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Relative abundance trends of highly migratory species (HMS) have played a central role in debates over the health of global fisheries.
However, such trends have mostly been inferred from fishery catch rates, which can provide misleading signals of relative abundance. While
many biases are accounted for through traditional catch rate standardization, pelagic habitat fished is rarely directly considered. Using a
method that explicitly accounts for temperature regimes, we analysed data from the US pelagic longline fishery to estimate relative abun-
dance trends for 34 HMS in the Atlantic Ocean from 1987 through 2013. This represents one of the largest studies of HMS abundance trends.
Model selection emphasized the importance of accounting for pelagic habitat fished with water column temperature being included in nearly
every species’ model, and in extreme cases, a temperature variable explained 50–60% of the total deviance. Our estimated trends represent
observations from one fishery only, and a more integrated stock assessment should form the basis for conclusions about stock status overall.
Nonetheless, our trends serve as indicators of stock abundance and they suggest that a majority of HMS (71% of analysed species) are either
declining in relative abundance or declined initially with no evidence of rebuilding. Conversely, 29% of the species exhibited stable, increasing,
or recovering trends; however, these trends were more prevalent among tunas than either billfishes or sharks. By estimating the effects of
pelagic habitat on fishery catch rates, our results can be used in combination with ocean temperature trends and forecasts to support bycatch
avoidance and other time-area management decisions.
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Introduction
Fish stock assessments provide the quantitative basis for sustain-

able fisheries management. Assessment models typically rely on

information about changes in stock abundance over time, and

because it is impossible to conduct a census of most marine

organisms, indices of relative abundance are often used to charac-

terize population trends (Quinn and Deriso, 1999; Maunder and

Punt, 2004). Within assessment models, indices are often treated

as “observed” measures of relative abundance, thereby giving

them substantial influence over assessment results.

Unfortunately, relative abundance trends of highly migratory

species (HMS) are rarely obtained through comprehensive, scien-

tifically designed, survey programs (due to the high cost of imple-

mentation), but rather from fishery-dependent catch and effort

data (Maunder and Punt, 2004; Lynch et al., 2011) (HMS in this

study include fishes only [tunas, billfish, and sharks]). This poses

a considerable challenge to estimating an accurate index of rela-

tive abundance, because fisheries frequently change their fishing
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practices in response to various socio-economic drivers. When

fishery catch rates, or catch per unit effort (CPUE), are assumed

to be proportional to stock abundance, changes in fishing practi-

ces need to be accounted for because they can cause the propor-

tionality assumption to be violated (Maunder and Punt, 2004).

In the Atlantic Ocean, pelagic longline fisheries are responsible

for the bulk of the fishing mortality experienced by many HMS.

These fisheries have altered fishing practices over time by chang-

ing gear configurations, target species, and the spatio-temporal

distribution of effort (Majkowski, 2007). Although contemporary

statistical approaches to estimating HMS relative abundance

trends do account for changes in fishing practices, ocean condi-

tions are variable and pelagic habitats fished are related to both

fishing practices and environmental conditions. While the distri-

butions of HMS can be roughly characterized by depth and geog-

raphy, temperature regimes are likely the main governing factor

(Brill and Lutcavage, 2001; Bigelow and Maunder, 2007).

Therefore, when estimating HMS relative abundance trends, it is

important to consider pelagic habitats exploited (e.g. temperature

regimes) in addition to fishing practices.

Temperature information is not straightforward to incorporate

analytically when estimating relative abundance trends from pela-

gic longline fisheries data, because estimates of fishing depth and

environmental conditions at depth are required. Longline fishing

depths are notoriously difficult to estimate with accuracy (Ward

and Myers, 2006; Rice et al., 2007) and environmental conditions

at a given depth, time, and location are often not recorded, and

can only be estimated through analysis of a global ocean database.

Therefore, HMS relative abundance trends are typically estimated

without accounting for the pelagic habitats exploited by the fish-

ery, which inevitably vary over time.

Despite the challenges associated with accounting for pelagic

habitat fished, Lynch et al. (2012) proposed a method for incor-

porating this information using a delta-generalized linear model

(delta-GLM), and showed that it can improve the estimation

accuracy of HMS relative abundance trends. The method is also

relatively insensitive to errors in estimates of longline fishing

depths, which is contrary to other methods that incorporate habi-

tat, such as habitat-based standardization (HBS; Hinton and

Nakano, 1996) and the statistical counterpart to HBS (statHBS;

Maunder et al., 2006). The HBS and statHBS approaches

have both demonstrated high sensitivity to model inputs, such

as estimates of longline fishing depth (Goodyear, 2003; Lynch

et al., 2012).

For fisheries stock assessments of Atlantic HMS, we are

unaware of any occasions where the relative abundance trends

used in the assessment incorporated detailed pelagic habitat

information. Here, we accounted for temperature regimes in the

application of delta-GLMs (some of which included mixed

effects; i.e. delta-GLMMs) to fisher logbook data from the US

pelagic longline fishery (USLL). These analyses resulted in new

abundance trends for 34 HMS (Table 1) in the Atlantic Ocean.

For comparison, we also analysed data collected by scientific

observers aboard pelagic longline fishing vessels (US Pelagic

Longline Observer Program). In general, relative abundance

trends for species caught in the USLL are estimated by US mem-

bers of the Standing Committee on Research and Statistics

(SCRS), a committee within the International Commission for

the Conservation of Atlantic Tunas (ICCAT). All of the 34 species

analysed fall under the management purview of ICCAT, either as

directly managed species or as bycatch species. However, not all

species managed by ICCAT have been formally assessed using

modern stock assessment methods. To our knowledge, only 13 of

the 34 species (38%) have been assessed (Table 1).

With the exception of the incorporation of pelagic habitat

fished, our relative abundance trends were estimated following an

approach used for yellowfin tuna (Thunnus ablacares) by the

SCRS (Walter, 2011). This framework represents the contempo-

rary approach used by the SCRS, so our trends can be compared

to those estimated by the SCRS with minimal concern over meth-

odological differences. The independent variables included in our

final models were objectively selected by considering the percent

of total deviance explained by each variable. This allowed us to

compare the importance of the temperature variables as related

to the variables normally considered by the SCRS. Finally, we

characterized general population trends by calculating instantane-

ous rates of change for each species. We used a flexible approach

to detect measurable changes in relative abundance trends

over time.

Methods
Fishery data
Relative abundance trends were generated for 34 HMS routinely

caught by the USLL (Table 1). Fisher logbook and observer data

for the USLL were obtained from the National Marine Fisheries

Service. The logbook data contain longline set-specific informa-

tion, including catches (numbers of individuals), effort (number

of hooks), gear configurations, dates, time, and spatial locations

(Figure 1). The primary target species of the USLL include sword-

fish (Xiphias gladius), yellowfin tuna, and bigeye tuna (Thunnus

obesus); however, bycatch rates in this fishery are relatively high,

particularly for sharks (Mandelman et al. 2008). While the USLL

covers a large portion of the distributions of most species ana-

lysed, fishing effort is largely focused along the US east coast. The

USLL in the early through mid-1970s was considered an

“underground” fishery, and initially used a gear configuration

similar to Japanese and Norwegian shark longline fisheries (Hoey

and Bertolino, 1988). Between 1978 and 1983, various gear modi-

fications occurred as the fishery evolved to using lighter monofi-

lament line with increased hook spacing and depth, and chemical

lightsticks. Other features of this fishery have been described in

detail by Hoey and Bertolino (1988).

While fishers continually adjust their practices, the logbook

and observer programs track this information on a set-by-set

basis, allowing catch rates to be analysed and interpreted accord-

ingly. The logbook program began in 1986, although data for that

year are incomplete; thus, our analyses use data beginning in

1987. The major gear changes described by Hoey and Bertolino

(1988) occurred before the start of the logbook program, so there

is not a need to address those shifts in this study; however, we do

account for the variety of fishing practices and time/area dynam-

ics observed since 1987. There have been several time-area

management measures imposed on the USLL, particularly

since 2000 (Mandelman et al. 2008; Walter, 2011). Our treatment

of the data, including data filtering is described in the

Supplementary data.

Oceanographic data
Detailed oceanographic data were necessary for generating esti-

mates of pelagic habitats fished. We designated temperature

regimes as habitats; therefore, we assigned each longline set a
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fixed temperature-at-depth profile. Ocean temperature profiles

were obtained from the National Oceanographic Data Center

(www.nodc.noaa.gov) using the World Ocean Atlas (WOA) data

series (Locarnini et al., 2010). These data were available as average

monthly temperature profiles following 1� latitude by 1� longi-

tude spatial resolution, covering a depth range of 0–1500 m

over variable increments. The climatologies were derived from

averaging decadal climatologies between 1955 and 2006

Table 1. Species for which abundance trends were generated using fisher logbook and pelagic longline observer program data from the USLL.

Speciesa Logbook Observer Species Logbook Observer

Swordfish, Xiphias gladius 256643 (99.6%) 17496 (100.0%) Silky shark, Carcharhinus falciformis 145539 (56.5%) 15333 (87.6%)
Yellowfin tuna, Thunnus albacares 255815 (99.3%) 17496 (100.0%) Bigeye thresher, Alopias superciliosus 141026 (54.8%) 17496 (100.0%)
Dolphinfish, Coryphaena hippurus 253666 (98.4%) — Dusky shark, Carcharhinus obscurus 137124 (53.2%) 15333 (87.6%)
Bigeye tuna, Thunnus obesus 243036 (94.4%) 17496 (100.0%) Blacktip shark, Carcharhinus limbatus 125346 (48.7%) 14460 (82.6%)
Wahoo, Acanthocybium solandri 233435 (90.6%) — Spearfishes, Tetrapturus spp. 105661 (41.0%) —
Blue marlin, Makaira nigricans 221178 (85.9%) — Sandbar shark, Carcharhinus plumbeus 108111 (42.0%) 14235 (81.4%)
Albacore tuna, Thunnus alalunga 225525 (87.6%) 17496 (100.0%) Oceanic whitetip shark, Carcharhinus

longimanus
95149 (36.9%) 15333 (87.6%)

White marlin, Kajikia albida 220633 (85.7%) — Skipjack tuna, Katsuwonus pelamis 97107 (37.7%) 15333 (87.6%)
Atlantic bluefin tuna, Thunnus thynnus 218430 (84.8%) 17292 (98.8%) Night shark, Carcharhinus signatus 71202 (27.6%) 14664 (83.8%)
Longfin mako, Isurus paucus 203654 (79.1%) 15333 (87.6%) Scalloped hammerhead, Sphyrna lewini 54493 (21.2%) 15129 (86.5%)
Blue shark, Prionace glauca 198479 (77.1%) 17496 (100.0%) Atlantic bonito, Sarda sarda 49258 (19.1%) —
Tiger shark, Galeocerdo cuvier 193050 (74.9%) 17496 (100.0%) Smooth hammerhead, Sphyrna zygaena 28920 (11.2%) 4072 (23.3%)
Hammerhead sharks, Sphyrna spp. 186753 (72.5%) 15333 (87.6%) White shark, Carcharodon carcharias 34393 (13.4%) —
Shortfin mako, Isurus oxyrinchus 186905 (72.6%) 17496 (100.0%) Spinner shark, Carcharhinus brevipinna 34608 (13.4%) 11773 (67.3%)
Blackfin tuna, Thunnus atlanticus 188078 (73.0%) — Porbeagle, Lamna nasus 16384 (6.4%) 5739 (32.8%)
Oilfish, Gempylidae spp. 173749 (67.5%) — Bignose shark, Carcharhinus altimus 13527 (5.3%) —
Sailfish, Istiophorus albicans 163142 (63.3%) —
Common thresher, Alopias vulpinus 166262 (64.5%) 11232 (87.6%)

The number and percent of logbook and observer records analysed (of a potential 257581 logbook and 17496 observer records) after filtering the data to
include only the regions and vessels with catch rates above predetermined thresholds. We did not have observer data for 11 of the species analysed. Species
highlighted in bold text are those for which stock assessments are known to have been previously conducted.
aIn addition to individual species, there were three species groups (i.e. identified to the genus level) included in the analyses: oilfish (Gempylidae spp.), spearfishes
(Tetrapturus spp.), and hammerhead sharks (Sphyrna spp.). We use “HMS” and “species” throughout to collectively refer to individual species and species groups.

Figure 1. Map of the distribution of longline sets (total number per cell) between 1987 and 2010 for the USLL in the northwest Atlantic
Ocean. The geographical regions used for classifying the fishery include the Caribbean Sea (CAR), Gulf of Mexico (GOM), Florida east coast
(FEC), south Atlantic bight (SAB), mid-Atlantic bight (MAB), north-east coastal (NEC), north-east distant waters (NED), Sargasso Sea (SAR),
and offshore waters (OFS).
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(Locarnini et al., 2010). For the rare instances where temperature

profiles were not available for a given combination of geographi-

cal location and month, the longline set record was removed

entirely (<2% of the logbook records).

Pelagic habitat variables
To incorporate pelagic habitat fished, estimates of longline fishing

depths and corresponding estimates of temperature at depth were

required (Lynch et al., 2012). See Supplementary data for a

description of the methods used to calculate longline hook

depths. Fishing depths for each longline set were related to tem-

perature at depth for the corresponding month and geographical

location of the set. Because temperatures were available at discrete

depths, the temperature at the depth closest to estimated fishing

depth was specified as the temperature fished for a given hook.

Following Lynch et al. (2012), temperatures fished were converted

to 1�C increments relative to surface temperature in the corre-

sponding time/space. The maximum deviation from sea surface

temperature (MaxDT), or deepest, coldest pelagic habitat fished,

was then assigned to each longline set as a single value (0�, . . .,
15�C) thereby characterizing the contrast in temperatures fished

for that set. For example, if surface water temperature is 25�C for

a given longline set, and the temperature associated with the

deepest hook fished in that set is 15�C, then the MaxDT factor

would have a value of 10�C for that set. In addition to MaxDT,

we evaluated a variable that characterized each longline set as the

minimum temperature fished (MinT) in that set. This variable

was specified as categorical with 5� temperature bins from 1�C to

30�C. In the example stated above, the MinT variable would have

a value of 15�C for that set. While MaxDT directly accounts for

the vertical distribution of the species being analysed, MinT

accounts for the distribution of the species geographically, as well

as vertically.

The inclusion of temperature regimes fished is a non-trivial

undertaking, but an important consideration. While temperature

is likely related to depth, the correlation between these variables

is not perfect due to dynamic ocean patterns. Furthermore, HMS

distributions and behaviour are more a function of temperature

than depth (Brill and Lutcavage, 2001). Thus, we concluded it

was crucial to estimate temperature regimes fished, rather than

depths, which would have been simpler.

The inclusion of these pelagic habitat variables represents the

primary difference between our study and prior estimates of rela-

tive abundance for Atlantic HMS. Making only one change in

methodology facilitated the comparison of results to previous

work; however, it is important to consider if these new variables

were correlated with any of the traditional variables (see Other

variables), which may confound the comparisons. Because these

habitat variables are included to account for potential biases due

to the temperature-driven vertical distribution of HMS in the

location of fishing, we conclude that the patterns in these varia-

bles are not captured by any of the traditional variables.

Other variables
A suite of additional explanatory variables was also considered in

the analyses. These variables were modelled as categorical factors,

and included Year (year in which the set occurred), Region (nine

geographical regions commonly used to classify the longline fish-

ery: Figure 1), Season (calendar quarters: January–March, April–

June, July–September, October–December), Lightstick (the ratio

of lightsticks per hook categorized with four levels: 0, >0–0.4,

>0.4–0.7, >0.7), hooks between floats (HBF) categorized with

seven levels (0–3, 4–6, 7–9, 10–15, 16–21, 22–29, 30þ), Time

(time at the beginning of the set: a.m., p.m., or unknown), and

Bait (type of bait used: live, dead, mixture, unknown). These vari-

ables are all thought to potentially affect catch rates of various

species encountered by the USLL (Walter, 2011).

Modelling framework
We used a two-stage delta-GLM approach for estimating relative

abundance trends (e.g. Aitchison, 1955; Lo et al., 1992;

Stefánsson, 1996; Maunder and Punt, 2004). A GLM is a linear

model that can accommodate non-normal error structure using a

link function to relate dependent and independent variables. The

delta-GLM (also referred to as a hurdle model) accounts for

zero-inflated data by combining two GLMs, one that models the

probability of observing a zero catch as a function of predictor

variables and a separate model of the non-zero catches. The

delta-GLM is represented as:

PrðY ¼ yÞ ¼
(

w y ¼ 0

ð1� wÞf ðyÞ otherwise
(1)

where w is the probability of observing a zero for the response

(CPUE) and f ðyÞ is a model of the mean of non-zero data

(CPUE). Accordingly, our abundance trends were determined by

combining two linear models, one of which modelled the pres-

ence/absence of a particular species as a linear function of explan-

atory variables, assuming a binomial error distribution (logit link

function). The second modelled CPUE, calculated as numbers of

individuals caught in a set per 1000 hooks. For this model, only

the records with a positive catch rate (i.e. CPUE> 0) were

included, and we assumed a lognormal error distribution by

using log(CPUE) as the response variable (identity link function).

For both models, explanatory variables and interaction terms

were modelled as fixed effects, with the exception of interaction

terms that included the Year variable, which were modelled as

random effects to facilitate deriving abundance estimates using

the year effects. Technically, when random effects were included,

delta-GLMMs were applied, but we use the term “GLM” generally

throughout to refer to our modelling framework.

Annual estimates of relative abundance were obtained by mul-

tiplying the probability of a positive catch rate (1 � w) in a given

year from the binomial GLM by the mean CPUE in that same

year from the lognormal GLM. The probability of a positive catch

was calculated as the back-transformed mean probabilities for

each year, predicted when all factors other than Year were set to

their mode level (Maunder and Punt, 2004). Mean CPUE for

each year was calculated as back-transformed year means adjusted

by an infinite series lognormal bias correction (Lo et al., 1992),

and standard errors of the annual abundance estimates were cal-

culated using the delta method (Seber, 1982; Lo et al., 1992).

Model selection
We based the selection of variables to include in our component

GLMs on percent deviance explained with a threshold for inclu-

sion of 5%. This mimics the approach commonly used when esti-

mating relative abundance trends for HMS (Ortiz and Arocha,

2004; Walter, 2011; Supplementary data). By incorporating our
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temperature variables (MaxDT, MinT) into the established

approach to model selection, we evaluated the importance of

these variables relative to other variables commonly considered in

these analyses. We considered all first-order interaction terms in

our model selection exercise, but observed increasing model

instability when multiple interaction terms were included. Thus,

our final models only incorporated the interaction term that

explained the highest percent of the total deviance (if the percent

explained exceeded at least 5%).

General patterns
We used linear regression as a simple approach to characterizing

the general patterns observed in our relative abundance trends

(e.g. increasing/decreasing). Each trend was scaled to have a

mean of one, and the general direction over time was estimated

by regressing scaled relative abundance on Year (treated as a

continuous variable). In addition to standard linear regression,

we modelled each trend using piecewise, or segmented, regression

with one breakpoint. We then used Akaike’s Information

Criterion, corrected for small sample size (Burnham and

Anderson, 2002) to select between standard and segmented

regression models. This provided an objective characterization of

the general pattern in abundance as being either unidirectional

over time, or one that exhibited a change in direction. There may

have been cases where trends could have been characterized by

more than two segments, but to avoid overparameterization, we

did not fit these more complex models.

The slope parameters from the regression models represent

instantaneous rates of change, and these were extracted for mak-

ing comparisons across species. There were either one or two

slope parameters for each species, depending on whether the

standard or segmented regression model was selected for describ-

ing the abundance trend. We characterized the populations as sta-

ble over time when the slopes were not significantly different

from zero, but when significantly positive or negative, we consid-

ered the populations to be increasing or decreasing, respectively.

All quantitative analyses were implemented using the statistical

programming language R (R Core Team, 2016).

Results
The USLL spatial coverage in the Atlantic Ocean can be charac-

terized as broad with areas of concentrated fishing effort

(Figure 1). Due to our data filtering technique (Supplementary

data), we analysed a different number of USLL logbook records

for each of the 34 HMS included in this study (Table 1). Observer

data were not available for all species (Table 1), but when ana-

lysed, the number of available observer records was filtered by

region (not by historical catches per vessel as with logbook

records—Supplementary data). Species with more catch records

(after data filtering was applied) tended to have a higher fre-

quency of occurrence in the fishery (Figure 2a), but with the

exception of swordfish and yellowfin tuna, positive catches were

less frequent than catches equal to zero. Thus, most species we

analysed were rarely encountered by the fishery. While our

models accounted for excessive zeros in the data, the ability to

infer population trajectories for rarely encountered species may

be limited.

A wide variety of model structures was selected for the bino-

mial and positive catch component models of the delta-GLMs

(Supplementary Tables S1–S34). According to our selection

criteria (at least 5% of total deviance explained by the variable),

the MinT habitat variable was selected for the binomial

and/or positive models for almost every species (Figure 2c,

Supplementary Tables S1–S35). This suggests that MinT

explained a substantial amount of the variability in the catch rates

of target and incidentally captured species of the USLL. For sev-

eral species, MinT explained 50–60% of the total deviance.

In addition to MinT, we evaluated MaxDT; however, this vari-

able explained greater than 5% of the total deviance for only five

species (wahoo, blackfin tuna, Atlantic bonito, white marlin, and

night shark), and in these cases, the percent explained was only

slightly above the threshold for inclusion (Figure 2b). Overall,

at least one of our pelagic habitat variables was important to

include when estimating abundance trends for all but five species

(yellowfin tuna, swordfish, spinner shark, white shark, and

bignose shark).

Estimates of MinT explained substantial variability sur-

rounding observed CPUE, and visualizing the influence of this

variable on species-specific catch rates highlights behavioural

patterns (Figure 3). Encounter rates (proportion of sets with

positive CPUE) and median positive catch rates both exhibited

variability across estimates of MinT. The highest encounter

rates and median positive CPUE values were observed for

swordfish and blue sharks when the coldest habitats were fished.

In fact, the highest overall median CPUE corresponded with

blue sharks at approximately 50 sharks per 1000 hooks. Other

species with higher catch rates in cooler habitats include bluefin

tuna, shortfin mako, hammerhead sharks, and porbeagle. The

encounter rates of swordfish and yellowfin tuna (two important

target species of this fishery) exhibited opposing gradients in

response to MinT, with the highest rates for yellowfin tuna

occurring when the warmest habitats were fished. Along with

yellowfin tuna, wahoo, blackfin tuna, oilfish, skipjack tuna,

dolphinfish, the billfishes (excluding swordfish), tiger shark,

thresher sharks, and night shark had higher encounter and

catch rates in the warmer habitats.

The majority of our relative abundance trends declined over

the time series (Figure 4, Supplementary Tables S1–S35); how-

ever, the magnitude of change was highly variable. For instance,

the declines observed for the primary target species, swordfish

and yellowfin tuna, were much less severe than those observed for

many of the sharks. When compared with relative abundance

trends estimated from observer program data (Supplementary

Figure S3), observer trends were more variable than those esti-

mated from logbook data. Logbook and observer trends exhibited

significant positive correlations for 57% of species (13 of the 23

species for which observer data were analysed). We also com-

pared relative abundance trends estimated from logbook data

to those previously estimated by the SCRS (Supplementary

Figure S4), and 79% of these trends were significantly positively

correlated.

General relative abundance patterns were characterized using

either continuous or piecewise linear trends (Figure 4). Linear

trends from the logbook analyses were compared with those esti-

mated from observer data (Supplementary Figure S5), and in

general, directionality was consistent across data sets, with

obvious exceptions for blue shark, porbeagle, common thresher,

scalloped hammerhead, smooth hammerhead, night shark, and

spinner shark. As a measure of precision, the median of the

annual coefficients of variation (MCV) was calculated for each

relative abundance trend (Figure 4). According to MCV, eight
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(24%) of the trends were estimated with poor precision

(i.e. MCV> 1), suggesting that the annual estimates of relative

abundance for these particular trends should be interpreted with

caution.

We further characterized relative abundance trends using

instantaneous rates of change estimated from the logbook

(Figure 5) and observer (Supplementary Figure S6) analyses.

Strongly negative rates were most prevalent early in the time series,

particularly for sharks, but most species with steep initial declines

in abundance have either stabilized or are experiencing less severe

declines in recent years. Eight patterns in instantaneous rates of

change emerged from the logbook analyses: (1) decreasing (nega-

tive) throughout, (2) decreasing then stable (not significantly dif-

ferent from zero), (3) decreasing then increasing (positive), (4)

stable throughout, (5) stable then increasing, (6) increasing

throughout, (7) increasing then stable, and (8) increasing then

decreasing. A summary of these patterns (Table 2) indicated that

approximately 71% of HMS analysed are either decreasing in

recent years or have decreased without evidence of recovery (pat-

terns 1, 2, and 5), while 29% exhibited other, more favourable

trends (patterns 3, 4, and 6–8). These patterns were also summar-

ized according to taxonomic grouping (Table 2), which empha-

sized that relative abundance trends are generally more favourable

for tunas than for either billfishes or sharks. For tunas, 67% of the

species fell into the favourable categories, whereas 20% of billfishes

and 16% of shark species followed favourable patterns.

Discussion
In this study we estimated relative abundance trends (1987–2013)

for 34 HMS in the western Atlantic Ocean using an approach that
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Figure 2. Number of logbook records analysed (a), including proportion of positive catch records for species captured in the USLL. Also, the
percent of the total deviance explained by the habitat factors MaxDT (b), and MinT (c) for analysis of presence/absence of a given species
(Binomial) or the positive catch records (Positive). The deviance threshold used for determining inclusion of the variable in the final model
(5%) was provided for reference (black line).
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accounts for pelagic habitat fished. This represents one of the

most comprehensive analyses of HMS to date, and the individual

species trends offer a variety of potential benefits. For the species

that have previously been assessed by ICCAT (Table 1), our

trends are useful in a comparative sense, because where available,

stock assessment results should serve as the primary basis for

understanding stock status and trends in abundance. However,

our methodology may result in more accurate indices of relative

abundance from the USLL fleet, which may improve the stock

assessments of these species if our trends are incorporated. For

the species that are not regularly assessed, including dolphinfish,

wahoo, blackfin tuna, oilfish, spearfishes, and several sharks, we

provide first-ever, or updated abundance trends that may well

represent the best current understanding of their abundance

trends. Overall, USLL abundance trends indicate population

declines of varying degrees without noticeable recovery for most

HMS analysed (71% of the species).

Declines in relative abundance of large predatory fishes have been

cited as evidence of a global fisheries crisis (Jackson et al., 2001;

Baum et al., 2003; Myers and Worm, 2003; Worm et al., 2006;

Myers et al., 2007; Ferretti et al., 2008). While these studies have gar-

nered considerable attention from the media, general public, and sci-

entific community, many have been criticized for analytical flaws,

some of which may have been critical to the conclusions (Walters,

2003; Burgess et al., 2005; Hampton et al., 2005; Polacheck, 2006;

Wilberg and Miller, 2007). Examples of common criticisms include

the use of aggregated CPUE (Walters, 2003), a failure to consider

USLL observer data (Burgess et al., 2005), and ignoring habitat, ver-

tical distributions, and other factors that can bias trends in fishery

CPUE (Burgess et al., 2005; Hampton et al., 2005; Polacheck, 2006).

In our study, we did not aggregate CPUE across species or spatial

cells, we included an analysis of USLL observer data, and we consid-

ered a full suite of variables (including habitats fished) that

have been hypothesized to potentially bias CPUE trends. We fully

recognize the difficulty in inferring population trends from fishery

data, but given that there are no scientific monitoring programs

operating at the population scale, fisheries offer the best available

information. Thus, we have been careful to address many of the

concerns associated with estimating relative abundance trends using

fishery data.
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Figure 3. Catch rates (CPUE) by species from the USLL, presented as the proportion of positive catches (a) and the median of the positive
catches (b) observed in 5�C temperature bins corresponding with the estimated minimum temperature fished per set.
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Using USLL-derived indices of abundance, we observed sub-

stantial declines for many species; however, complete extirpation

of all large predators does not appear imminent unless several

abundance trends suddenly decline. Approximately ten species

(29%) did not show a statistically significant negative trend in rela-

tive abundance over the past several years (albacore tuna, bluefin

tuna, blackfin tuna, wahoo, oilfish, Atlantic bonito, spearfishes,

tiger shark, shortfin mako, and porbeagle), and some stocks

showed signs of growth or recovery. It should be noted that while

not statistically significant, shortfin mako and porbeagle appear to

be declining in relative abundance. In contrast, if recent increases

in blue shark relative abundance continue, we anticipate that our

analyses would identify a favourable change (i.e. significantly posi-

tive instantaneous rate of change) starting around 2005. While our

results indicate that many HMS have declined in abundance over

time, the species that exhibited favourable patterns suggest that

either the purported demise of marine predators was overly pessi-

mistic, or that some of these species began to rebuild since the ear-

lier studies were conducted (we suspect both explanations to be

true). The range of relative abundance patterns observed in this

study support the conclusions of Worm et al. (2009), who, in a

comprehensive analysis of global marine ecosystems, described a

combination of overexploited and recovering fish stocks. Changes

in fishing pressure, due to management actions or socio-economic
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dynamics, are likely a strong driver of HMS abundance, but across

all 34 species analysed, it would be very challenging to disentangle

fishing effects from other potential drivers, such as climate change,

environmental variability, and predator-prey dynamics.

The data used for our analyses comprise one of the best sour-

ces available for making inferences about HMS relative abun-

dance in the Atlantic Ocean (Baum et al., 2003). Pelagic longline

fisheries typically cover a wide geographic range, and they have

been operating in the Atlantic Ocean since the 1950s (Majkowski,

2007). Longline fleets from nations with a long-term presence in

the Atlantic (e.g. Japan and Taiwan) are also potentially valuable

sources of data for evaluating HMS abundance; however, to

account for changing fishery dynamics, information about fishing

practices must be available. When recorded, this information is

often considered proprietary, and therefore can be difficult to

obtain. We analysed fisher logbook data from the USLL, which

includes detailed set-specific information concerning fishery

dynamics. We encourage similar studies using pelagic longline

data from other nations, such as Japan, if reliable data on fishing

practices are available. Analyzing data from fisheries with longer

time series may be most beneficial, because the first complete year

of USLL logbook records was 1987, and relative abundance in the

first year of our time series may have already been reduced fol-

lowing years of intense fishing pressure.

In general, stock assessments (Quinn and Deriso, 1999) that

integrate multiple sources of information (including relative
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Figure 5. Instantaneous rates of change in relative abundance 695% confidence intervals. A single or initial rate of change is presented for
each species (�), and a second, more recent rate of change is presented for species where piecewise regression outperformed simple linear
regression (�).

Table 2. Patterns observed for instantaneous rates of change in
abundance estimated from the logbook analyses, presented as the total
number and percent of species analysed corresponding to each pattern.

Pattern All Tunas Billfish Sharks

1. Decreasing 9 (26.5%) 2 (22.2%) 1 (20.0%) 6 (31.6%)
2. Decreasing then stable 14 (41.2%) 1 (11.1%) 3 (60.0%) 10 (52.6%)
3. Decreasing then increasing 2 (5.9%) 2 (11.1%) 0 (0.0%) 0 (0.0%)
4. Stable 2 (5.9%) 2 (11.1%) 0 (0.0%) 0 (0.0%)
5. Stable then increasing 2 (5.9%) 0 (0.0%) 1 (20.0%) 1 (5.3%)
6. Increasing 1 (2.9%) 1 (11.1%) 0 (0.0%) 0 (0.0%)
7. Increasing then stable 3 (5.7%) 1 (11.1%) 0 (0.0%) 2 (10.5%)
8. Increasing then decreasing 1 (2.9%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

Patterns were summarized for all HMS analysed, tunas (Suborder:
Scombroidei), billfish (Suborder: Xiphiodei), and sharks (Superorder:
Euselachii). The single increasing then decreasing trend is associated with
dolphinfish.
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abundance trends) provide a more complete evaluation of fish

stock dynamics than simple trend analyses. For the few species

that have been assessed, management decisions should be (and

are) based on assessment results rather than fishery-derived rela-

tive abundance trends; however, our trends have the novelty of

adjusting for exploited habitats and may be useful in future stock

assessments.

Relative abundance trends previously estimated using logbook

data from the USLL are available for species that have been

assessed in a fishery stock assessment context or by individual

research projects (e.g. Baum et al., 2003). Our relative abundance

trends are not completely divergent from those previously esti-

mated for stock assessments, and they extend the estimates

beyond the final year of the earlier time series (Supplementary

Figure S4). We observed that previous relative abundance trajec-

tories have continued for many species, while the direction of

others has reversed (mainly those that exhibited signs of popula-

tion growth in recent years). The relative abundance trends we

estimated for swordfish and skipjack tuna are in contrast with

previous estimates used in stock assessments. We showed a

declining, rather than stable swordfish relative abundance over

time, and we did not observe a sudden increase in skipjack tuna

relative abundance as previously shown. An analysis of USLL

observer data by Baum and Blanchard (2010) estimated relative

abundance trends for many of the same shark species we ana-

lysed. Although Baum and Blanchard (2010) aggregated several of

the shark species and conducted analyses at the genus or species

group level, our estimated trends (Supplementary Figure S3)

were similar to theirs through 2005 (the final year of data ana-

lysed by Baum and Blanchard [2010]).

When comparing and evaluating relative abundance trends for

individual species, the population biology and fishery data collec-

tion for that species should be considered. For instance, estimates

of relative abundance used in recent swordfish stock assessments

relied on fishery weigh-out data to compute catches by age, and

then aggregated catches over ages 3–10. We did not have weigh-

out data available for our analyses, nor did we attempt to parti-

tion catches by age. Also, regulatory effects were considered when

analysing the swordfish weigh-out data, and we did not explicitly

consider species-specific regulations. These methodological dif-

ferences between our analysis and the swordfish stock assessment

may explain the divergent abundance trends. For billfishes, pri-

marily white marlin, the recent validation of roundscale spearfish

(Tetrapturus georgii) as a species (Shivji et al., 2006) may have

affected catch reporting accuracy by shifting catches that were

historically reported as “white marlin” and other billfishes to

“spearfishes.” Abundance trends used in previous Atlantic bluefin

tuna stock assessments were estimated using only records from

the Gulf of Mexico during January–May (NMFS, 1993), yet we

used data throughout the year.

There are also important considerations concerning the use of

USLL logbook data to make inferences about the relative abun-

dance of sharks (although these concerns may not apply to blue

and shortfin mako sharks). Burgess et al. (2005) discussed regula-

tory changes in 1993 that might have contributed to false declines

in catch rates of some sharks; however, we note that many of the

shark species we analysed exhibited declines before 1993.

Additional issues noted by Burgess et al. (2005) that may contrib-

ute significant errors to the logbook database include misidentifi-

cation, errors in reporting, and failure to record bycatch species.

However, random errors in identification and data recording are

much less problematic than an unaccounted sudden change or

systematic pattern in data recording. Although, for some species,

such as white shark (Carcharadon carcharias), errors in the data

may be substantial enough to make our relative abundance trends

uninformative (most recorded white shark catches are likely the

result of misidentification; Burgess et al., 2005). Fishery observer

data likely contain fewer issues related to misidentification or

errors in reporting. Thus, positive correlations between abun-

dance trends estimated from logbook data and those based on

fishery observer data provide a degree of validation for 57% of

the stocks with observer data (Supplementary Figure S3). For spe-

cies with divergent logbook and observer trends, the trends based

on logbook data should be interpreted with caution. Also, we rec-

ommend additional work to compare logbook and observer data

collected on the same trip.

Catches observed in relation to the MinT habitat variable

(Figure 3) highlight the expected result that exploited pelagic

habitats (which are a function of gear configuration, fishing loca-

tion, and environmental conditions) largely govern the composi-

tion of species encountered. This conclusion provides strong

support for including a temperature variable in models designed

to estimate HMS relative abundance trends. Furthermore, the

incorporation of pelagic habitat fished allows a post-hoc evalua-

tion of the role of pelagic habitat on HMS catches. For instance,

blue sharks exhibited a higher encounter rate when cooler habi-

tats were fished. This is not necessarily surprising (Cortés et al.,

2007); however, when the fishery exploited the absolute coldest

habitat (1–5�C) and blue sharks were encountered, their catch

rates were higher than those for any other species caught by the

fishery. Because blue sharks are a bycatch species in the USLL

fishery, managers could use this information to impose time-area

restrictions on certain gear configurations to avoid fishing the

coldest habitat and possibly reduce overall bycatch of blue sharks.

Evaluating habitat-specific catch rates would not only be useful

for blue sharks, but potentially for all species analysed, especially

those with high catch rates in specific habitats (e.g. shortfin mako

shark, hammerhead sharks, sandbar shark, spinner shark, porbea-

gle, and bignose shark). Many shark species are particularly vul-

nerable to overfishing due to their relatively low fecundity, slow

growth rates, and late maturity (Musick et al. 2000), and in fact,

various stocks of scalloped hammerhead sharks are listed as either

threatened or endangered under the Endangered Species Act

(http://www.nmfs.noaa.gov/pr/species/esa/listed.htm#fish). Thus,

our habitat-specific catch rates may facilitate conservation of

many sharks and other species that are vulnerable to overfishing.

The pelagic habitat variables explained a relatively small

amount of variance in catch rates of the primary target species,

such as swordfish and yellowfin tuna (Figure 2). One explanation

for this result is that, in order to maximize catch rates, fishermen

purposefully deploy gear in the preferred habitats of their target

species. Thus, variation in target species catch rates may be more

related to changes in abundance and targeting practices than

habitat-driven availability. For bycatch species, however, fisher-

men are not seeking to maximize their catch rates, and overlaps

between fishing effort and their distributions are less frequent

and likely more driven by incidentally fishing in their preferred

habitats.

The relative lack of importance of MaxDT was unexpected

considering the results of a simulation study conducted by Lynch

et al. (2012); however, that study was based on the dynamics of

the Japanese pelagic longline fishery. The Japanese fishery has
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substantially changed fishing practices over time, resulting in

strong contrast in pelagic habitats exploited. The USLL has also

exhibited systematic changes in fishing practices over the time

period we analysed, but these changes did not occur on the tem-

poral and spatial scales of the Japanese fishery. This does not sug-

gest that relative temperature is not an important factor

governing the population dynamics of HMS, but rather that the

minimal contrast observed in MaxDT precludes it from explain-

ing considerable variability in USLL catch rates. We maintain

that future efforts to estimate relative abundance trends from

HMS fishery data consider both MinT and MaxDT in model

development.

Several of our relative abundance trends were not estimated

with high precision, and this uncertainty should be kept in mind

when interpreting the patterns. In some cases, the inclusion of

temperature variables may have increased uncertainty in relation

to relative abundance trends previously estimated without these

variables. However, increased uncertainty would be a poor justifi-

cation for ignoring important dynamics, such as pelagic habitat

fished, and in fact, our results suggest that pelagic habitat varia-

bles can explain substantial variability in HMS catch rates.

Empirical evidence highlights the importance of temperature in

governing HMS vertical distributions (Brill and Lutcavage, 2001),

and our modelling exercises can be useful for understanding how

HMS catch rates may respond to ocean dynamics. By including

the temperature variables, our analyses may have placed a higher

value on accuracy than precision, but we encourage that future

studies seek to reduce uncertainty while maintaining the consid-

eration of pelagic habitat. Also, to improve the characterization

of habitats fished, we encourage enhanced sampling of oceano-

graphic variables during fishing operations to be recorded in log-

books and by fishery observers.

In addition to precision, several underlying model assump-

tions warrant attention. For instance, to estimate the tempera-

ture fished in each longline set, we assumed that all sections of

the gear were distributed identically throughout the water col-

umn. This is unlikely, because longline fishing depth is governed

by numerous dynamic processes, including wind, hydrodynam-

ics, and the behaviour of hooked organisms (Bigelow et al.,

2006; Ward and Myers, 2006; Rice et al., 2007). Also, by relating

fishing depth to temperature using average ocean temperatures

we ignored interannual variability in temperature at depth for a

given time and location. However, one benefit of ignoring inter-

annual variability is that our analyses were not confounded by

potential changes in stock productivity related to changing

ocean temperature; rather, our temperature variables accounted

for changes in availability due to monthly ocean dynamics.

In the broader context of improving relative abundance esti-

mates, future analyses might consider additional environmental

factors, such as the oxygen minimum zone (Prince et al., 2010),

or other statistical treatments of spatio-temporal data (e.g.

Thorson et al., 2015).

Despite potential caveats, we believe this study advances the

methodology for deriving fishery-dependent indices of abun-

dance from HMS longline fisheries. Our habitat variables gener-

ally explained a substantial amount of deviation in catch rates.

Thus, we recommend that these variables be considered in future

stock assessments that incorporate estimates of relative abun-

dance from longline catch rates. Further, the results of this study

can help inform discussions about the health of global fisheries,

particularly for species that are not regularly assessed. Overall,

we observed a mixture of declining, stable, and increasing trends

in relative abundance, which indicates that global fisheries are not

likely following a unidirectional pattern. However, in general

terms, declines observed for bycatch species were more severe

than those for target species. This may suggest that bycatch spe-

cies of HMS fisheries are more susceptible to overfishing than tar-

get species. With this challenge in mind, the habitat-specific catch

rates we observed (Figure 3) may serve as a valuable management

tool for reducing fishing pressure on bycatch species.

Supplementary data
Supplementary material is available at the ICESJMS online ver-

sion of the manuscript.

Acknowledgements
We thank R. Ahrens, L. Beerkircher, T. Boyer, K. Erickson, T.

Gedamke, D. Gloeckner, K. Keene, and K. Logan for help

obtaining data; we thank R. Bell, C. Brown, J. Brubaker, A.

Buchheister, C. Cotton, J. Graves, T. Miller, K. Parsons, J.

Walter, and C. Wor for assistance in developing this manu-

script; and we thank K. Andrews, M. Lauretta, and anonymous

reviewers for comments on earlier versions. Funding was pro-

vided by the National Oceanic and Atmospheric Administration

(NA09OAR4170119). This is Virginia Institute of Marine

Science contribution number 3715. The views expressed are

those of the authors, and do not necessarily represent findings

or policy of any government agency.

References
Aitchison, J. 1955. On the distribution of a positive random variable

having a discrete probability mass at the origin. Journal of the
American Statistical Association, 50: 901–908.

Baum, J. K., and Blanchard, W. 2010. Inferring shark population
trends from generalized linear mixed models of pelagic longline
catch and effort data. Fisheries Research, 102: 229–239.

Baum, J. K., Myers, R. A., Kehler, D. G., Worm, B., Harley, S. J., and
Doherty, P. A. 2003. Collapse and conservation of shark popula-
tions in the northwest Atlantic. Science, 299: 389–392.

Bigelow, K. A., and Maunder, M. N. 2007. Does habitat or depth
influence catch rates of pelagic species? Canadian Journal of
Fisheries and Aquatic Sciences, 64: 1581–1594.

Bigelow, K., Musyl, M. K., Poisson, F., and Kleiber, P. 2006. Pelagic
longline gear depth and shoaling. Fisheries Research, 77: 173–183.

Brill, R., and Lutcavage, M. 2001. Understanding environmental
influences on movements and depth distributions of tunas and
billfishes can significantly improve stock assessments. In Island in
the Stream: Oceanography and Fisheries of the Charleston Bump,
Pp. 179–198. Ed. by G. R. Sedberry. American Fisheries Society,
Bethesda, Maryland. 240 pp.

Burgess, G. H., Beerkircher, L. R., Cailliet, G. M., Carlson, J. K.,
Cortés, E., Goldman, K. J., and Grubbs, R. D. 2005. Is the collapse
of shark populations in the northwest Atlantic Ocean and Gulf of
Mexico real? Fisheries, 30: 19–26.

Burnham, K. P., and Anderson, D. R. 2002. Model Selection and
Multimodel Inference: A Practical Information-Theoretic
Approach, 2nd edn. Springer-Verlag, New York, NY. 488 pp.

Cortés, E., Brown, C. A., and Beerkircher, L. R. 2007. Relative abun-
dance of pelagic sharks in the western North Atlantic Ocean,
including the Gulf of Mexico and Caribbean Sea. Gulf and
Caribbean Research, 19: 37–52.

Ferretti, F., Myers, R. A., Serena, F., and Lotze, H. K. 2008. Loss of
large predatory sharks from the Mediterranean Sea. Conservation
Biology, 22: 952–964.

Atlantic highly migratory species relative abundance 1437

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/75/4/1427/4840572 by guest on 13 Septem
ber 2022

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsy008#supplementary-data


Goodyear, C. P. 2003. Tests of the robustness of habitat-standardized
abundance indices using simulated blue marlin catch-effort data.
Marine and Freshwater Research, 54: 369–381.

Hampton, J., Sibert, J. R., Kleiber, P., Maunder, M. N., and Harley, S.
J. 2005. Fisheries: decline of Pacific tuna populations exaggerated?
Nature, 434: E1–E2.

Hinton, M. G., and Nakano, H. 1996. Standardizing catch and effort
statistics using physiological, ecological, or behavioral constraints
and environmental data, with an application to blue marlin
(Makaira nigricans) catch and effort data from Japanese longline
fisheries in the Pacific. Inter-American Tropical Tuna
Commission Bulletin, 21: 171–200.

Hoey, J. J., and Bertolino, A. 1988. Review of the U.S. fishery for
swordfish, 1978 to 1986. Collective Volume of Scientific Papers
ICCAT, 27: 256–266.

Jackson, J. B. C., Kirby, M. X., Berger, W. H., Bjorndal, K. A.,
Botsford, L. W., Bourque, B. J., and Bradbury, R. H. 2001.
Historical overfishing and the recent collapse of coastal ecosys-
tems. Science, 293: 629–638.

Lo, N. C. H., Jacobson, L. D., and Squire, J. L. 1992. Indices of rela-
tive abundance from fish spotter data based on delta-lognormal
models. Canadian Journal of Fisheries and Aquatic Sciences, 49:
2515–2526.

Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P., Garcia,
O. K., Baranova, O. K., and Zweng, M. M. 2010. World Ocean
Atlas 2009, Volume 1: temperature. In NOAA Atlas NESDIS 68.
Ed. by S. Levitus. U.S. Government Printing Office, Washington,
DC. 184 pp.

Lynch, P. D., Graves, J. E., and Latour, R. J. 2011. Challenges in the
assessment and management of highly migratory bycatch species:
a case study of the Atlantic marlins, pp. 197–225. In Sustainable
Fisheries: Multi-Level Approaches to a Global Problem. Ed. by W.
W. Taylor, A. J. Lynch, and A. J. Schechter. American Fisheries
Society, Bethesda, MD.

Lynch, P. D., Shertzer, K. W., and Latour, R. J. 2012. Performance of
methods used to estimate indices of abundance for highly migra-
tory species. Fisheries Research, 125-126: 27–39.

Majkowski, J. 2007. Global fishery resources of tuna and tuna-like
species. FAO Fisheries Technical Paper 483. Food and Agriculture
Organization of the United Nation, Rome. 54 pp.

Mandelman, J. W., Cooper, P. W., Werner, T. B., and Lagueux, K. M.
2008. Shark bycatch and depredation in the U.S. Atlantic pelagic
longline fishery. Reviews in Fish Biology and Fisheries, 18:
427–442.

Maunder, M. N., Hinton, M. G., Bigelow, K. A., and Langley, A. D.
2006. Developing indices of abundance using habitat data in a
statistical framework. Bulletin of Marine Science, 79: 545–559.

Maunder, M. N., and Punt, A. E. 2004. Standardizing catch and effort
data: a review of recent approaches. Fisheries Research, 70:
141–159.

Musick, J. A., Burgess, G. H., Camhi, M., Cailliet, G., and Fordham, S.
2000. Management of sharks and their relatives (Elasmobranchii).
Fisheries, 25: 9–13.

Myers, R. A., Baum, J. K., Shepherd, T. D., Powers, S. P., and
Peterson, C. H. 2007. Cascading effects of the loss of apex preda-
tory sharks from a coastal ocean. Science, 315: 1846–1850.

Myers, R. A., and Worm, B. 2003. Rapid worldwide depletion of
predatory fish communities. Nature, 423: 280–283.

NMFS (National Marine Fisheries Service). 1993. Fishery manage-
ment plan for sharks of the Atlantic Ocean. National Oceanic and
Atmospheric Administration, Silver Spring, MD.

Ortiz, M., and Arocha, F. 2004. Alternative error distribution models
for standardization of catch rates of non-target species from a
pelagic longline fishery: billfish species in the Venezuelan tuna
longline fishery. Fisheries Research, 70: 275–297.

Polacheck, T. 2006. Tuna longline catch rates in the Indian Ocean:
did industrial fishing result in a 90% rapid decline in the abun-
dance of large predatory species? Marine Policy, 30: 470–482.

Prince, E. D., Luo, J., Goodyear, C. P., Hoolihan, J. P., Snodgrass, D.,
Orbesen, E. S., Serafy, J. E., et al. 2010. Ocean scale hypoxia-based
habitat compression of Atlantic istiophorid billfishes. Fisheries
Oceanography, 19: 448–462.

Quinn, T. J., and Deriso, R. B. 1999. Quantitative Fish Dynamics.
Oxford University Press, Oxford. 212 pp.

R Core Team. 2016. R: a language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna,
Austria. Available at http://www.R-project.org/.

Rice, P. H., Goodyear, C. P., Prince, E. D., Snodgrass, D., and Serafy,
J. E. 2007. Use of catenary geometry to estimate hook depth
during near-surface pelagic longline fishing: theory versus prac-
tice. North American Journal of Fisheries Management, 27:
1148–1161.

Seber, G. A. F. 1982. The Estimation of Animal Abundance and
Related Parameters, 2nd edn. Oxford University Press, New York.
654 pp.

Shivji, M. S., Magnussen, J. E., Beerkircher, L. R., Hinteregger, G.,
Lee, D. W., Serafy, J. E., and Prince, E. D. 2006. Validity, identifi-
cation, and distribution of the roundscale spearfish, Tetrapturus
georgii (Teleostei: istiophoridae): morphological and molecular
evidence. Bulletin of Marine Science, 79: 483–491.

Stefánsson, G. 1996. Analysis of groundfish survey abundance data:
combining the GLM and delta approaches. ICES Journal of
Marine Science, 53: 577–588.

Thorson, J. T., Shelton, A. O., Ward, E. J., and Skaug, H. J. 2015.
Geostatistical delta-generalized linear mixed models improve pre-
cision for estimated abundance indices for West Coast ground-
fishes. ICES Journal of Marine Science, 72: 1297–1310.

Walter, J. 2011. Standardized catch rate in number and weight of yel-
lowfin tuna (Thunnus albacares) from the United States pelagic
longline fishery 1987–2010. Collective Volume of Scientific Papers
ICCAT, 68: 915–952.

Walters, C. 2003. Folly and fantasy in the analysis of spatial catch rate
data. Canadian Journal of Fisheries and Aquatic Sciences, 60:
1433–1436.

Ward, P. J., and Myers, R. A. 2006. Do habitat models accurately
predict the depth distribution of pelagic fishes? Fisheries
Oceanography, 15: 60–66.

Wilberg, M. J., and Miller, T. J. 2007. Comment on “Impacts of bio-
diversity loss on ocean ecosystem services”. Science, 316: 1285b.

Worm, B., Barbier, E. B., Beaumont, N., Duffy, J. E., Folke, C.,
Halpern, B. S., Jackson, J. B. C., et al. 2006. Impacts of biodiver-
sity loss on ocean ecosystem services. Science, 314: 787–790.

Worm, B., Hilborn, R., Baum, J. K., Branch, T. A., Collie, J. S.,
Costello, C., Fogarty, M. J., et al. 2009. Rebuilding global fisheries.
Science, 325: 578–585.

Handling editor: Manuel Hidalgo

1438 P. D. Lynch et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/75/4/1427/4840572 by guest on 13 Septem
ber 2022

http://www.R-project.org/

	fsy008-TF1
	fsy008-TF2
	fsy008-TF3

