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ABSTRACT 

Relative abundance indices as calculated based on commercial catches are the input 

data to run stock assessment models to gather useful information for decision making in 

fishery management. In this paper a Generalized Linear Model (GLM) was used to calculate 

relative abundance indices and effect of longline fishing gear configuration. Data were 

collected by a scientific observer program from 2006 to 2017. Most of the boats monitored 

were based in Benoa Port, Bali. Akaike Information Criterion (AIC) and Bayesian 

Information Criterion (BIC) were used to select the best models among all those evaluated. 

Poisson model had the lowest AIC (504.23) and BIC (581.80) value. Trends of standardized 

CPUE as calculated using Poisson (P) model was fluctuated from 2006 to 2009. The trends 

showed that the P model increased from 2010 and reached the peak in 2015. Catches are 

often equal to zero because silky shark is a bycatch for Indonesian longline fleets. Therefore, 

a hurdle model was used. The low proportional decrease of deviance indicates that most of 

the variability of catch rates of silky shark caught by Indonesian longline boats are not related 

to year, quarter, number of hooks between floats and the length of branch lines. Other 

variables and information, like the daytime when the longlines are deployed in the water 

(day or night), type of bait, size and type of hooks, are necessary to better understand the 

catch rate, and improve the estimations of the relative abundance indices. 
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INTRODUCTION 

Silky shark is one of the species of shark that exists in the ocean. Therefore, these 

fish stocks and their utilization are carried out by various countries. In the Indian Ocean, 

managing fish is carried out in countries that are members of the Indian Ocean Tuna 

Commission on these fish (IOTC, 2017). One of the method used is to use a relative 

abundance index. Assuming that the fishing effort per unit (CPUE) is calculated based on 

commercial data it is assumed to be proportional to abundance but also follows the capture 

power (Quinn & Deriso, 1999). 

Therefore, nominal changes in CPUE over several years can reflect changes in 

abundance and capture rate. This happens because of several factors, namely changes in 

fishing technology and fishing grounds. If there is information about the factors that affect 



the catch, a statistical model can be used to calculate a standard CPUE value that reflects 

changes in abundance. This CPUE standard can be used to evaluate fish supply status, or as 

input data in estimating fish stocks (Squires & Vestergaard, 2015). 

In GLM, the response variable is assumed to follow the probability distribution of 

the exponential family. Normal and gamma are often become the alternatives to continuous 

variables (catches or CPUE in weight), whereas Poisson and binomial are negative often as 

alternatives to discrete variables (catches or CPUE in numbers). Some distributions are not 

suitable for modeling catches (or CPUE) equal to zero (gamma) (Vaz et al., 2008). But zero 

catches are often found in longline tuna fisheries data. When the number of zeros is very 

large, most of the probability distributions are not sufficient to model catches. Therefore, 

zero-inflated models, mixtures and obstacles (sometimes also in the delta model) are 

alternatives to overcoming the zero catch excess (Hall, 2000). 

In this paper the GLM are used to calculate the standard CPUE of the silky shark 

captured by the Indonesian longline fleet in the East Indian Ocean (McCullagh & Nelder, 

1989). There are three alternative factors that need to be considered: area, year, quarter, start 

set time, soak time and moon light. To overcome the excess zero it is used the obstacle model. 

The results are useful for assessing the stock status of silky sharks, which are important 

fisheries resources in the Indian Ocean. 

MATERIAL AND METHODS 

Data and Exploratory Analysis 

Tuna long line in Indonesia have gross tonnage between 14 - 149 GT with 

specifications consisting of main line, branch line, float line, hook, float, radio buoy and 

others. The material used for the main strap and branch rope is generally monofilament with 

a diameter of 3 mm and 2 mm. In addition to monofilament, some of the materials used for 

main and branch ropes are nylon, kuralon, polyamide, polyethylene, kuralon, skyama and 



longyarn and a combination of these materials. The fishing line used in general is No. 4 

In general, longline tuna fishing operations consist of setting and hauling. Between 

the stocking and drawing of the fishing line there is a time lag usually called the soaking 

time. The activities of tuna longline fishing based in Benoa Port are generally carried out in 

the morning at 5:00 a.m. - 10:00 p.m. with a soaking time of about 3-7 hours and fishing 

hauling activities for 7-13 hours. 

The data collection includes the number of captured silky sharks, the number of 

hooks and the location of the fishing collection, obtained by the Global Positioning System 

(GPS) device. In addition, scientific observers also noted long line characteristics such as 

the number of hooks between buoys, the length of the buoy line, the length of the branch 

line, and the length between the branch lines. Catches per unit of effort are calculated as U 

= (C / f) × 100, where C is the number of fish captured in the fishing set, f is the number of 

hooks, and U is CPUE in the number of fish caught per 100 hooks (Klawe, 1980). 

The number of fishing rods is mapped in an ordinary grid to evaluate the spatial 

distribution of fishing operations. A summary of basic statistics regarding central trends and 

dispersion is calculated for all variables. Contingency tables and mosaic plots are used to 

evaluate the balance of database entries at the level of intersection of factors (eg year x 

quarter). Histograms and dispersion diagrams are used to assess the relationship between 

variables. Correlation coefficients between continuous variables are also calculated to 

identify redundant variables. 

Models 

 Generalized linear models (GLM) can be written in matrix notation as the realization 

vector of the response variable; E is hope, g is a link function, is a parameter vector and is a 

design matrix of explanatory variables. The probability distribution for, and link functions 

must be pre-selected to calculate parameter estimates, which represent the effects of 



explanatory variables (e.g. years) (McCullagh & Nelder, 1989). 

The explanatory variables considered in the model for standardizing CPUE are 

fishing area (AreaTree) (Ichinokawa and Brodziak, 2010), number of hooks between floats 

(HBF) (Sadiyah et al., 2012), start set time, soak time and moon light. These variables are 

chosen as factors that influence the catchability level in the longline fleet. There is no 

separation between the Exclusive Economic Zone (EEZ) inside and outside Indonesia 

because fishing areas are still in the same area in the East Indian Ocean. 

Akaike Information Criterion (AIC) (Akaike, 1974) is used to compare and select 

models that are calculated using different density distributions (gamma and gaussian) and 

link functions (eg logarithms and identities). When comparing models for different response 

variables (level of capture and logarithm of the catch level), the variable is placed in a 

proportional reduction of the deviation (pseudo-R2). The standard diagnostic plot is used to 

assess the installation of the selected model. All analyzes are carried out using the R software 

function. 

RESULTS AND DISCUSSION 

Based on the results of recording, the catchment area of Indonesian tuna raw vessels 

is at coordinates 00 ° 37 '- 33 ° 54' LS and 78 ° 51 '- 133 ° 40' BT with the highest fishing 

line density at coordinates 13 ° - 15 ° LS and 110 ° - 121 ° East. The average number of 

hooks between floats tends to be stagnant from year to year with an average range of 12-17 

hooks. The highest average occurred in 2005 of 18 hooks, while the lowest was in 2006, 

2009 and 2011 with an average of 12 hooks. While the average number of total hooks used 

in one fishing operation ranges from 1,300-1,600 hooks. The highest average number 

occurred in 2012 with almost 2,000 hooks for one arrest operation. After that it dropped to 

2,200 hooks until 2017 (Table 1). 

Nominal CPUE (N/1,000 hooks) showed very low number with the highest value 



only less than 0.3/1,000 hooks in 2015 (Figure 2). On the other hand, the proportion of zero 

catch showed high value from around 0.8 to almost 1.0 (Figure 3). The low number of silky 

shark caught by Indonesian tuna longline vessels showed that this species is bycatch from 

targeted tuna (Jatmiko et al., 2015). 

The number of parameters (k), AIC, BIC, the logarithm of the probability (logLik), 

the predicted zero catch number, and the p value of the Kolmogorov-Smirnov test calculated 

using the six model structures (P, NB, ZIP, ZINB, HP and HNB). The Poisson (P) model 

chosen for the proportional positive set due to the lowest value of Akaike Information 

Criterion (AIC=504.23) (Akaike, 1974) and Bayesian Information Criterion (BIC=581.80) 

(Schwarz, 1978) (Table 2). From the parameter estimation of Poisson model showed that 

variables of start set time, soak time, hook between float and moon light (Table 3) were not 

significantly different (p<0.05) to affect the catch of silky shark. Most (86.5%) of Indonesian 

tuna longline vessels start the fishing operation in the morning from 5:00-9:00 AM (Jatmiko 

et al., 2016) 

Estimates of the coefficients of the models suitable for the proportion of positive sets 

are shown in Table 2. Most estimates are significantly different from zero. Because the scope 

of this paper is CPUE standardization, only the estimated coefficients for the year are 

explored here. Estimates of the coefficients for 2006, 2007, 2009, 2010 did not differ 

significantly from zero, so the expected proportion of positive sets for the years was close to 

expectations for 2006, which is the reference level. However, estimates for 2008, 2011 and 

2012 are negative and significant. This result shows that the proportion of positive sets in 

these three years is lower than in 2006 (reference year). 

Gamma distribution and identity link functions are selected to model positive catch 

rates. Calculations of deviations from the model attached to positive data are shown in Table 

3. Almost all explanatory variables result in significant deviation reduction. Exceptions are 



the main effect of the quarter. However it is stored in the model because in interactions that 

prove important if it depends on the AIC. The overall reduction in proportional deviation is 

low, which means that only a portion of the variability of the positive catch rate is explained 

by the variables of the year, quarter, length of the branch line and the number of hooks 

between buoys. What then is a more important explanatory variable. 

Silky sharks are known to inhabit layers of sea level, especially at night (Compagno, 

1984; White et al., 2006). Therefore a negative relationship was found between the 

proportion of positive sets and branch line lengths, the proportion of positive sets and the 

number of hooks between buoys, and also between CPUE in the positive set and the number 

of hooks between buoys, all of which were normal results. 

Although Indonesian boats eventually voyage long distances in the Indian Ocean, 

most fishing groups were concentrated in the southeastern Indian Ocean, southwestern 

Indonesia and northwestern Australia. Therefore, the analyzed datasets cover a portion of the 

Indian Ocean stock and the standard catch can be interpreted as a local proxy. However, the 

analysis of calculations presented in this paper and all previous calculations based on other 

databases of fleets operating in other locations in the Indian Ocean could help for better 

understanding of the stock status of silky sharks. 

Finally, it is important to highlight that the results collected after adjusting to the 

general linear model indicate that more information is needed to increase our knowledge of 

the variation in the level of silky shark fishing from the Indonesian longline fisheries. The 

model does not meet every time we try to adjust it using more parameters regarding the 

interaction between years and other variables. The lack of convergence often arises when the 

model is more than a parameter, when the data does not convey sufficient information to 

allow estimation of all parameters (McCullagh & Nelder, 1989). 

The low decrease in proportional deviation shows that most of the variability in the 



rate of catch of silk sharks caught by Indonesian longline vessels is not related to year, 

quarter, number of links between buoys and length of branch lines. Variables and other 

information, such as during the day when a longline is deployed in water (day or night), type 

of bait, size and type of hook, and if fishermen use light sticks to attract fish, it is necessary 

to better understand catch levels, and increase relative abundance index estimates . 

Therefore, Indonesian onboard observers are encouraged to collect more detailed data, which 

is very important for assessing the status of fisheries in the southeast, and the stock of Indian 

silky sharks. 
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Table 1.   Summary of observed fishing effort from Indonesian tuna longline fishery 

during 2006–2017. Results are pooled and also presented by year of observation. Operational 

parameters are means (upper entries) and standard deviations (lower parenthetical entries). 

 

 

Table 2.    Summary of indicators as calculated using six model structures: Poisson (P), 

Negative Binomial (NB), Zero-inflated with Poisson (ZIP), Zero-inflated with Negative 

Binomial (ZINB), Hurdle with Poisson (HP), and Hurdle with Negative Binomial (HNB). 

The terms in the column at left indicate: number of parameters (k), Akaike (AIC) and 

Bayesian (BIC) Information Criteria, logarithm of the likelihood (logLik), number of 

predicted zero catches (zero), and p values as calculated using a Kolmogorov-Smirnov test. 

 

 
 

Table 3.   Summary of parameter estimations of Poisson model. Terms: SE – standard 

error, p – p values as calculated using Z test to assess difference from zero. 

 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept) -12.06349    1.50522  -8.014 1.11e-15 *** 
AreaTree2     2.77188    0.49837   5.562 2.67e-08 *** 
AreaTree3     1.33830    0.35938   3.724 0.000196 *** 
Year2007     -0.98397    0.49286  -1.996 0.045887 *   
Year2008     -1.71591    0.74736  -2.296 0.021678 *   
Year2009      0.81633    0.42219   1.934 0.053169 .   
Year2010      0.55315    0.39199   1.411 0.158199     
Year2015      0.68701    0.37811   1.817 0.069223 .   
Year2017     -0.87796    0.80402  -1.092 0.274851     
Quarter2      2.30668    1.02116   2.259 0.023891 *   

Row 

Labels
Trips Sets  Total hooks 

 Hooks per 

set 

Hooks per 

float

Mean Lat 

(°S)

Mean Lon 

(°E)

2006 14 201 301,473    1,500        12 21.9 109.2

2007 13 216 350,418    1,622        15 19.2 100.8

2008 16 163 227,441    1,395        15 14.9 102.9

2009 6 51 66,380      1,302        12 12.5 112.9

2010 5 67 103,471    1,544        16 12.9 111.0

2011 4 4 5,260        1,315        12 18.2 110.7

2012 6 99 185,467    1,873        14 24.6 95.9

2013 5 32 36,354      1,136        15 11.1 104.2

2014 6 48 57,335      1,194        16 11.2 102.9

2015 5 96 107,828    1,123        15 10.8 100.7

2016 8 215 276,483    1,286        13 11.4 108.4

2017 15 249 319,100    1,282        17 11.9 99.3

poisson negbin zinp zinb hp hnb

k 16 11 32 32 32 32

AIC 504.23 599.44 458.84 464.53 506.80 508.36

BIC 581.80 658.83 617.24 622.92 665.20 666.76

logLIk -236.12 -287.72 -197.42 -199.26 -221.40 -221.18

zero 856 969 871 871 863 863

p.value 1.00 1.00 1.00 1.00 1.00 1.00

Model structure
Parameters



Quarter3      1.20315    1.05565   1.140 0.254401     
Quarter4      0.49066    1.08496   0.452 0.651100     
Start_Set    -0.03615    0.03460  -1.045 0.296163     
Soak_Time     0.06537    0.05880   1.112 0.266289     
HBF           0.00444    0.04065   0.109 0.913017     
Moon2Light    0.24076    0.22134   1.088 0.276708     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 



 
 

Figure 1.   Area stratification used in the analysis based on GLM tree algorithm. 

 

 

 
Figure 2.   Nominal CPUE series (N/1000 hooks) for FAL from 2005 to 2017. The error 

bars refer to the standard errors. 

 



 

Figure 3.   Proportion of zero FAL catches from 2006 to 2017. The error bars refer to 

the standard errors. 

 

 
Figure 4.   Standardize catch per unit effort (CPUE) calculated using Poisson model. 

Values were scaled by dividing them by their means. 

 


