

Assessing Observer Coverage Performance for Rare Event Bycatch

K. Alexandra Curtis Marine Mammal and Turtle Division Southwest Fisheries Science Center NOAA Fisheries

4 June 2020

NOAA FISHERIES

SWFSC

Introduction

- Analyst with SWFSC MMTD since 2010
 - Risk assessment
 - Population assessment
 - Tool development to support science-based management
- Background in fisheries oceanography
- AAAS S&T Policy Fellow

Rare event bycatch

- Often species of concern
- Challenging to estimate (Amandè et al., 2012; Carretta and Moore, 2014)
 - Bias
 - Imprecision
- Challenging to <u>detect</u>
 - need Ecological Risk Assessment

Carretta and Moore (2014), based on simulations with mean of two interactions per year in 1000 sets and 20% observer coverage

Sperm Whales in California Drift Gillnet Fishery

- 2010: two observed interactions
- Annual mean per unit estimate > Potential Biological Removal
- Triggered Take Reduction Team process
- Lessons
 - Multi-year estimates
 - Understanding probability of observing any bycatch

Why ObsCovgTools

- Automate repetitive tasks
- Stop reinventing wheel

- Interactive tool for scenario exploration
- Evaluate current coverage or guide future coverage
- Consideration of bycatch composition
- Bridge ERA and management

	Fisheries Research 225 (2020) 105493	
	Contents lists available at ScienceDirect	
STR.	Fisheries Research	Research
ELSEVIER	journal homepage: www.elsevier.com/locate/fishres	

ObsCovgTools: Assessing observer coverage needed to document and estimate rare event bycatch

K. Alexandra Curtis^{a,b,*}, James V. Carretta^b

CA 92037, USA

^a Ocean Associates, Inc., under contract to Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA 20207, USA
^b Marine Mamual and Turle Division. Southwest Fisheries, Science Center, National Marine Fisheries, Service, National Oceanic and Atmospheric Administration. La Jolla

ARTICLE INFO	ABSTRACT
Handled by S Xavier Cadrin	Observer program design and evaluation often overlook the challenges of documenting rare-event bycatch. To
Keywords:	support and facilitate consideration of threatened, endangered, and protected species bycatch in evaluating
Bycatch estimation	observer programs and assessing fisheries impacts, we developed a software tool to assess observer coverage
Fishery observer program	with respect to several objectives for documenting or estimating rare-event bycatch. The ObsCovgTools package
Limit reference point	for the R programming language, also available as an online application, predicts observer coverage performance
Precision	for a given total fishery effort in relation to three metrics: (1) the conditional probability of observing any
Risk assessment	bycatch given that bycatch occurred in the fishery and the probability of any bycatch in the total fishery effort,
Software	(2) the upper confidence limit for total bycatch when none is observed, and (3) precision (coefficient of var-
	iation) of the bycatch estimate. We describe the tool: explore how specific observer coverage targets for these
	metrics vary with total effort. BPUE, and dispersion index; and apply it to evaluate observer coverage in the
	California drift eillnet fishery. Our results underscore the importance of considering effort as well as percentage
	in assessing how well an observer program documents by arth We caution that rare species interactions may
	not be desumated in many observer program detailed by antisinated through a complementary side as
	root be documented in many observer programs, and should be anticipated unough a complementally risk day
	sessment approach. The tool's mouthar design and open source programming approach encourage adaptation

ObsCovgTools

What is ObsCovgTools?

• A user-friendly simulation tool for assessing observer coverage in terms of documenting and estimating rare-event bycatch

Metrics

- Bycatch composition
 - Probability of positive bycatch in observed (total) effort (PPOS)
 - Upper confidence limit of bycatch given none observed (UCL)
- Bycatch estimation
 - Expected precision of bycatch estimates (CV)

Use notes

Required input

- Total effort, dispersion index (UCL)
- + Bycatch rate (PPOS, CV)

Optional input

• Performance benchmark (e.g., desire 30% CV)

Assumptions

- Observer coverage is representative
- No higher-level sources of variance (e.g., vessel)

Probability of positive bycatch

Observer coverage simulator - 3.1.1

Objective: Probability of Positive Bycatch

Objective: Upper Confidence Limit Given No Bycatch Observed

Objective: Bycatch Estimation CV About

Total effort in fishery (e.g., trips)

400

Bycatch per Unit Effort (BPUE)

0.005

Dispersion index for BPUE

(Dispersion index d is variance:mean ratio of BPUE, with more skewed data having higher d. d=2 is a relatively conservative default for rare event bycatch of marine mammals and turtles. Seabirds and fishes tend to be more skewed.)

2

0

Target probability of observing bycatch (Given positive bycatch in total effort. Set to zero to omit.)

0 10 20 30 40 50 60 70 80 90 100

Observer Coverage (%)

The probability that any bycatch occurs in the given total effort (horizontal black dotted line) is 75%. Minimum observer coverage to achieve at least 95% probability of observing bycatch when total bycatch is positive is 90% (360 trips or sets). The conditional probability of observing any bycatch if it occurs (solid black line) is obtained by dividing the absolute probability of observing any bycatch (black dashed line) by the probability that any bycatch occurs in the given total effort. Please review the caveats in the About tab.

Upper Confidence Limit with zero observed

Objective: Probability of Positive Bycatch

Objective: Upper Confidence Limit Given No Bycatch Observed

Objective: Bycatch Estimation CV

About

Total effort in fishery (e.g., trips)

400

Dispersion index for BPUE

(Dispersion index d is variance:mean ratio of BPUE, with more skewed data having higher d. d=2 is a relatively conservative default for rare event bycatch of marine mammals and turtles. Seabirds and fishes tend to be more skewed.)

2.5

Percent observer coverage for which to return UCL

20

JOAA FISHERIES

Minimum observer coverage to ensure that the upper confidence limit of 2.5 is not exceeded when no bycatch is observed is 79.3% (317 trips or sets). Upper confidence limit for bycatch given none observed in 20% (80 trips or sets) coverage is 19.4. Please review the caveats in the About tab.

Bycatch estimation precision

Observer coverage simulator - 3.1.1

Objective: Probability of Positive Bycatch

Total effort in fishery (e.g., trips)

Objective: Upper Confidence Limit Given No Bycatch Observed

Objective: Bycatch Estimation CV

About

CV of Bycatch Estimate vs Observer Coverage

Minimum observer coverage to achieve CV <= 0.3 is 93% (370 trips or sets). Results are interpolated from simulation-based projections and may vary slightly with repetition. Please review the caveats in the About tab.

Looking across species

Based on California Drift Gillnet Fishery, 2002–2016

Species	Total bycatch	BPUE	d	LRP	1 year % (n)	5 years % (n)	10 years % (n)
					0.660.000	00000000	1.100000000
Loggerhead Sea Turtle (Caretta caretta)	1	0.002	1	-	95 (76)	92 (369)	88 (700)
Minke Whale (Balaenoptera acutorostrata)	1	0.002	1	3.5	95 (76)	92 (369)	88 (700)
Bottlenose Dolphin (Tursiops truncates)	1	0.002	1	11	95 (76)	92 (369)	88 (700)
Humpback Whale (Megaptera novaeangliae)	1	0.002	1	16.7	95 (76)	92 (369)	88 (700)
Dall's Porpoise (Phocoenoides dalli)	1	0.002	1	172	95 (76)	92 (369)	88 (700)
Leatherback Sea Turtle (Dermochelys coriacea)	2	0.005	1	0.16	95 (76)	88 (350)	72 (572)
Gray Whale (Eschrichtius robustus)	2	0.005	1	801	95 (76)	88 (350)	72 (572)
Sperm Whale (Physeter macrocephalus)	2	0.005	2	2.5	95 (76)	91 (363)	82 (658)
Short-Finned Pilot Whale (Globicephala macrorhynchus)	3	0.007	1	4.5	94 (75)	81 (322)	54 (430)
Northern Elephant Seal (Mirounga angustirostris)	5	0.011	1	4882	92 (74)	62 (250)	33 (265)
Risso's Dolphin (Grampus griseus)	6	0.014	3	46	94 (75)	78 (312)	49 (395)
Pacific White-Sided Dolphin (Lagenorhynchus obliquidens)	9	0.02	2.1	191	92 (74)	53 (213)	27 (219)
Long-Beaked Common Dolphin (Delphinus capensis)	12	0.027	1.5	657	89 (71)	34 (135)	17 (135)
Northern Right Whale Dolphin (Lissodelphis borealis)	17	0.038	1.6	179	84 (67)	25 (98.1)	12 (98.1)
Northern Fulmar (Fulmarus glacialis)	20	0.045	3.5	-	88 (70)	33 (132)	16 (132)
California Sea Lion (Zalophus californianus)	92	0.208	4	14011	40 (32)	8 (32)	4 (32)
Short-Beaked Common Dolphin (Delphinus delphis)	94	0.213	1.4	8393	21 (17)	4 (17)	2 (17)

Curtis and Carretta (2020)

- Facilitates assessment of observer coverage in a fishery, with respect to rare-event bycatch **composition** and **estimation**
- Can bridge ERA and management
- Can inform observer program design

Antigua Convention Article IV, paragraph 2:

In particular, the members of the Commission shall be more cautious when information is uncertain, unreliable or inadequate. The absence of adequate scientific information shall not be used as a reason for postponing or failing to take conservation and management measures.

Web application: https://kacurtis.shinyapps.io/obscov/

Github site: https://github.com/kacurtis/ObsCovgTools

Journal article: https://doi.org/10.1016/j.fishres.2020.105493

	Contents lists available at ScienceDirect
	Fisheries Research
ELSEVIER	journal homepage: www.elsevier.com/locate/fishres
^a Ocean Associates, Inc., under contract to Jolla, CA 92037, USA ^b Marine Mammal and Turtle Division, Soi CA 92037, USA	Southwest Fisheries Science Center, National Marine Fuheries Service, National Oceanic and Atmospheric Administration, La ultruwest Fisheries Science Center, National Marine Fuheries Service, National Oceanic and Atmospheric Administration, La Jolla,
ARTICLE INFO	A B S T R A C T

Thank you to:

Howard Coleman, Jim Carretta, Jeff Moore, Eli Holmes, and many more! Funding: NOAA Fisheries National Protected Species Toolbox Initiative

alex.curtis@noaa.gov

