
Supplementary Materials 

Text in these Supplementary Materials provides further technical details. 

Problem statement 

Mathematically, the goal is to calculate the variance of the total seabird bycatch 𝑇 =𝑟்𝐸, where the covariance matrices for the vector of seabird bycatch rates r and fishing 

efforts E are Σ and Σா, respectively. Another popular measure of uncertainty is the 

coefficient of variation (CV), calculated as the ratio of standard error and the estimated 

bycatch rate. When the total fishing effort is known from each source, for example, based on 

fishery logbooks, the variance of the total bycatch T is 𝑣𝑎𝑟ሺ𝑇ሻ = 𝐸்Σ𝐸. Note that only the 

diagonal elements of the covariance matrix Σ are known based on individual assessments, 

and the off-diagonal elements are generally unknown, since the bycatch rates are assessed 

separately locally in each source. Denote the standard deviations of the bycatch rate from 

source i as σ. Then, the covariance matrix Σ can be written as 𝑑𝑖𝑎𝑔ሺσଵ, … ,  σ,   … ,  σሻ ⋅ 𝐶 ⋅𝑑𝑖𝑎𝑔ሺσଵ, … ,  σ,   … ,  σሻ, where C is the correlation matrix of the bycatch rates from all n 

sources. Next, we consider the case when the total fishing effort is also estimated. We can 

reasonably assume that the covariance matrix Σா is diagonal, because the uncertainty of the 

estimate of total fishing effort from different sources can be assumed to be independent of 

each other, and the independence of the vector of the bycatch rate and the vector of the total 

fishing effort. Further denote the standard deviation of the total fishing effort from the ith 

source as σா. After some algebraic manipulation, it can be shown that 𝑣𝑎𝑟ሺ𝑇ሻ = 𝐸்Σ𝐸 +∑ σாଶ ሺμଶ + σଶሻୀଵ , where μ and σ are the mean and standard deviation of the bycatch rate 

from the ith source. From this formula, we see that, when the vector of the total fishing effort 

is known, the variance reduces to the previous formula, and when the vector of the total 

fishing effort E is also estimated, the variance of T includes an additional term due to the 



uncertainty in E. 

Three special cases of correlation structure 

There are three special cases where additional knowledge of the correlation matrix is 

not needed for the calculation of the uncertainty estimate of the total bycatch. The first one is 

the completely synchronized case, where the bycatch rates from any two sources are perfectly 

correlated, i.e., the off-diagonal elements of C are all ones. In this case, the variance of the 

total bycatch is simply 𝑣𝑎𝑟ሺ𝑇ሻ = ሺΣୀଵ 𝐸σሻଶ. In the second case, the bycatch rates from all 

of the sources are assumed to be independent from each other, i.e., the off-diagonal elements 

of C are all zeros, and in this case, 𝑣𝑎𝑟ሺ𝑇ሻ = Σୀଵ ሺ𝐸σሻଶ. In the third case, the variation of 

the bycatch rates is completely counter-balanced, such that 𝐸்Σ𝐸 = 0, and the total bycatch 

is completely determined. Note that there might be multiple covariance matrices satisfying 

the counter-balanced condition. The completely synchronized variation and the counter-

balanced cases are two limiting cases that, respectively, marks the upper and the lower bound 

on the size of the uncertainty estimate of the total bycatch, and the independent case stays 

between those two. 

Compound symmetry correlation structure 

In the compound symmetry case, the correlation coefficient between the bycatch rates 𝑟 and 𝑟 for 𝑖 ≠ 𝑗 is assumed to be the same 𝑐𝑜𝑟𝑟൫𝑟, 𝑟൯ = 𝜌. The validity of the correlation 

matrix requires that − ଵିଵ ≤ 𝜌 ≤ 1, where n is the total number of regions, and in this study 

− ଵଷ ≤ 𝜌 ≤ 1 for n = 4. The upper bound on 𝜌 corresponds to the limiting case of a 

completely synchronized variation, the case of 𝜌 = 0 corresponds to the independent case, 

and the lower bound on 𝜌 corresponds to a counter-balanced case with a uniform distribution 

of fishing effort and equal variance for all of the regions. 



Additional results 

In the following, we show that the synchronized variation drives a much faster growth of 

variability in the estimate of the total bycatch than the independent case, and the effect is more 

pronounced as we have more individual sources. The analytical results can be obtained by 

assuming that each area has the same fishing effort (y thousand hooks annually), and the seabird 

bycatch rate in each area has a common standard deviation σ. In the completely synchronized 

case, the standard deviation of the total bycatch σ்  is σଵ் = 𝑦σ𝑛 , and σ் = 𝑦σ√𝑛  in the 

independent case. The difference between the two estimates grows steadily with the number of 

sources n. For example, with 𝑛 = 10, σଵ்  is more than twice the size of σ் , and with 𝑛 =  40, σଵ்  is more than five times the size of σ் . By assuming the compound symmetry correlation 

structure, we can also obtain an analytical result for the cases between the completely 

synchronized case and the independent case. With − ଵିଵ ≤ 𝜌 ≤ 1, the standard deviation of 

the total bycatch is σ் = 𝑦σඥሺ𝜌𝑛ଶ + ሺ1 − 𝜌ሻ𝑛ሻ, of which the perfect synchronization case 

and the independent case are special cases with 𝜌 = 1 and 𝜌 = 0, respectively. Here, y and σ 

are the scaling factors and they do not change the relative size of these functions. With 𝑦 =
1 million hooks  and σ = 0.01  captures per 1000 hooks, we can plot these functions and 

visually compare their growth with the number of sources. For reference, the last global review 

of the seabird bycatch in longline fisheries compiled estimates from 68 individual sources, and 

still with missing assessments from some of the regions and fleets. In terms of CV, the level of 

uncertainty of the total seabird bycatch remains constant with respect to the number of sources 

in the completely synchronized case; for the compound symmetry correlation with an 

intermediate positive correlation, the CV quickly reaches a finite asymptote at ඥρ  ⋅ CV , 

where CV is the CV of seabird bycatch rate from an individual source; for the independent 

case, the CV vanishes when the number of sources tends to infinity. 


