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Producing reliable estimates of demographic rates is critical to our understanding of wildlife 

population dynamics and can provide valuable information for prioritizing conservation and 

management efforts. Precise and unbiased estimates are challenging to obtain when monitoring 

data are sparse, knowledge gaps are pervasive, or model assumptions are violated. This is often 

the case for species of conservation concern, which may be poorly understood and difficult to 

monitor. Bayesian hierarchical models are particularly useful for estimating demographic rates 

because they separate imperfect observation processes from the underlying biological processes, 

especially when combined in an integrated framework that leverages multiple data sources for 

increased precision and parameter identifiability.  

Here I present three case studies using Bayesian hierarchical models to better understand the 

demography of threatened birds, with particular contributions to mark-resight and integrated 



 

population modeling. In Chapter 2, I addressed a common but poorly understood problem in 

mark-resight studies of open populations: partial mark loss and degradation. I present a novel 

approach to sampling latent states in a Markov Chain Monte Carlo framework using a 

backtracking algorithm, and I apply this approach in the context of a multi-event model to the 

Oregon Vesper Sparrow (Pooecetes gramineus affinis) in South Puget Sound, Washington, USA. 

The results from this model constitute some of the first estimates of age-specific survival and 

dispersal rates for this species of conservation concern. In Chapter 3, I developed a novel multi-

site integrated population model (IPM) to better understand the population dynamics of Streaked 

Horned Larks (Eremophila alpestris strigata) in South Puget Sound, Washington. These 

estimates will inform future habitat management and a planned reintroduction effort, and the 

multi-site framework addresses a critical gap in modeling small populations monitored over 

fragmented landscapes. In Chapter 4, I developed an IPM to examine the impact of a cryptic 

threat, bycatch in commercial fisheries, on the population dynamics of Atlantic Yellow-nosed 

Albatross (Thalassarche chlororhynchos). Results from this model will motivate ongoing 

monitoring of Atlantic Yellow-nosed Albatross and seabird bycatch in the South Atlantic and 

inform fisheries regulation decisions. Broadly, the work I present here makes contributions to the 

development of complex demographic models with the goal of supporting conservation and 

management decisions by quantifying and reducing key uncertainties in the population dynamics 

of threatened species.  
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Chapter 1. INTRODUCTION  

1.1 BACKGROUND 

Understanding population dynamics and drivers of population trends can support the 

conservation of threatened species. However, estimating demographic rates and their variation 

over space and time is challenging for small, declining, fragmented, or otherwise difficult-to-

monitor populations. Knowledge gaps may impede decision making when data are sparse. 

Population modelers aim to leverage available data to close these knowledge gaps and identify 

key uncertainties for future study.  

One approach to population modeling is integrated population modeling, where multiple 

data sources with shared underlying parameters are combined in a joint analysis. Integrated 

population models (IPMs; Besbeas et al., 2002; Brooks et al., 2004; Schaub & Abadi, 2011; 

Zipkin & Saunders, 2018) have become popular in part because they leverage all available data 

to provide information about both demographic states (i.e., abundance) and rates (e.g., survival, 

productivity). Crucially, IPMs can improve precision (Abadi et al., 2010a; Schaub et al., 2007) 

and produce estimates of demographic rates that are unobservable (e.g., Oppel et al., 2022) or 

may otherwise be unidentifiable (Abadi et al., 2010b). Though much of the preliminary work 

demonstrating the utility of IPMs focused on taxa with simple life histories (e.g., herons; 

Besbeas et al., 2002), as available computing power increases, IPMs for species with complex 

life histories (e.g., apex predators; Regehr et al., 2018) are becoming more common. Like other 

hierarchical model types, IPMs can facilitate estimation of the effects of environmental 

conditions or anthropogenic stressors on demographic rates (e.g., Oppel et al., 2014), which is of 

useful when trying to identify causes of decline for threatened or indicator species.  
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To be a true integrated model, IPMs need to include a dataset relevant to the estimation 

of abundance and at least one additional dataset that allows for the estimation of one or more 

demographic parameters; commonly this is a mark-recapture or mark-resight dataset. Studies of 

marked populations can lend insights about a number of demographic parameters, including 

survival (e.g., Lebreton et al., 1992), recruitment (e.g., Tucker et al., 2023), movement (e.g., 

Sollmann et al., 2013), and productivity (e.g., Lahoz‐Monfort et al., 2013). Often these 

parameters are strongly correlated with population trend and therefore it is valuable to estimate 

these parameters precisely and to identify their drivers to inform conservation decision-making. 

Mark-resight models vary widely in complexity, from Cormack-Jolly-Seber models (Cormack, 

1964; Jolly, 1965; Seber, 1965), to multi-state models (Nichols & Kendall, 1995), to multi-event 

models (Pradel, 2005) and can therefore accommodate many sampling situations, provided that 

model assumptions are met.  

While the development of complex models and integrated models can help resolve some 

uncertainty in our understanding of demography, there is no substitute for a well-designed 

monitoring program. Underpinning all models are assumptions about the underlying observation 

and biological processes and when those assumptions are violated it may render results invalid. 

Some assumptions may matter relatively little (e.g., independence of datasets in integrated 

population models; Abadi et al., 2010a), where others can matter more (e.g., mark loss in mark-

resight models; Chapter 2). Given that we rely on long-term monitoring programs to inform 

conservation decisions for endangered wildlife (Nichols & Williams, 2006), great care should be 

taken at the outset to design a monitoring program that has the power to produce accurate and 

precise estimates of demographic rates, and that are more likely to detect changes in population 
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trends. Similarly, monitoring programs should be regularly reevaluated to ensure they are being 

implemented correctly and functioning as intended (Lindenmayer & Likens, 2009).  

1.2 RESEARCH OBJECTIVES 

The objectives of my research were twofold, including (1) advancing Bayesian hierarchical 

modeling of mark-resight data in the context of integrated population models, and (2) estimating 

vital rates for three poorly understood species of conservation concern. To this end, I developed 

a novel multi-state model for mark-resight data in the presence of mark loss for Oregon Vesper 

Sparrow (Pooecetes gramineus affinis) in Washington State, and IPMs for Streaked Horned 

Larks (Eremophila alpestris strigata) and Atlantic Yellow-nosed Albatross (Thalassarche 

chlororhynchos) in Washington State and on Gough Island in the South Atlantic.  

The methodological advancements made here were motivated by challenges presented in 

the available data. For Oregon Vesper Sparrow and Streaked Horned Larks, partial mark loss is 

pervasive and has hindered our understanding of survival and dispersal rates for these species. 

Thus, in Chapter 2 I developed a novel model and approach for sampling latent states for multi-

state models of mark-resight data in the presence of partial mark loss and degradation. Streaked 

Horned Larks are intensively monitored at numerous sites, but the region-wide population 

dynamics are not well understood. Thus, in Chapter 3 I built a multi-site IPM, using mark-resight 

data to inform movement and survival across a fragmented landscape. Atlantic Yellow-nosed 

Albatross are vulnerable to cryptic threats but are difficult to monitor and only observable during 

some life history stages. Therefore, in Chapter 4 I built an IPM around a multi-event model of 

mark-resight data with several unobservable states. Each challenge that I have addressed here is 

not unique to the case-study species. Consequently, the methodology I present is applicable to 
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many endangered species which are monitored with through marking and resighting, over 

fragmented landscapes, or only during portions of their life-history.  

1.3 BROADER IMPACTS 

Collectively, the developed in these studies contribute new approaches for developing models of 

complex ecological processes and the specific case studies make contributions that will inform 

species conservation decisions. Ecologically, the Oregon Vesper Sparrow is a species of great 

conservation interest throughout the Pacific Northwest, including in Washington State, where it 

is listed as endangered. I present some of the first robust estimates of age-specific survival and 

dispersal probabilities for this subspecies, which will inform future population modeling efforts 

and influence conservation action. The Streaked Horned Lark is state and federally listed and is 

intensively monitored throughout South Puget Sound, where the model and demographic 

estimates I produced will be used to inform a reintroduction effort. Atlantic Yellow-nosed 

Albatross is endangered per the IUCN and is vulnerable to cryptic threats such as environmental 

change and anthropogenic stressors in the South Atlantic. Bycatch in commercial fisheries is a 

known threat to seabirds but the degree to which it impacts population dynamics of this species 

is not well understood. My work on this species identifies knowledge gaps for future study. 

Methodologically, I present novel model frameworks that facilitate robust estimation of vital 

rates in the face of common challenges with the integration of mark-resight data: mark loss or 

degradation, dispersal over fragmented landscapes, and multiple unobservable states.  
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