hypothesized that nylon leaders could catch relatively more dead
blue sharks than wire leaders because healthy and robust speci-
mens, which would be more likely to be alive at gear retrieval, may

have more chances of biting through the nylon and escaping.

The logistic models used in our study seem adequate to evaluate
the contribution of potential explanatory variables to blue shark at-
haulback mortality, as the response variable is binomial (dead vs.
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ig. 5. Probabilities of a blue shark dying at haulback with varying specimen size (l
pecimen size) along the size ranges of the captured specimens. The predictions pr
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live sharks at fishing gear haulback). The models created used both
iological factors such as specimen size and sex, as well as fishery
perational factors such as geographical location and branch line
aterial. In our study the vessel effect was tested but not consid-

red significant, while a previous study by Campana et al. (2009)
ad verified that the vessel effect was significant. One important
ifference between the two studies is in the number of vessels
onitored that was much larger in the Campana et al. (2009) study.

ventual differences between different vessels can hypothetically
e due to: (1) vessels (in different trips and sets) targeting differ-

nt species, and using therefore different gear specifications, such
s monofilament vs. steel branch line materials; (2) vessels with
ifferent crews that may  handle the sharks in different ways; (3)

ig. 6. Receiver Operating Characteristic (ROC) curves for the multivariate GLM using sim
ead)  status of blue sharks at-haulback. The Area Under the Curve (AUC) values are given
ptimal  response cut-points (Ir.eta).
nd the odds-ratios of a blue shark dying at-haulback (for an increase of 10 cm FL in
d were made from the final GLM, considering all other variables on their baseline

vessels using different fishing metiers that can result in different
soak times of the fishing gear, which will be influent in the mor-
tality rates. Such possibilities are hypothesis that cannot be easily
verified at this stage, but it is feasible to consider that a correlation
in the mortality data within vessels, fishing trips or fishing sets may
exist in those fishery-dependents datasets.

For addressing such eventual lack of independence in the sam-
ple, the ideal scenario would be to collect fishery-independent data,
but for the large pelagic species such data would be extremely
costly, and therefore fisheries-dependent data (either logbooks or

fishery observers datasets) is usually the only available data for
such analysis, However, models such as GLMs or GAMs assume that
the data is independent, and therefore making inference from such

ple effects (a) and considering interactions (b), for the binomial response (alive or
, as well as the sensitivity (Sens), specificity (Spec) and predictive values (PV) at the
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ata with such models may  result is biased results. For such cases,
he use of Generalized Estimating Equations (GEE) might be a valid
lternative approach, as this modeling technique calculates a work-
ng correlation matrix that approximates the true correlation on the
bservations (Wang and Carey, 2003). Therefore, in our study we
pted for a methodology of comparing GLM with GEE models, using
he fishing sets as the grouping variable in the GEE models, and
ssuming therefore a possible lack of independence of data within
ach fishing set. With the GEE models a working correlation matrix
s estimated, that is then used to correct the model parameters.
owever, the estimated correlation parameters were low, mean-

ng that this lack of data independence between fishing sets does
ot seem to be significantly affecting the GLM, which could thus be
onsidered also valid for predicting blue shark mortality rates.

This paper presents new and important information on the
mpacts of this pelagic longline fishery on blue shark populations
n a wide Atlantic area. The results can be used to predict the
ffect of the fishery on blue shark mortality, and specifically on
ow several factors are contributing to this mortality rates. One

mmediate application is, for example, to determine the efficiency
f eventual future management and conservation initiatives such
s the establishment of minimum and/or maximum landing sizes.
he results can also be incorporated into future stock assessment
odels, including ecological risk assessment analysis carried out

egularly by tRFMOs for bycatch species.
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