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Early lessons in deploying cameras and artificial intelligence
technology for fisheries catch monitoring: where machine
learning meets commercial fishing
M. Rizwan Khokher, L. Richard Little, Geoffrey N. Tuck, Daniel V. Smith, Maoying Qiao, Carlie Devine,
Helen O’Neill, John J. Pogonoski, Rhys Arangio, and DadongWang

Abstract: Electronic monitoring (EM) is increasingly used to monitor catch and bycatch in wild capture fisheries. EM video
data are still manually reviewed and adds to ongoing management costs. Computer vision, machine learning, and artificial
intelligence-based systems are seen to be the next step in automating EM data workflows. Here we show some of the
obstacles we have confronted and approaches taken as we develop a system to automatically identify and count target and
bycatch species using cameras deployed to an industry vessel. A Convolutional Neural Network was trained to detect and
classify target and bycatch species groups, and a visual tracking system was developed to produce counts. The multiclass de-
tector achieved a mean average precision of 53.42%. Based on the detection results, the visual tracking system provided
automatic fish counts for the test video data. Automatic counts were within two standard deviations of the manual counts
for the target species and most times for the bycatch species. Unlike other recent attempts, weather and lighting conditions
were largely controlled by mounting cameras under cover.

Résumé : La surveillance électronique (SE) est de plus en plus utilisée pour surveiller les prises et prises accessoires dans les
pêches de capture. Les données vidéo de SE sont toujours traitées manuellement, rehaussant les coûts de gestion. Des sys-
tèmes basés sur la vision artificielle, l’apprentissage automatique et l’intelligence artificielle devraient constituer la pro-
chaine étape de l’automatisation des flux de travail associés aux données de SE. Nous décrivons certains des obstacles que
nous avons rencontrés et des approches empruntées dans la mise au point d’un système d’identification automatique et de
dénombrement d’individus d’espèces cibles et d’espèces accessoires qui fait appel à des caméras déployées sur un navire
commercial. Un réseau neuronal à convolution a été formé pour détecter et classer des groupes d’espèces cibles et acces-
soires, et un système de suivi visuel a été mis au point pour produire des décomptes. La valeur moyenne de la précision
moyenne produite par le détecteur à classes multiples est de 53,42 %. À la lumière des résultats de détection, le système de
suivi visuel a produit des dénombrements automatiques de poissons pour les données vidéo expérimentales. Les valeurs
produites par ces dénombrements automatiques sont dans la fourchette de deux écarts-types des valeurs obtenues man-
uellement pour les espèces cibles et, la plupart du temps, pour les espèces accessoires. Contrairement à d’autres tentatives
récentes, l’installation des caméras sous couvert a permis en bonne partie de contrôler les conditions météorologiques et
d’éclairage. [Traduit par la Rédaction]

Introduction
On-vessel cameras that record fishing operations and catch,

known as electronic monitoring (EM), has expanded as costs have
declined (van Helmond et al. 2020). EM has the potential to pro-
vide full coverage of a fishing trip, a prospect that would be
impractical or expensive for human observers, but attractive for
managers who require accurate estimates of target species catch,
and incidental interactions, particularly with threatened species.
Indeed, because of their low relative abundance, threatened spe-
cies interactions are often rare and can be easily missed if reliant
on a sampling programwith less than full coverage.

EM has several shortcomings. Without an on-board observer
sampling program, biological samples are unable to be captured.
Storing, managing and analysing the large amounts of data col-
lected by EM also present challenges as more data are often col-
lected than analysed because of ongoing attendant costs. These
costs can be significant enough that in some cases only around
10% of available video is evaluated (Emery et al. 2019a). This has
motivated the development of automated video analysis using
machine-learning and artificial intelligence (MLAI) techniques.
MLAI has been used in similar contexts to count seals on rocks
from drones (McIntosh et al. 2018) and identify fish species in
baited remote underwater video (BRUVs; Siddiqui et al. 2018). A
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large selection of applications of MLAI to fisheries have been
shown recently in Beyan and Browman (2020). Lu et al. (2020) for
example applied deep Convolutional Neural Networks (CNNs) to
digital photos collected by observers on pelagic longliners over a
10-year period. Tseng and Kuo (2020) and then Qiao et al. (2021)
have recently proposed solutions for a similar application to this
paper by developing deep CNNs to estimate fish counts and iden-
tify catch events respectively, from EM video collected from com-
mercially deployed deck cameras.
While the application of MLAI to EM may seem simple, these

studies reveal that there are challenges and obstacles to using
MLAI operationally for management purposes. To start, the con-
ditions and context of EM footage is often highly variable in
terms of light and weather conditions. Camera quality and set-
up, encompassing factors such as resolution, frame rate, angle to
the region of interest, and infrastructure occlusion all influence
the ability of MLAI to provide reasonable object detection rates.
Applying a trained algorithm in a new context, such as a fishery
or even a new vessel within a fishery, will likely compromise ac-
curacy. Additionally, object detection and classification within
an image are only part of the process since counting requires a
detected object to be tracked across multiple frames of the video
(Tseng and Kuo 2020). This can be particularly challenging for
computer vision approaches because fishing vessels are busy pla-
ces: crew members are often moving and performing several
activities at once, with EM capture not necessarily their primary
concern. The result is that detected objects can become occluded
or have their appearance greatly altered as they are handled. This
often leads to fish detections being missed across portions of the
video and the need for their trajectories to be interpolated, if
avoidance of double counting is desired. Previous work in Tseng
and Kuo (2020) and Qiao et al. (2021) utilised fixed spatial and
temporal constraints (thresholds) to determine when detected
objects are the same fish across video frames. These approaches,
however, are highly susceptible to fish being counted multiple
times when detections are missed. Here we propose a solution to
address this issue by employing a correlation tracker (Lukežic
et al. 2017) to interpolate the trajectories of fish across portions
of the video where the detector hasmissed them.
The ability to control and test different camera configurations,

angles, and set-ups, could also significantly improve the accuracy
of MLAI techniques. Here we also address the challenge of
improving MLAI accuracy by testing different camera set-ups and
configurations. Our ability to address this challenge benefited
from a science–industry collaboration interested in monitoring
the catch and bycatch of operations.
While EM is being used increasingly by fisheries managers, this

collaboration was motivated by the realisation of the importance
of advanced analytics, and methods to collect, process, and inter-
pret data by a seafood producer. The potential cost savings, envi-
ronmental outcomes, safety and waste reduction are substantial,
not only through monitoring fishing activities, but also through
increased understanding and management of the supply chain

(Christiani et al. 2019). Improved supply chain management prac-
tices can provide publicly verified sustainability practices, opti-
mise fishing operations, and document logistical processes in
transporting and storing product at temperature (cold chain).
The Heard Island and McDonald Islands (HIMI) Patagonian

toothfish fishery is a Marine Stewardship Council certified fish-
ery, targeting Patagonian toothfish (Dissostichus eleginoides), and
incidentally catching grenadiers (Macrouridae), skates and rays
(Arhynchobatidae and Rajidae), and to a lesser degree morid cods
(Antimora rostrata). There is considerable interest in rapidly and
efficiently monitoring the catch interactions with these species
from a regulatory and operator point of view. Advantages include
real-time catch recording for quota reconciliation, logbook
recording, early market knowledge, bycatch minimisation and
compliance, and reducedmonitoring costs.
The correlation tracker, and different camera angles and con-

figuration setups were tested on a longline vessel in this fishery
using GoPro cameras. The goal was to produce accurate counts,
show the effect of changing camera configurations on the accu-
racy of the algorithm, and address some of the limitations of
MLAI, particularly in operations and procedures. We offer sug-
gestions for how these can be overcome, and lessons for practi-
tioners in the future.

Materials and methods
We developed a model for on-vessel catch counting, called the

enumerator, that incorporates MLAI techniques, and deployed
cameras to a commercial sub-Antarctic longliner to collect data,
which we labelled for training and testing purposes. The experi-
mental and reporting setup includes parameter settings for
detection and trackingmodules, andmethods to evaluate them.

On-vessel fish counting based onMLAI: the enumerator
Automated fish counting involved a two-step process (Fig. 1).

First, a CNN model was trained and then used to detect and clas-
sify target objects in each video frame (the detector). Detections
were tracked by matching detections in a frame to the detections
in the next frame based upon their overlapping region (the
tracker). Frames with missing or occluded detections were inter-
polated between subsequent frames. Trajectories formed in
tracking resulted in counts.

Multiclass fish species detection and classification: the detector
We used a deep learning-based object detection framework to

localize and detect fish in the video imagery. Deep learning
approaches have been widely and successfully used for various
object detection tasks (Rawat and Wang 2017; Voulodimos et al.
2018). The multiclass fish detection and species classification
model we used is based on a CNN backbone (Fig. 2), which con-
sisted of a series of convolution and pooling layers that take an
image as input to extract image features. A ResNet backbone net-
work (He et al. 2016) uses short-cut connections in the form of
a residual block in the network. Here we used an upgrade of

Fig. 1. Steps involved in enumerating on-vessel catch using MLAI techniques in the detector (left box, blue) and tracker (right box, green).
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ResNet, ResNeXt (Xie et al. 2017) as the backbone network, with
101 layers (convolution and pooling) along with a Feature Pyra-
mid Network (FPN; Lin et al. 2017). ResNeXt uses group convolu-
tion to reduce the number of parameters and increase accuracy.
FPN exploits the natural pyramid structure of the CNNs and uses
features from the deeper layers.
The image features extracted from the backbone network

were used to detect and classify objects in the video data. Amulti-
stage object detector referred to as a cascaded-RCNN (Cai and
Vasconcelos 2018) was adapted to perform multiclass fish detec-
tion. Cascade-RCNN is a sequence of detectors which are trained
with increasing overlapping thresholds between objects and
ground-truth regions at each stage. This solves problems like
overfitting because cascade-RCNN is more selective against close
false positives. Each stage is based on a Faster-Region-based Con-
volution Neural Network (Faster-RCNN; Ren et al. 2017) detector.
Faster-RCNN have three components: Region Proposal Network
(RPN), classification layer, and regression layer (Fig. 2), with the
RPN generating locations of potential objects in the image (i.e.,
region proposals). A predefined set of bounding-boxes or anchors
were used to identify the objects from the background by exploit-
ing the image features produced by the backbone network. The
region proposals were refined and forwarded to the classification
layer to assign confidence scores to the objects, and then to the
regression layer to determine the best coordinates of the bounding-
boxes around the objects.

Fish tracking and counting: the tracker
Detections alone are unable to produce fish counts from video,

given a single object will appear in subsequent frames. Given the
detection results for each video frame obtained from the detector
(Fig. 3), a tracking-by-detection (Bochinski et al. 2017, 2018) approach
was adapted to track individualfish in the videos to produce counts.
Detections were obtained in the form of a bounding-box for each
fish detected in a frame andmatched with the bounding-box detec-
tions in the next frame based upon their overlap. The overlap
between two bounding-box detections (x, y) was determined using
Intersection-Over-Union (IOU) calculated as IOUðx; yÞ ¼ AreaðxÞ \ð
AreaðyÞÞ= AreaðxÞ [ AreaðyÞð Þ. Trajectories were formed by connect-
ing pairs of detections across subsequent frames possessing the
highest IOU (Fig. 3). The detections that possessed lower IOU values
with existing trajectories were assigned to be a new trajectory. Tra-
jectories were terminated if there were no new detections assigned
to it for ttl (time-to-live) frames. Trajectories were discarded if their
length was shorter than t frames or they did not possess a detection

with a confidence score higher than a threshold s . This approach is
known as V-IOU tracking (Bochinski et al. 2018).
Missing detections, which can cause the trajectories to jump

and produce incorrect and multiple counts, were addressed with
a discriminative correlation filter with Channel and Spatial Reli-
ability Tracker (CSRT; Lukežic et al. 2017) to track trajectories,
find missing detections and smooth the trajectory (Fig. 3). This
provides a means to fill in the gaps of the spatial trajectory to
reduce fragmentation and avoid multiple counting of fish. Once
trajectories were generated, class labels and their associated detec-
tion confidence scores were used to identify the species of each
tracked fish. Trajectories were classified to species with themost fre-
quent assignment of confidence scores greater than the thresholds .

Dataset

Video data acquisition
GoPro Hero5 Black cameras were used to collect 23 RGB videos

from a commercial longline fishing vessel ranging between 12 to
18 min in duration. The videos were captured at a resolution of
848 � 480 with 240 frames per second (fps). Six different camera
views were captured from the vessel with each having a different
perspective of the line, catch, and processing components (Fig. 4).

Ground-truth for image and video data
Labelled image data from 15 videos were used to train the detec-

tor and validate performance. A total of 1200 images containing five
species groups: toothfish, grenadier, skate or ray, Antimora, and

Fig. 2. Fish species detection and classification model based on convolutional neural networks. (FPN: feature pyramid network; RCNN:
region-based convolution neural network.)

Fig. 3. Fish tracking adapted from V-IOU-based tracking using
visual information (Bochinski et al. 2018).
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Asteroidea (sea star) were manually labelled by five human experts
to capture observer variability (Table 1).

Experimental setup
Training and analysis were performed using a Tesla P100-SXM2

GPU with 16GB of memory. The implementation of themulticlass
fish species detection was adapted from the MMDetection tool-
box (Chen et al. 2019). This toolbox makes use of different libra-
ries including Python 3.6, PyTorch 1.6, OpenCV 3.4.3, and MMCV.
The 1200 labelled images were randomly divided into a training
set (70%) and a testing set (30%).
The extracted video frames from the test videos were then used

for frame-by-frame tracking to produce counts. Once an animal
was caught and de-hooked from the fishing line, it moved onto a
sorting tray where it became difficult to detect and track due to

occlusions fromotherfish. Consequently, tominimise these effects,
a region of interest (ROI) that contained the de-hooking area, was
used to initially detect and track animals on the test video.

Parameter settings
To handle the imbalance in the dataset, we performed data

augmentation by horizontally flipping images of Antimora, skate
or rays, and Asteroidea. Since our dataset is small, we employed a
transfer learning approach for training. That is, the detection net-
workwas initializedwith a pretrained detectionmodel trained on a
benchmark object detection dataset called COCO (Lin et al. 2014).
The networkwas thenfine-tuned on our training set.
Themulticlass detector was implemented through the PyTorch

framework using the MMDetection toolbox. A three-stage cascade-
RCNN detector was trained with increasing IOU thresholds of 0.5,
0.6, and 0.7. A smoothed L1 loss function for bounding-box regres-
sion and a classic cross-entropy loss function for classification
were implemented. A stochastic gradient descent optimizer was
used in the training. Hyperparameters in the optimizer were set
as follows: (1) the learning rate, which was used to control the
model response to the estimated error, was set to 0.02; (2) the
batch size was set to 3, meaning that 3 images were processed by
the GPU simultaneously before the network was updated. Dur-
ing testing, the IOU threshold was set to 0.5, a standard value for
object detection tasks in computer vision, meaning that a detected
bounding-box sharing 50% overlap with the corresponding ground-

Fig. 4. Sample video frames from six camera views with ground-truth labels for different species groups.

Table 1. Number of labelled
instances for each species.

Species Count

Toothfish 890
Grenadier 529
Skates and rays 214
Antimora 106
Asteroidea 231
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truthed object was considered to be a true object detection (a true-
positive: TP), otherwise it was considered to be a false-positive (FP).
The frame rate was set to 30 fps. To find missing detections

between frames, the CSRT tracker waited for ttl = 30 frames
(Table 2) for a detection to reappear and then filled in themissing
detections. An animal was counted if the detection confidence
score was at least 80% and assigned to the species class with the
highest predicted probability.

Evaluation measures
The detection network output was compared to ground-truthed

data by calculating the precision and recall values as p = TP/(TP + FP)
and r = TP/(TP + FN), respectively. The precision gives a percentage
that shows how accurately the network detects an object and the
recall gives a percentage that shows how many actual targets are
detected out of all true targets. The average precision (AP; Zhang
and Su 2012) was calculated for each species group and then aver-
aged across species groups (mAP; Manning et al. 2008). For species
counts, the results from the tracking model were compared to
manual counts fromhuman experts.

Results

Multiclass fish species detection
Despite the complex background (e.g., Fig. 5a), the detector

was able to provide reliable results (Fig. 5), achieving more than
80% confidence in most detections. Detection was difficult in

circumstances associated with the interclass similarities between
the toothfish, grenadier, and Antimora species groups, due to low
resolution images and variable lighting conditions. These issues
could be managed by changing camera position, increasing camera
resolution and improving the lighting conditions.
Figure 6 indicates that roughly 20 epochs were sufficient to

train the detector, which took 98 min (4.9 min per epoch). The
epoch is a hyperparameter defining the number of passes of the
entire training dataset the machine learning algorithm has com-
pleted. The behaviour of the bounding-box regression loss, classi-
fication loss, and overall training loss varied during the training
process (Fig. 6). Classification loss decreased significantly through
the first three training epochs (Fig. 6b), while the most dramatic
decrease in the overall training error occurred between the epochs 8
and 12 (Fig. 6c). Bounding-box regression error declined steadily over
the first 9 epochs (Fig. 6a). Both bounding-box regression loss and
classification loss converged around epoch 11, while the overall
training loss converged around epoch 17.
The detector was evaluated on the test dataset using the trained

detector model after every epoch. Figure 7 shows themAP achieved
on the test dataset after each epoch. The highest mAP of 56.69%
was achieved at epochs 9 to 11, after that the mAP stabilized
from epochs 13 to 20. We chose the detector that was trained for
20 epochs (when mAP stabilized) instead of 11 epochs. Although
the detector trained for 11 epochs had a higher mAP, it detected
many false positives which eventually created trouble during
tracking.

Table 2. Tracker parameter settings tuned through a grid search procedure.

Parameter Description Value

t Minimum number of frames considered to retain a trajectory 15
ttl Time-to-live representing number of frames with no new detections before a trajectory is considered terminated 30
s Confidence threshold: a trajectory must contain at least one detection with confidence score higher than s threshold 0.3

Fig. 5. Detection results produced by the multiclass species groups detection model. The rectangles or bounding-boxes represent the region
containing the detected objects with species group identification labels and associated detection confidence. Species groups are represented by
the coloured bounding-boxes: blue, green, red, yellow, and peach, for grenadier, ray, Antimora, Asteroidea, and toothfish, respectively: (a) skate
and ray (confidence 85%) and two grenadiers (confidence 45%, 53%); (b) toothfish (confidence 89%) and Antimora (confidence 92%); (c) two toothfish
(confidence 98%, 96%) and Asteroidea (confidence 59%); (d) two grenadiers (confidence 59%, 94%) and Antimora (confidence 31%).
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The detector was trained on 840 images. Class (i.e., species
groups) imbalance within the training set made the detector bi-
ased towards the classes with more training images (i.e., tooth-
fish; Table 1). Figure 8 shows that in the precision–recall curves
for species groups during detection, the class “Ray” achieved the
highest AP of 81.74%. This was likely due to their distinctive
appearance compared to the other species groups. The target spe-
cies (i.e., “Toothfish”) achieved an AP of 66.22%.The bycatch species,
like “Antimora” and “Grenadier”, presented interclass similarities
with “Toothfish” and, having fewer samples in the training set,
produced lower APs. The AP of “Antimora” and “Grenadier” species
were 33.40% and 40.47%, respectively. These results indicate that the
AP can be potentially improvedwithmore training data.
The multiclass fish species detector was evaluated using 3-fold

cross validation. The detector achieved mAP of 52.74% (mean)
61.56% (standard deviation) among all folds (Molinaro et al.
2005). Despite these results, the subsequent tracking process
improved accuracy and the ability to capture missing detections,
which is reflected in the counting process (next section).

Fish tracking and counting in videos
The multiclass detector was applied to five test videos from the

four camera views displayed in Fig. 9. The frame rate (30 fps) was
enough to capture and track an animal on the fishing line. For all

Fig. 6. Training convergence of the multiclass fish species group
detector. The graphs correspond to (a) bounding-box regression
loss vs. number of epochs, (b) classification loss vs. number of
epochs, and (c) overall training loss vs. number of epochs.

Fig. 7. Test accuracy in terms of mAP (%) achieved versus training
epochs.

Fig. 8. Precision–recall curves of species groups achieved during
detection on test data.
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species groups except skates and rays, tracking occurred in the
ROI. The skates and rays species group was tracked on the sorting
tray (Fig. 9a) because they often were removed from the line
directly at the sea door and placed directly on the sorting tray.
The number of trajectories produced to track animals within

the test videos are given in Table 3. These trajectories need to be
filtered to produce final fish counts. The trajectories were first fil-
tered based on the confidence scores of the bounding-box detec-
tions present in the trajectories. That is, if a trajectory did not
contain any bounding-box with a detection confidence score of
more than 80%, it was discarded. This process resulted in a 20.8%
decrease in trajectories on average (Table 3). Trajectories with a
length of less than 15 frames, were discarded as well. This further
decreased the number of trajectories down to 48.34% of the origi-
nal number. The final number of trajectories that contributed
towards producing the fish in each test video is given in the last
column of Table 3.
The accuracy of the automated species group counts varied

across the different camera views (Fig. 10). Observer based species
counts also varied across the different camera views. For tooth-
fish, the MLAI counts were within 2 standard deviations (SD) of
the mean across all videos (Fig. 10a). Grenadier tended to be
underestimated, mainly because fishers sometimes manually

removed grenadier from the fishing line, or they fell onto the
floor and were directly placed into the sorting tray without mov-
ing through the ROI. On a few occasions, the landing of a partial
fish indicated it had been depredated (i.e., eaten by a predator);
such cases were identified to be a problem for the detector.
Skates and rays offered few difficulties for identification and
counting as a species group, except for a few occurrences in the
test videos where an individual was cut directly from the line and
almost immediately returned to the water. In such cases we
modified the expert observer counts by removing instances
where we would not reasonably expect the detector to identify
and count a fish (Fig. 10b). The Asteroidea count in video 5 (cam-
era view 4; Fig. 4) was highly inaccurate because the camera view
provided relatively short tracking trajectories for such small
objects. Antimora were relatively rare in the training and testing
video (only videos 3 and 5), but the identification and counts
were still within 2 SD of the human observer estimate.

Discussion
The development of MLAI-based approaches to automate fish-

ery catch and bycatch monitoring is a challenging task given the
quantity of data and the complexity of the operating environ-
ment. With support from industry and fishery management
agencies, we are confronting these challenges, and have identi-
fied a series of lessons and challenges to the operational deploy-
ment of the technology.

Training data acquisition
Many fisheries catch a range of species under a range of condi-

tions, which adds to the work needed to develop annotated train-
ing datasets. In the case we presented, data were collected under
highly controlled conditions and so weather and lighting condi-
tions had little effect. The main source of variability was camera
position. Our case study also had only a handful of relatively dis-
tinct classes (i.e., species groups), and as a result, we were able to
compile a labelled database relatively easily. Other fisheries have

Fig. 9. Tracking and counting of fish in the test videos. The white rectangles represent the ROIs where the fish were tracked. The green
bounding-boxes represent the tracked fish. The fish counts for individual fish species are given at the bottom of the video frames.

Table 3. Trajectory filtering towards counting based on bounding-
box confidence and trajectory length.

Video

No. of tracked
IDs by the
tracking system

No. of filtered IDs
based on bounding-box
confidence

No. of filtered IDs
based on trajectory
length

1 75 62 42
2 42 36 19
3 69 52 23
4 90 73 47
5 26 18 15
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greater diversity in catch, and conditions. Qiao et al. (2021) exam-
ined fewer frames than examined here out of 720 h of video from
more variable conditions in the Australian eastern tuna and billfish
fishery (ETBF), and found 46 species identified by EM reviewers. Of
these,fivewere target, eight by-product, and the remainder bycatch
species (Emery et al. 2019a). Prioritisation of species or groups for
MLAI consideration therefore is critical because otherwise, some
species or species groups with inadequate training data might still
require monitoring through logbooks, human auditing of video, or
on-vessel human observation.
Prioritisation can be made based on an economic, ecological,

or vulnerability status. The problem, however, is that in a multi-
species context EM data are usually unbalanced, reflecting relative
abundances. Antimora in our data for example, were uncommon
with only 106 instances (i.e., 7%) in the training dataset compared to
the other species groups. In the two test videos where Antimora
were present, the enumerator was accurate. This is most likely
because Antimora is a distinctive species comparing with others
in the training dataset. More generally however, acquiring enough
data to use MLAI on rare species can be challenging, and several
approaches could be used to address the problem. Firstly, images
can be synthesized by mimicking capture either electronically
or physically in a controlled environment. Alternatively, where
limited amounts of data exist, augmentation techniques are com-
monly used. We used this technique here by applying horizontal
transformations to each training image.
Another method for acquiring imagery of rare species would

be to use machine learning techniques to generate synthetic
training images. EM data may also not be able to capture interac-
tions that occur off-camera, but still might indicate anomalous
behaviour of crew in capturing non-target species. Handling of
bycatch is markedly different to that of target species, and if the
movement patterns of crew to remove bycatch can be uniquely
characterised (for example, leaning over the vessel to cut line),
then the MLAI algorithm might be trained to detect these behav-
iours. An algorithm that bookmarks or extracts such an event in
a video recording can then be checked by an analyst.
Lastly, crew can be requested either to ensure direct and unhin-

dered vision from the on-vessel cameras, or to hold specimens
directly in front of a camera (Gilman et al. 2019). This approach
has been trialled in the Australian tuna fishery (ETBF) for seabird
bycatch since 1 July 2020.
Obtaining enough data for automated EM analysis is also a

challenge. EM data are valuable, both commercially and from a
privacy perspective, which can make access difficult (Gilman
et al. 2019; van Helmond et al. 2020). Public datasets of annotated
fish images to assist in model development are available (Cutter

et al. 2015; The Nature Conservancy 2020; Boom et al. 2012). The
most relevant is the FishNet open image dataset (The Nature
Conservancy 2020), which contains approximately 35000 annotated
images from commercial fishing vessels. The dataset currently con-
sists of 26 species, amajority of which have less than 100 annotated
instances, and consequently, is not likely to possess the quantity
and diversity of images needed to train models for a vast majority
of applications.

Transferring fish knowledge into networks
Even if the public fish image datasets do not provide a com-

plete solution for training, they do provide a useful starting point
for transfer learning (Yosinski et al. 2014). Such an approach is
commonly used in computer vision by transferring the visual
knowledge from networks trained on very large, general image
databases, such as ImageNet (Deng et al. 2009) or Open Images
(Kuznetsova et al. 2020), to models with specific applications.
Recent fish detection and recognition models have applied

transfer learning to general feature extraction (FE) networks as
the starting point for model training. Tseng et al. (2020) and
French et al. (2020) developed fish species detection models by
using a Mask R-CNN (He et al. 2017) architecture that had been
pre-trained with the general COCO dataset (Lin et al. 2014); the
Mask R-CNN was then retrained upon relatively small datasets of
the target species. Siddiqui et al. (2018) combined a Support Vector
Machine (SVM) classifier with three different pre-trained FE based
CNNs (AlexNet, VGGNet and ResNet) to address the limited data
that were available for training an underwater fish recognition
system.
There are yet to be any existing models that retrain FE net-

works on publicly accessible fish databases, such as FishNet. This
could potentially improve performance and reduce the quantity
of application-specific training images that will be needed.

Classification bias
Training datasets should produce minimal bias in classifiers. It

is generally not advisable for instance, to use training datasets
that possess a heavy imbalance between the different species of
interest. While it is far more convenient to prepare training data-
sets skewed by species with an abundance of images (i.e., the ma-
jority classes), it is likely that any trained classifier will exhibit
some bias towards the majority class. This is particularly prob-
lematic when rare species with less training instances (i.e., mi-
nority classes) are important to detect due to their vulnerability
status for instance. Trained detectors with high recall and a
greater tolerance for false positives, which can be scrutinised,
are clearly desirable when there is a strong need to detect threat-
ened species interactions.

Fig. 10. Mean fish counts for (a) human observers (bars) 62 SD, across 5 species and MLAI counts (black dots). (b) Scatter plot shows
under- or overestimates of MLAI species counts in comparison with counts that could be reasonably achieved (excluding edge cases).
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Different strategies can be employed to reduce classification
bias. Images from the majority classes can be under-sampled to
achieve a better balance with minority class species, but this is
considered wasteful when the class skew is significant. An alter-
native option is to augment the minority classes by generating
synthetic images (Shorten and Koshgoftaar 2019) using different
image transformations, kernels or deep learning (Frid-Adar et al.
2018). Whilst synthetic image generation increases the size and
diversity of species or species groups in the minority class, it
must also ensure that the data remains representative of them
and does not introduce significant noise. Tseng et al. (2020),
Allken et al. (2019) and Zheng et al. (2018) augmented training
datasets for fish detection and recognition by applying different
transformations (i.e., flipping, shifting, blurring, rotating and
scaling) to annotated fish from training images.

Taxonomic classification
Ideally, computer vision models should be able to classify all

catch and bycatch at the species level, however, we have found
that it can be particularly difficult to discriminate between fish
species that possess subtle differences in external appearance, a
challenging task even for a human expert. In many applications,
it may be sufficient to classify the catch at higher taxonomic
ranks (genus, family or order), particularly if it provides greater
assurance about the classification accuracy. In terms of species
collected in the HIMI toothfish fishery, grenadiers of the genus
Macrourus are particularly difficult to separate even by trained
taxonomists. An additional Southern Ocean species was only
recently recognised and described using a combination of mo-
lecular and traditional taxonomic methods (Smith et al. 2011;
McMillan et al. 2012). At least three, but possibly four, Macrourus
species are known to be present at Heard Island (CSIRO Austra-
lian National Fish Collection records) and the complexity of sepa-
rating the species suggests significant additional work would be
needed to train an MLAI system to distinguish them. Addition-
ally, multiple species of skates of the genus Bathyraja are present
at HIMI and these species are still being investigated in a taxo-
nomic sense (e.g., Last et al. 2016). When the species are more
adequately resolved, the MLAI technology could potentially be
trained to detect differences in colour and shape that may sepa-
rate the species.
We suggest MLAI models be designed to provide a hierarchical,

multi-label classification (Wehrmannet al. 2018)where the detected
catch is classified at multiple taxonomic ranks (i.e., species, genus,
family) simultaneously, each with an associated confidence mea-
sure to indicate the granularity at which the classification can be
trusted. Bayesian neural networks (Gal and Ghahramani 2015) are
an important approach to address the issue of classification uncer-
tainty. In addition, the level of hierarchical classification that is
satisfactory to a manager should be specified prior to embarking
on a potentially expensive MLAI application for a fishery. If it is
critical that species level identification is needed, then MLAI may
not be the answer.

Automatedmonitoring in a complex work environment
Whilst models can be developed to accurately detect, classify

and track fish using relatively cheap and low-resolution video
cameras, additional challenges are introduced by the deploy-
ment of such cameras in the complex work environment of a
fishing vessel. Camera configuration is critically important, as
shown, especially because placement can differ widely across ves-
sels. For example, French et al. (2020) showed that expert human
observers performed better than MLAI algorithms when tested
on data from a separate vessel. In a study comparing vessel log-
book records of catch against EM records in the ETBF, Emery
et al. (2019b) postulate that inappropriate camera positioning led
to lower EM records of protected species than logbooks. In addi-
tion, in some circumstances poor lighting also meant that EM

analysts were not able to determine whether seabird mitigation
devices were being deployed. These issues will also cause prob-
lems for any application of MLAI to EM footage.
Fish tracking is complicated by the busy and crowded fishing

vessel environment. The interaction between fish and workers
often leads to occlusions, and on longliners the consistent motion
patterns of fish attached to the fishing line becomes far less
predictable once handled by workers. Fish occlusion and unpre-
dictable motion patterns can significantly degrade tracking per-
formance, and hence, lead to duplicated counting of fish.
We also note that not all work practices on fishing vessels are

conducive to video monitoring. In our longline application for
example, rays normally would be removed from the fishing line
prior to entering the vessel and, hence, often were immediately
transferred below the deck or returned to the water. Despite the
accuracy of the enumerator, skates and rays were only present in
the field of view in our footage for a minimal period. This could
present difficulties for identifying objects that are less morpho-
logically distinct. Similar drawbacks to using MLAI can occur
with fish handled by the crew that bypass the ROI due to needs
for expediency or practicality (for example, a fish may come off
the hook, fall to the deck floor and then be placed directly into
the sorting tray by crew). It is worth considering if and how sim-
ple modifications to work practice or the work environment
itself can be made to enhance the ability to monitor catch with-
out causing work disruption.
The detector processed the test data at a rate of about 5 to

6 images per second using a GPU. The ability ultimately to capture
and process video for near-real time counts is highly desirable for
informing fishing operations, managing production (Christiani
et al. 2019), and conserving vulnerable bycatch species, especially
if coupled with telecommunications technology. Deploying onboard
edge computing devices equipped with GPUs, to batch or parallel
process videos as they are captured, potentially adds another dis-
ruption or imposition on vessel work practices. With regulated
work practice, automated identification and counting can become
a reality, which will ultimately benefit the fishery, and manage its
effect on thewider ecosystem.
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