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Abstract: Blue shark (Prionace glauca) is a major bycatch species in the long-line and gill-net Pacific
Ocean tuna fisheries, and the population structure is critical for fishery management. We employed
generalized additive models to analyze the fork lengths of blue sharks and biological data (i.e.,
feeding level, sex, and genetic data), as well as environmental and spatial variables (i.e., sea surface
temperature, month, longitude, and latitude) collected from 2011 to 2014 by the Chinese Thunnus
alalunga long-line tuna fishery observer program. Fork length was significantly affected (p < 0.05)
with location (latitude and longitude) and sex, and positively effected with sea surface temperature.
No relationships were found between fork length and feeding level, month, and genetic data. We
detected fork length differences among blue sharks over the range of the observed data, but the
genetic data implied a panmictic population. Thus, we hypothesize that the genetic similarity was so
close that it could not be well separated. Based on the precautionary principle, we recommend that
the blue shark in the Pacific Ocean should be managed as two independent populations to ensure its
sustainable use.

Keywords: blue shark Prionace glauca; distribution pattern; generalized additive model; Pacific Ocean;
population structure

1. Introduction

Blue shark (Prionace glauca; Carcharhiniformes, Carcharhinidae) is considered the most
abundant species of large shark worldwide, with a widespread distribution in tropical
and temperate waters [1]. Blue shark is an important bycatch in tuna long-line fisheries
in the Pacific Ocean, and a decrease in populations in the Western and Central Pacific
Ocean during 2009 to 2014 [2] raised concerns about depletion and the possible loss of
apex predators due to overfishing [3,4]. Previous studies suggest that there has been a
60% decline in the catch-per-unit-effort (CPUE) for blue sharks in the Northwest Atlantic
over the past 15 years [5], and the blue shark standardized CPUE has decreased in the
Pacific Ocean from 2005 to 2009 [6]. These data, along with moderate decreasing trends
in the Northwest Atlantic Ocean [5], Pacific Ocean [6], and Indian Ocean [7], suggest that
blue shark stocks are vulnerable. However, the latest stock assessment for blue sharks in
the North Pacific indicated that production was near the maximum sustainable yield [8],
calling for scientists to pay more attention to population structure, stock assessment and
management recommendations.

Information about fish population structure is critical for fisheries stock assessments
and management [9]. Traditional tagging experiments conducted in the Eastern, Central,
and Western North Pacific Ocean provided evidence of widespread movement by blue
shark throughout the North Pacific Ocean [10], but tagging data have not demonstrated
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movement across the Equator in the Pacific Ocean [10,11], thereby leading to the assumption
of two separate independent blue shark stocks in the Pacific Ocean [8]. However, Taguchi [9]
proposed only a single stock in the Pacific Ocean based on mitochondrial DNA analysis,
which is possible given that highly migratory and broadly distributed oceanic shark species
often exhibit little population heterogeneity [12]. Previous population genetic studies of
Isurus oxyrinchus [13], Cetorhinus maximus [14], Rhincodon typus [15], and Prionace glauca [9,16]
found little to no genetic structuring among ocean basins.

Adult blue sharks are broadly distributed, whereas young blue sharks are found in the
productive high latitudes of the Subtropical Convergence containing abundant prey [17,18]
(Figure 1). The immature blue shark females in the Northeast Pacific Ocean are likely to
move largely northward of 33◦ N, whereas the males move southward of 35◦ N during
summer [19,20] because of their different temperature preferences [19]. Furthermore, the
estimated growth rate (K) of male adults and juveniles combined is 0.117, whereas that
for females is 0.146 [21]. The changing growth rates for males and females increase the
difficulty of identifying populations using morphological methods.

Water 2023, 15, x FOR PEER REVIEW 2 of 16 
 

 

shark throughout the North Pacific Ocean [10], but tagging data have not demonstrated 

movement across the Equator in the Pacific Ocean [10,11], thereby leading to the assump-

tion of two separate independent blue shark stocks in the Pacific Ocean [8]. However, 

Taguchi [9] proposed only a single stock in the Pacific Ocean based on mitochondrial 

DNA analysis, which is possible given that highly migratory and broadly distributed oce-

anic shark species often exhibit little population heterogeneity [12]. Previous population 

genetic studies of Isurus oxyrinchus [13], Cetorhinus maximus [14], Rhincodon typus [15], and 

Prionace glauca [9,16] found little to no genetic structuring among ocean basins. 

Adult blue sharks are broadly distributed, whereas young blue sharks are found in 

the productive high latitudes of the Subtropical Convergence containing abundant prey 

[17,18] (Figure 1). The immature blue shark females in the Northeast Pacific Ocean are 

likely to move largely northward of 33° N, whereas the males move southward of 35° N 

during summer [19,20] because of their different temperature preferences [19]. Further-

more, the estimated growth rate (K) of male adults and juveniles combined is 0.117, 

whereas that for females is 0.146 [21]. The changing growth rates for males and females 

increase the difficulty of identifying populations using morphological methods. 

 

Figure 1. Life stages and sex segregation in North Pacific Ocean [22]. Figure 1. Life stages and sex segregation in North Pacific Ocean [22].



Water 2023, 15, 1324 3 of 15

The present study uses a new dataset in order to examine population structure of
blue shark population(s) in the Pacific Ocean. This is necessary because previous studies
obtained conflicting results. A genetic study concluded there was a single Pacific popula-
tion [9], while tagging data identified two distinct populations divided by an equatorial
boundary [10,11]. In order to understand population structure in the Pacific Ocean, the
generalized additive models (GAMs) were used to analyze the relationships between the
biological characteristics and genotypes of blue sharks in the Pacific Ocean, and their
relationships with environmental factors. The genetic differentiation of populations (FST)
was analyzed using new genetic data to identify the blue shark population structure. Our
results would like to provide scientific recommendations for sustainable fisheries and
appropriate management of the species.

2. Materials and Methods
2.1. Ethics Statement

All of the blue shark samples used in this study were collected by the Chinese long-
line tuna fishery observer program under the auspices of the Ministry of Agriculture for
commercial fisheries (under the No.2011-08-013, No.2011-09-017, No.2012-08-011, No.2012-
10-023, No.2013-08-009, No.2013-10-020, No.2014-01-002; No.2014-02-008). Permission
and approval to collect and use samples were given by the Ministry of Agriculture of
China. And the experiments performed in this study was under the guild of Ethics Science
Committee of Shanghai Ocean University.

2.2. Survey Description

All data analyzed in this study were collected by the Chinese long-line fishing ob-
server program for the fishery that targets tuna in the Pacific Ocean (including the Western
and Central Pacific Ocean, and Eastern Pacific Ocean) from 2011 to 2014 (Figure 2). In to-
tal, 2340 long-line sets were observed over 4 years and biological, bycatch and fishing
information data was collected onboard by trained scientific observers.
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2.3. Biological Data Collected

Sex, fork length (FL), and feeding level were recorded for each shark by analyzing
a total of 2340 long-line sets. FL (measured from the snout to the deepest point of the
tail fork) were measured to the nearest centimeter (cm). The feeding level was identified
according to the methods of Fishery Resource Science [23], where the level ranged from
empty stomachs (0) to full stomachs/intestines (5). And the shark were found with a pair
of claspers, we determine it as male, whlie without claspers, we determine it as female.

2.4. Genetic Samples Collected

Muscle tissue were collected under the back fin on the board from 98 individual blue
sharks in three locations (denoted as Central Pacific Ocean Part A (CPA), Central Pacific
Ocean Part B (CPB), and Central Pacific Ocean Part C (CPC)) of Pacific Ocean during 2011
to 2014. Among these individuals, 31, 34, and 33 were collected from the areas comprising
0–15◦ N, 165–180◦ W (CPA), 0–10◦ S, 155–165◦ W (CPB), and 0–10◦ S, 145–155◦ W (CPC),
respectively (Figure 2).

2.5. Genetic Marker Design and Polymerase Chain Reaction (PCR) Amplification

The primers for amplification, i.e., BSH-COI-F (5′TATAGCCTTCCCACGAATA′3) and
BSH-COI-R (5′AACACCTGTAGGAATAGCG′3), were designed according to the complete
mitochondrial cytochrome oxidase subunit I gene sequence (KF356249). Two primers
were synthesized by Sangon Biotech (Shanghai, China). The three location samples were
amplified in a 20 µL reaction mixture containing 1 × PCR buffer (20 mM KCl, 4 mM,
Tris-HCl [pH 8.0], 4 mM MgCl2), 0.4 mM dNTPs, 1.0 mM primers, 0.5 units Taq DNA
polymerase (Takara, Otsu, Japan), and 30–50 ng DNA template. The reaction was performed
with an initial denaturation step at 95 ◦C for 40 s, followed by 30 cycles for 30 s at 95 ◦C, 30 s
at 56 ◦C, and 40 s at 72 ◦C, and a final extension step at 72 ◦C for 300 s. After amplification,
the products were sequenced by Sangon Biotech (Shanghai, China).

2.6. Genetic Data Analysis

Blue shark mitochondrial cytochrome oxidase submit I gene sequences were aligned
with CLUSTALW [24]. Analysis of molecular variance (AMOVA) and FST analysis were con-
ducted by using Arlequin 3.0, and FU and its p-value and τ were estimated with Arlequin
3.0 [25]. Mismatch distributions from different stocks were identified with DnaSP 4.0 [26],
and a neighbor-joining tree was produced using MEGA 4.0 [27]. We selected Carcharhi-
nus falciformis (KF801102), Carcharhinus obscurus (KC470543), and Carcharhinus galapagensis
(JQ654714) as an outgroup, and the neighbor-joining tree built under the Kimura two-
parameter model. Moreover, general dates of population expansion were estimated with
the formula: T = τ/2u [28], where T is the time since expansion, τ is the expansion time,
and 2u = µ × generation time × number of basic analysis, where µ is the mutation rate.
The mitochondrial DNA COI gene mutation rate µ = 2.38 × 10–9 substitutions per site per
year [29] and an age of maturity of about 4 years [1] in the data analysis.

2.7. GAM Analysis

GAMs were used to explore the relationships between the variables included in our
study. GAMs allow for nonlinear relationships between the response and explanatory vari-
ables [30], and thus they were useful because a priori assumptions regarding the functional
forms of the responses of our independent variables were not available. FL, feeding level
(FeedL), latitude (LAT), longitude (LON), sex, month (Month), sea surface temperature
(SST), and genetic data (Gen) were available from the Chinese observer program, and they
were included in our models. Among the variables, longitude and latitude were fitted as a
two-dimensional smoothed term, SST was fitted as a single-dimensional smoothed term,
and the month, feeding level, sex, and genetic data were designated as factors. Fifteen
models were compared to select the optimal model. Every model included latitude, longi-
tude, and sex, and the remaining variables were added as factors (Table 1). GAMs were
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fitted using the R statistical programming environment with the ‘mgcv’ package [31], where
the smoothed term was automatically calculated by the program and ‘gaussian’ family
was selected during the analysis. The changes in log(FL) from the average were added in
the plot related to SST in the final outputs. Akaike’s information criterion (AIC) [32] was
calculated for each model and used to select the best model(s).

Table 1. Variables included in the GAM formulations and their performance results.

Model Equation Model Number Df AIC

FL~s(LON,LAT) + s(SST) + FeedL + Month + Sex + Gen Model 1 16.000407 −123.6367
FL~s(LON,LAT) + s(SST) + FeedL + Month + Sex Model 2 32.604487 −1230.5702

FL~s(LON,LAT) + s(SST) + FeedL + Sex + Gen Model 3 13.000100 −129.2055
FL~s(LON,LAT) + s(SST) + Month + Sex + Gen Model 4 12.000079 −131.2627
FL~s(LON,LAT) + FeedL + Month + Sex + Gen Model 5 15.000729 −124.6096

FL~s(LON,LAT) + Sex + s(SST) + FeedL Model 6 12.000188 −128.8619
FL~s(LON,LAT) + Sex + s(SST) + Month Model 7 19.798894 −1237.8019

FL~s(LON,LAT) + Sex + s(SST) + Gen Model 8 9.000123 −136.7627
FL~s(LON,LAT) + Sex + FeedL + Month Model 9 26.060133 −1235.1461

FL~s(LON,LAT) + Sex + FeedL + Gen Model 10 12.000188 −128.8619
FL~s(LON,LAT) + Sex + Month + Gen Model 11 11.000774 −132.1159

FL~s(LON,LAT) + Sex + s(SST) Model 12 24.377982 −1579.5387
FL~s(LON,LAT) + Sex + FeedL Model 13 18.849146 −1235.4664
FL~s(LON,LAT) + Sex + Month Model 14 26.031117 −1580.4761

FL~s(LON,LAT) + Sex + Gen Model 15 8.000042 −136.4100

3. Results
3.1. Population Genetics Structure and Population Expansion

In total, 682 base pairs in the segment cytochrome oxidase I gene were analyzed.
AMOVA (Table 2) indicated that the percentage of variation occurring within populations
was 97.84% and the fixation index was 0.02164, with no significant difference. FST analysis
(Table 3) found no significant genetic differences among the three sampling locations.
Furthermore, the neighbor-joining tree indicated that three outgroups separated from the
blue shark stock clade (Figure 3), and thus there were no significant differences among the
three sample stocks.

Table 2. Analysis of molecular variance (AMOVA) results for blue sharks.

Source of
Variation d.f. Sum of

Squares
Variance

Components
Percentage
of Variation

Fixation
Index

Among
population 2 1.455 0.00935 Va 2.16 0.02164

Within
population 95 40.137 0.42249 Vb 97.84

Table 3. Pairwise FST analysis results for blue sharks.

CPA CPB CPC

CPA
CPB 0.0122
CPC 0.06737 −0.0174

All samples from the three locations had negative Fu’s test results and the p-values were
significant (p = 0; Table 4), which indicated the occurrence of a recent population expansion.
Mismatch distributions from the Southern Hemisphere stock, Northern Hemisphere stock,
and all samples were examined (Figure 4), and the results also suggested the occurrence of a
population expansion. In addition, the mean τ was calculated as 0.95 (Table 4), we estimated
that the population expansion might have occurred 0.15 million years ago.
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Pacific Ocean.

Table 4. Parameters for mismatch distribution and Fu’s test for blue sharks in the Pacific Ocean.

Region τ θ0 θ1 FU’S P(FU’S)

CPA 1.15234 0.00000 99999.00000 <0.0000 0.0000
CPB 0.93359 0.00000 99999.00000 <0.0000 0.0000
CPC 0.76953 0.00000 99999.00000 <0.0000 0.0000
Total 0.95182 0.00000 99999.00000 <0.0000 0.0000

<0.0000 denotes a highly negative value.
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Figure 4. Mismatch distributions for the blue shark populations sampled in the Pacific Ocean:
(a) mismatch distribution for the Northern Hemisphere stock; (b) mismatch distribution for the
Southern Hemisphere stock; and (c) mismatch distribution for all samples. We count the number of
site differences between each pair of sequences in a sample, and use the resulting counts to build
the histogram.

3.2. Modeling Results
3.2.1. Model Selection

For the overall data set, the distribution of log(FL) was approximately normal (Figure 5).
In addition, the observed cumulative probability and expected cumulative probability ap-
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proximately fitted a line (Figure 6), thereby indicating that the data set was suitable for
GAM analysis. Model 14 (longitude, latitude, sex, and month) obtained the lowest AIC
value among the 15 models, followed by Model 12 (longitude, latitude, sex, and SST), with
a slight difference in the AIC of only 1 unit. The AIC for the next closest model (Model 2)
was 350 units higher (Table 1), thereby indicating that Models 12 and 14 were better at
predicting the correlations between FL and the environmental variables.
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3.2.2. Effects of Covariates on FL in Blue Shark Individuals

Models 12 and 14 both included longitude, latitude, and sex, and each model had an
additional variable (SST for Model 12 and month for Model 14). The GAMs results showed
that for each model, latitude, longitude, and sex were significantly affected (i.e., p < 0.05)
on FL (Figure 7). It indicated that FL usually increased with latitude, and it was larger in
the Eastern Pacific Ocean than the Western Pacific Ocean within the study areas. Males
were also larger than females. SST and month improved the AIC values for Models 12 and
14, but these variables were not significant in the GAM output (i.e., p > 0.05) and they were
correlated. The estimated relationship of SSTand FL was roughly linear and it increased up
to 29 ◦C, before then plateauing (Figure 7). The uncertainty around the relatively high and
low SST values was very large. FL was larger in males than females (Figure 8; t = –8.437,
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p < 2e–16). In Model 14 (April to July were not included in this study), FL was slightly
larger in August and September than other months (Figure 9). Some of the highest SSTs
were reported in August and September.
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the black solid line represents the relationship estimated by the model between SST and change
in log (fork length), the grey area indicates the 95% confidence interval, and the black dots are
the observations.
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4. Discussion

Understanding the population structure of the blue shark in the Pacific Ocean is very
important for its sustainable utilization. We found that body size of blue sharks varied
according to the location and SST. No genetic differences were found in the population in
the study areas in the Pacific Ocean (genetic samples were collected January, February, July,
September, October, November, and December), thereby agreeing with previous studies of
the blue shark’s population genetic structure [9,33]. However, a “population grey zone”
has been suggested that could explain a distinct single population or several independent
populations [34]. Tagging studies have not demonstrated movement across the Equator
in the Pacific Ocean [10,11], but these populations may be due to sex segregation and
life-stage movement patterns [22,35]. Differences in morphology related to location and
temperature were shown by our results, but the explanations for these differences are
unknown. Ontogenetic changes in distribution and/or sex segregation by blue sharks in
the Pacific Ocean are plausible explanations suggested in other studies [19,20,22,35]. High
latitudes such as those north of 35◦ N are areas with high primary productivity and the
abundant food could be beneficial for nurseries [19,20]. According to our observations, the
population structure of blue sharks in the Pacific Ocean remains uncertain. However, in
order to achieve the sustainable use of blue shark, we would suggest managing this species
as two independent populations in the Pacific Ocean.

4.1. SST May Explain Body Size Differences within Sampling Areas

Our results showed that latitude, longitude, and sex were significantly affected on FL in
blue sharks based on data recorded in the Pacific Ocean (Figure 7). Blue sharks in the Pacific
Ocean have been shown to segregate by size throughout their development [36], which
may explain the differences in body size among various sites. Thresher [37] showed that
fishes inhabiting waters >250 m depth exhibited increases in body size as the temperature
increased. The blue shark is a typical ectothermic species and it may exhibit changes
in growth with changes in temperature. Body size and growth rate usually increase
with temperature within optimal temperature ranges [38]. The optimal temperature for
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blue shark growth is approximately 28.5 ◦C [39]. A higher temperature within the optimal
temperature range may lead to increased activity and metabolism, and our findings showed
that greater FL was found with higher SST values (Figure 7). Thus, a higher average SST
within the optimal temperature may lead to larger body size.

Blue sharks tend to live in layers of waters with temperatures from 12–21 ◦C [40],
where they exhibit tropical submergence to remain in the deep, cooler waters in the tropical
and equatorial parts of their range [19]. However, blue sharks have been caught in oceans
with SST values ranging from 8 ◦C to 29.5 ◦C [41], and the annual mean SST in the equatorial
Pacific Ocean is 29 ◦C [42], which suggests that blue sharks should rarely be seen in the
equatorial Pacific Ocean. Temperature probably affects the metabolic rate and life history
processes in blue shark [43], which may explain the differences in body size found in the
present study.

The Intergovernmental Panel on Climate Change assessment report [44] forecast an
overall temperature increase in the surface tropical Pacific Ocean of 0.7–0.8 ◦C by 2035 rela-
tive to 1980–1999 and 2.5–3.0 ◦C by 2100 [45]. Climate change may affect the growth, body
size, and distribution of marine species [46], and shifts in the ranges of many marine species
have already occurred [47,48]. It is possible that climate change will influence the popula-
tion dynamics of blue sharks, and thus the effects of climate change should be considered
in blue shark management strategy evaluations [49]. Considering many different possible
climate change scenarios will increase the robustness of management procedures under
uncertainty surrounding the true changes [50], thereby providing sustainable management
suggestions for managers.

4.2. Age-Dependent Migration and Sex Segregation May Explain Body Size Differences within
Sampling Areas

Blue shark mating grounds are located in the Subtropical Convergence of the Pacific
Ocean. After mating, the females generally migrate north for parturition and the juveniles
linger in the northern Pacific Ocean until they are ready to mate [22]. The small juveniles
grow at the Subtropical Convergence until FL reaches approximately 115 cm. Above this
body size, spatial segregation of the sexes occurs by latitude and longitude. The males
(FL of 70–129 cm) move southward to lower latitudes and extend their nursery area to 30◦

N where they remain until FL is 130–179 cm, whereas the females move northward and
eastward where they remain until FL reaches 165 cm [21,51,52]. Blue sharks engage in a
seasonal latitudinal migration toward tropical latitudes until they approach maturity. This
special age-dependent migration and sex segregation behavior may drive the differences
in morphology, and this is supported by our results because we showed that FL was
significantly affected by latitude, longitude, and sex (Figures 7 and 8).

In order to effectively test this hypothesis, more representative samples in terms of age,
length, sex, and location are required in the model. However, data from scientific observers
were restricted to areas where the Chinese tuna fishery operated in the present study. A
potential approach for addressing the gaps in this study could involve the International
Scientific Committee for Tuna and Tuna-like Species collecting data uniformly from all
members, and repeating a similar analysis of the population dynamics of blue sharks in the
North Pacific Ocean. The results obtained would improve our knowledge of the population
dynamics of blue sharks to enhance stock assessment and the management of blue sharks
in the Pacific Ocean.

4.3. Limited Geographic Range and Sample Size for Genetic Data May Have Biased the Results

A statistically significant difference between genetic samples from two populations
depends on “true” population differentiation but also the number of individuals and
markers sampled [53]. Tagging data obtained by the National Oceanic and Atmospheric
Administration’s Southwest Fisheries Science Center, Japanese National Research Institute
of Far Seas Fisheries, and New Zealand Ministry of Fisheries detected the presence of
two populations of blue shark (North Pacific Ocean population and South Pacific Ocean
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population) [10]. Thus, stock assessments and the management of blue sharks in the Pacific
Ocean are currently separated into populations from north to south within a given ocean
basin [8]. In the present study, four haplotypes were found (GenBank: KX002278–KX002281)
in 98 individuals, which is fewer than the number found in other studies with larger sample
sizes [9]. The sample size affects estimates of population genetic structures [54,55]. Genetic
studies of school sharks (Galeorhinus galeus) indicated that Australian and New Zealand
populations comprised a single population, but it was noted that more samples are required
to confirm this finding. Furthermore, tagging data suggested a low rate of movement
between the two areas [56]. Hence, the school shark populations in these two countries are
assessed and managed separately [57]. As a consequence, school sharks are considered to
be overfished off Australia but sustainably harvested off New Zealand, and the failure to
detect populations might have contributed to this difference due to sample size limitations.

4.4. Divergence of the COI Gene May Be Too Recent to Identify Differences in Genetic Data

Climatic fluctuations have caused shifts in the geographic distributions of many
marine species [48,58], and the effects of these shifts on population structures as well as
phenotypic consequences have received much attention [59]. We estimated that population
expansion might have occurred 0.15 million years ago. The population expansion occurred
between the Glacial Stage and Late Glacial Stage when the temperature was 5 ◦C to 6 ◦C
cooler than that at present in tropical areas [60]. Blue sharks prefer to inhabit waters with
temperatures 12–21 ◦C [40], and thus blue sharks may have inhabited tropical waters as
a single population before their recent population expansion. As the SST increased, the
blue shark population may have shifted to habitats closer to the poles, which indicated a
thermally adaptive response to the temperature variation [61]. Blue sharks in the Pacific
Ocean might have experienced habitat shifts due to rapid temperature increases. Multiple
traits dictate the potential for selective responses to these changes, which can markedly
slow genetic rates of evolutionary adaptation [62]. Thus, many potential reasons may
explain the absence of observed genetic differences, even when a genetically-based size
difference between parts of the population(s) is apparent.

In fisheries management, the “precautionary approach” is often recommended to
ensure the sustainable utilization of marine fisheries [63]. The precautionary approach
stresses the importance of considering the needs of future generations and avoiding changes
that are potentially irreversible. In addition, the prior identification of undesirable outcomes
and measures to ensure their prompt avoidance or correction can enhance the scientific
management of a fishery [64]. Stock identification is a critical component of fishery stock
assessment and it is necessary for effective fishery management [65]. Misleading population
identification information may lead to failures in stock assessment and management [57,62].
However, it is difficult to design scientific sampling protocols for biological and genetic
studies conducted from commercially operated vessels, thereby making it hard to determine
whether genetic data or biological data provide more accurate stock structures without
additional information. Changes to the population structures within a stock assessment
can have profound implications on the stock status and management actions. The impacts
of uncertain population structures on the ability of management strategies to reach their
stated goals can be examined by conducting management strategy evaluations [53]. In
order to achieve sustainable fisheries usage, we recommend managing two independent
blue shark populations in the Pacific Ocean.

5. Conclusions

In this study, we used GAM to analyze the fork lengths of blue sharks and feeding level,
sex, and genetic data, sea surface temperature, month, longitude, and latitude. The results
indicated that fork length was significantly correlated (p < 0.05) with location (latitude
and longitude) and sex, and the effected with sea surface temperature were analyzed. But
the relationship between fork length and feeding level, month, and genetic data are poor.
And 98 individuals from 3 sampling sites were used to detected the genetic population
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in the studying areas, the results implied a panmictic population. Based on the analysis
by synthesis, we hypothesize that the genetic similarity was so close that it could not be
well separated. Based on the precautionary principle, we recommend that the blue shark
in the Pacific Ocean should be managed as two independent populations to ensure its
sustainable use.
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