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Selectivity has traditionally been well estimated internally in stock assessment models when length or age composition data are available. However,
in stock assessment, temporal or spatial variation in fishery or stock structure can lead to misspecification of the selectivity pattern, which can
contribute substantially to the uncertainty in stock assessment results. Consequently, generating auxiliary information to help stock assessment
scientists avoid unrealistic specifications of selectivity patterns should be encouraged. Here, we combine data from pop-up satellite archival tags
(PSATSs) deployed on blue sharks in the South Atlantic Ocean, and information on maximum pelagic longline fishing depths, to introduce an al-
ternative approach for estimating selectivity of fishing gear. Further, we present how this externally estimated tag-based selectivity can be used to
inform the most appropriate form of selectivity curves (e.g. asymptotic or dome-shaped) in a spatially structured stock assessment model for the
South Atlantic blue shark population. The estimated tag-based selectivity showed substantially different selectivity patterns within the area of the
assessed stock, in one area the depth range of the longline gear is inhabited mostly by adults, which is consistent with an asymptotic selectivity. In
another area, the overlap shifts to younger ages, with older sharks located in deeper waters, consequently the expected selectivity is more dome-
shaped. To account for this variability in the stock assessment model, we assigned fishing fleets with different selectivity patterns. The form of the
selectivity curve assigned for each fleet was based on the tag-based selectivity estimates for the area of where that fleet operates. The assessment
model demonstrated relatively good fit to the data and that the estimated management quantities were robust. This study provides additional
evidence that externally derived estimates of selectivity using PSATs data can assist implementing stock assessments that capture some of the
spatial variability of pelagic fish species.

Keywords: Atlantic Ocean, blue shark, PSATs, selectivity, spatial variability, stock assessment.

Introduction 1994; Vannuccini, 1999). Over the past decade, there has been a
Most of the world’s catches of sharks are taken incidentally by = growingglobal concernregardingbycatch of sharksin fishing opera-
various types of fishing gear targeting other species, constituting  tions (Clarke et al., 2007). However, the historically low economic
bycatch that is either discarded at sea or landed for sale (Bonfil,  value of shark products compared with other fish has resulted in
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research and conservation of sharks being given alower priority than
traditionally higher-value fish species (Barker and Schleussel, 2005).

The blue shark (Prionace glauca) is possibly the most wide-
ranging shark species occurring in temperate, subtropical, and trop-
ical waters (Henderson et al., 2001), with high bycatch rates in
pelagic longline fisheries (Compagno et al., 2005). Several studies
have reported declines in the abundance of blue shark (Baum and
Myers, 2004; Campana et al., 2005), possibly as a result of the
heavy fishing pressure. In the Southwest Atlantic Ocean, off the
coast of Brazil, blue sharks are taken by fleets targeting tuna and
swordfish with pelagic longline gear (Carvalho et al, 2010).
Historically, Brazil has been responsible for a substantial portion
of blue shark catches in the South Atlantic, which placed it as a
major contributor to the fishing mortality of this species. Between
2002 and 2012, for instance, Brazil ranked third in the number of
blue sharks landed by country, behind only that of Spain and
Portugal (ICCAT, 2012).

Carvalho ef al. (2010) analysed the distribution and relative
abundance of blue sharks in the Southwestern Atlantic Ocean
based on catch-per-unit-effort (cpue) and length frequencies of
blue sharks caught by the Brazilian pelagic tuna longline fleet
between 1978 and 2009. Blue shark cpue showed a relatively stable
trend from 1978 to 1995. In 1995, a sharp increase in blue shark
cpue was observed, which could have been attributed to the intro-
duction of monofilament gear in 1995/1996 to target swordfish, fol-
lowed by a gradual increase in the market value of blue shark over
time. Based upon length frequency distributions of over 11 000
blue sharks caught by the pelagic longline fishery in the Southwest
Atlantic Ocean, there is a clear spatial variability of the sizes of the
individuals caught by this fishery (Carvalho et al., 2011). Overall,
the spatial distribution of blue sharks by size showed a general ten-
dency of adults to concentrate in lower latitudes and juveniles to be
more common in higher latitudes. However, it is still unclear if the
spatial variability of the blue shark lengths found by Carvalho et al.
(2011) is simply due to gear selectivity or if the proportion of the
population by length actually varies spatially. If the latter is true,
then this difference in the spatial structure of the population can
strongly affect selectivity. In stock assessment, misspecification of
the selectivity pattern can generate errors in the estimates of
biomass (Kimura, 1990; Ichinokawa et al., 2014; Lee et al., 2014;
Wang et al., 2014), spawning-stock biomass (SSB; Punt et al.,
2002; Radomski et al., 2005), exploitation rate (Radomski et al.,
2005), and the ratio of stock biomass in the first year to stock
biomass in the final year of analysis (Yin and Sampson, 2004). It is
common practice in stock assessments to assume asymptotic select-
ivity unless there is clear evidence that certain sizes or ages are not
being selected by the fishery (Cope and Punt, 2011). However,
using an asymptotic selectivity for all fisheries might cause estimates
of fishing mortality to be biased toward higher values. Alternatively,
if selectivity were to be assumed to be dome-shaped for all fisheries,
its estimation within a stock assessment model may not be possible
due to the likelihood that the dome-shape would confound
estimates of mortality. Recent research indicates that some degree
of dome-shaped selectivity is to be expected in many situations,
due to incomplete mixing of individuals and spatial heterogeneity
in fishing intensity (Sampson, 2014; Waterhouse et al., 2014).
Therefore, collection of auxiliary information that may help to de-
termine the most appropriate form of the selectivity curves in stock
assessment should be encouraged (Crone et al., 2013).

Tagging data alone have been used to estimate selectivity exter-
nally of stock assessment models. Typically, selectivity estimation
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studies are primarily designed to make use of conventional
tagging data, which rely on fishery recaptures (Myers and Hoenig,
1997; Cadrin, 2006; Bacheler et al., 2010). The deployment of
pop-up satellite archival tags (PSATs), on commercially exploited
fish species has become more common over the past decade. These
tags potentially provide much more information on temporal- and
spatial-specific movements than conventional tags. Perhaps their
greatest advantage is that they provide fishery-independent informa-
tion about the location and movement of tagged fish between tagging
and pop-off locations (Sippel et al., 2015).

For highly migratory species, PSATs have been used primarily for
studying spatial—temporal behaviour and ecology (Sippel et al.,
2015). However, data from PSATSs have also been used to directly in-
corporate habitat variation in the cpue standardization process
(Hinton and Nakano, 1996; Maunder et al., 2006a, b), and more re-
cently in models to inform fisheries management (Taylor et al.,
2011; Eveson et al., 2012). We are unaware of any studies that used
depth data returned from PSATs to specifically estimate selectivity
for highly migratory species in longline fisheries.

Using PSATs data and information on maximum pelagic long-
line fishing depths, the present study examined the spatial vari-
ability of the South Atlantic blue shark and the vulnerability of
this species to pelagic longline fishing. The specific objectives of
this manuscript include: (i) combine data obtained from PSATs
and information on maximum pelagic longline fishing depths
with regression models to introduce an alternative approach for
estimating selectivity of South Atlantic blue shark to pelagic long-
line fishing gear; and (ii) to present how this externally estimated
tag-based selectivity can be used to inform the most appropriate
form of selectivity curves in spatially structured stock assessment
models. For this purpose, a statistical catch-at-age stock assess-
ment model for the South Atlantic blue shark was implemented
in AD Model Builder (ADMB, Fournier et al., 2012).
Additionally, biological reference points estimated in the assess-
ment were used to indicate the current status of the South
Atlantic blue shark stock.

Material and methods

Three sequential procedures were used to present how externally
estimated tag-based selectivity can be used to inform the most ap-
propriate form of selectivity curves in a spatially structured stock as-
sessment model: (i) depth profiles of 16 blue sharks tagged in two
different geographicareas of the South Atlantic Ocean were analysed
as well as their overlap with pelagic longline fishing gear depth; (ii)
these data were fit to regression models to construct selectivity
curves for each area separately; and (iii) standardized cpue
indices, catch, and catch-at-age data were used to implement a stat-
istical catch-at-age model (SCAM). The SCAM includes two differ-
ent pelagic longline fishing fleets, each with a different selectivity
pattern, as a proxy for spatial structure (Area). Externally estimated
tag-based selectivity curves were used to inform the most appropri-
ate form of selectivity curves for each fleet used in the SCAM
(Figure 1).

Data

Catch and effort

For the SCAM, the total blue shark catches per year in the South
Atlantic were estimated by the ratio of sharks to tuna method devel-
oped by the ICCAT shark working group (ICCAT, 2005; Carvalho
et al., 2014; Figure 2). Blue shark cpue was obtained from 37 665
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Figure 1. Schematic figure describing the procedure to use PSATs data to inform selectivity in a statistical catch-at-age stock assessment model.

longline sets made by two Brazilian tuna longline fleets, represented
here as Fleet A and Fleet B. Longline sets from both fleets were dis-
tributed throughout a wide area, ranging from 10°E to 50°W longi-
tude and between 10°N and 45°S latitude (Figure 3). Both Fleets
used the same pelagic longline gear configuration and had the
same targeting practices. Fleet A is based in the coastal cities of
northeast Brazil, including Recife, Natal, and Cabedelo, and its
major fishing ground is located in the Equatorial Atlantic. This
area (Area I) is characterized by the presence of seamounts,
oceanic islands, and upwelling driven by the equatorial convergence
(Figure 3). Fleet B is based in the South of Brazil, in the cities of
Santos, Itajai, and Rio Grande. The major fishing ground for this
fleet is near the Rio Grande Rise, a large seismic ridge situated
between the Mid-Atlantic Ridge and the Brazilian continental
shelf (Area II; Figure 3). Fisheries logbooks from both fleets were
made available by the Ministry of Fisheries and Aquaculture
within the Brazilian government. The logbooks contained details
for each vessel operating within the fishery and included: date,
time, start and end coordinates of the set, total number of hooks,
and the total number of individuals caught for each set.

Size frequency

Fork length information was obtained from the Brazilian on-board
observer programme. In all, 16 341 blue sharks were measured from
2002 to 2012 across Areas I and I1. Age frequencies were obtained by
back-transforming the lengths into ages using the von Bertalanffy
relationship provided by Lessa et al. (2004).

Tagging

PSATs are archival tags that have the capacity to transmit stored
information to a satellite. PSATs are attached to the fish externally
and log temperature, depth (pressure), and light intensity after
the fish is released, the later can then be used to calculate latitude
and longitude of the fish position. The tags detach after a pro-
grammed interval and transmit their recorded information through
the ARGOS satellite system to a land station then ultimately to the
researcher via the Internet. In the present study, tagging was spatially
and temporally stratified to match the fishing areas for Fleets A and
B. Between March 2009 and April 2012, a total of ten mature males
and females and six immature male and female blue sharks caught in
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Figure 2. Annual catches (2002 -2012) of blue sharks in the South
Atlantic Ocean estimated by ICCAT using the ratio of sharks landed to
the total landings of all tuna, swordfish, and billfish.

Areas I and II from longline vessels were tagged with PSATs model
MK10 (Wildlife Computers, WA, USA; Table 1). Age-at-maturity
was assumed as 5 years, following Lessa et al. (2004). The ages of
tagged blue sharks ranged from 3 to 11 years, obtained by back-
transforming the lengths into ages. PSATs were programmed to
record depth, temperature, and light intensity every 60s and
stored as summary data over set intervals of 6 h. Tags were pro-
grammed to detach after 3 or 7 months after tagging. Minimum
and maximum temperature bins (12 bins total) were programmed
to sample temperatures >12 and <30°C, while depth bins (12
bins total) were programmed to sample the minimum depth of
<1m (or 0) and maximum depth up to 500 m. Light intensity
records were post-processed using the global positioning software
WC-GPE2 (Wildlife Computers) to provide raw geolocations
(GLS, Global Location System) of tagged fish. We applied the
Kalman Filter State—Space Model augmented with SST (UKFSST;
Nielsen et al., 2006) to the raw tracks to predict the Most Probable
Track (MPT). Time-at-depth data for each of the 16 blue sharks
tagged were aggregated into 10 m bins and expressed using box-
plots. All 16 tags successfully detached and transmitted data on
the movements and habitat variables. PSATs attachment time for
the 16 individuals averaged 106.1 + 43.8 days with a maximum at-
tachment time of 209 d (Table 1). Movement errors for latitude and
longitude estimates for the PSATs were low (longitude: ranging from
0.04° to 0.58°; latitude: ranging from 0.35° to 1.47°) and similar to
those found in other movement studies using Kalman Filter
methods (e.g. Musyl et al., 2011). The positional error associated
with these light-based estimates should not be a concern for this
study because the MPT was only used to determine if a particular in-
dividual was in Area I or in Area II during a specific time. In add-
ition, UKFSST predicted location estimates, including positional
error, showed that all individuals, except one, stayed in one of the
two assigned areas during the entire track (see the “Results”
section for details). Swimming depth data from predicted locations
that could not be assigned, without error, to one of the areas (e.g. the
estimated location point is in Area I but its error range reaches Area
II) were not incorporated in the time-at-depth analysis.

F. Carvalho et al.

Depths of pelagic longline gear set

To delineate the maximum effective fishing depth for the configur-
ation of pelagic longline gear used by Fleets A and B, a total of 154
Temperature Depth Recorders (TDRs) (Model LTD-1100; Lotek
Wireless, St John’s, Newfoundland, Canada) were deployed in 411
fishing sets (Fleet A =193 and Fleet B = 218) between January
2010 and December 2011. TDRs were attached to the lower end of
the middle branch within each hook basket, following the method-
ology of Kerstetter and Graves (2006).

Data analyses

Selectivity from tagging data

To compare the vertical habitat utilization of blue sharks across the
Southwest Atlantic Ocean, we calculated time-at-depth boxplots by
age group in each of the two areas using vertical data from the PSATs.
To construct the selectivity curves based on tagging data, availability
was considered as the proportion of time that an age-specific blue
shark occupies the depth range of the longline fishing gear and
assumed to range from 0 to 100 m in depth in both areas (see the
“Results” section for details).

The time-at-depth analysis suggests that there is a trend in the
age of sharks caught across depth in both areas. In Area I (Fleet
A), the depth range of the longline gear is inhabited mostly by
adults, which is consistent with an asymptotic selectivity. On the
other hand, in Area II (Fleet B), the overlap shifts to younger ages,
with older sharks located in deeper waters. Consequently, the
expected selectivity for Fleet B is more dome-shaped. For Fleet A,
a simple asymptotic logistic curve was chosen to model the shark
selectivity. To estimate the selectivity for Fleet A based on tagging
data first we multiplied the contact selectivity by the availability
for each observed age available from tagging. Contact selectivity
was assumed to be equal to 1.0 for all tagged individuals from 3 to
16 years old and 0.0 for individuals younger than 3 years. Given
the calculated selectivity values, we used a simple linear regression
model and a logistic function to estimate the probability that a
fish of age a is caught.

To allow for a decrease in selectivity at older ages for Fleet B, a
general non-parametric regression model was used to fit the avail-
ability from tagging data obtained in Area II. In this form of regres-
sion analysis, the predictor does not take a predetermined form (e.g.
asymptotic) but is constructed according to information derived
from data. One way that this relationship can be modelled is by con-
structing smoothing splines. Splines are implemented in non-
parametric modelling to allow some degree of bending on a
curved line between fixed points (Thorson et al., 2013).

Stock assessment

cpue indices

For calculating time-series with relative indices of abundance useful
for stock assessment, it is first necessary to adjust the data for the
impacts of factors other than the changing abundances of the
species over time. This process is commonly referred as cpue stand-
ardization (Maunder and Punt, 2004). The most common method
is the application of generalized linear models (GLMs). One chal-
lenge when modelling data from shark populations is that the data-
sets of bycatch species often have a large proportions of fishing sets
with zero-catches. One way to overcome this problem is using the
GLM with statistical distributions that allow for a large proportion
of zero observations (Maunder and Punt, 2004). The Tweedie distri-
bution recently proposed by Shono (2008) has become popular in
cpue standardization for bycatch species. To generate relative
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Figure 3. Distribution of fishing effort in the number of hooks/100 by the Brazilian longline Fleets A and B between 2002 and 2012 in Areas | and |,
respectively.
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Table 1. Summary data for 16 blue sharks tagged with pop-off satellite-tags in the South Atlantic Ocean

ID Age(years) Sex Area Taggingdate Programmed release days  Pop-up date Days at liberty  GLS locations (n)
1 3 F | 21 May 2009 90 09 August 2009 81 56
2 10 F | 22 May 2009 210 16 December 2009 205 141
3 7 F | 12 May 2011 180 07 July 2011 57 34
4 9 M | 12 May 2011 180 20 June 2011 40 31
5 8 M | 14 May 2011 180 07 September 2011 117 83
6 4 M | 18 May 2011 180 25 September 2011 131 95
7 5 F | 19 May 2011 180 03 September 2011 108 71
8 3 M | 01 July 2011 180 24 October 2011 116 70
9 4 F Il 14 January 2009 180 09 May 2009 106 62
10 8 F 1l 16 January 2009 20 19 March 2009 63 41
11 3 M I 22 January 2009 920 29 March 2009 67 38
12 3 F I 11 December 2010 180 02 April 2011 113 74
13 5 M Il 13 December 2010 180 29 April 2011 138 82
14 1 F I 05 November 2011 90 30 December 2011 56 37
15 10 F I 06 November 2011 210 28 April 2012 175 119
16 10 M 1l 13 November 2011 210 14 March 2012 123 68

F, female; M, male. Tagging occurred in two geographic areas, | and I1.
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abundance indices for Fleets A and B, cpue standardizations were
performed using the GLM. In all, 20 228 and 17 437 longline sets
were used to standardize blue shark cpue for Fleets A and B, respect-
ively. The number of zero blue shark catches was relatively high in
the datasets (56% in Fleet A; 51% in Fleet B) and a Tweedie dis-
tribution with a log-link function was therefore used in the GLM,
following Carvalho et al. (2014). For the cpue standardization, the
response variable considered was catch per unit effort (cpue),
measured as the number of fish per 1000 hooks deployed. Models
were constructed separately for each fleet, the explanatory variables
considered were: year (2002—2012), quarter of the year (4), depth,
and the target. The variables year, quarter of the year, and target
were included as factors in the model, whereas depth was a continu-
ous variable. Estimates of the bathymetry for each fishing set loca-
tion (x-variable = depth) were obtained from bathymetry data
downloaded from the NOAA National Geophysical Data Center,
Geophysical Data System (http://www.ngdc.noaa.gov/mgg/bathy
metry /relief.html). The target factor was developed using the meth-
odology proposed by Carvalho et al. (2014), which uses cluster ana-
lysis to account for changes in target species of the Brazilian pelagic
tuna longline fleet between 2002 and 2012. After the cluster analysis,
percentages of the species and species groups were calculated for each
cluster. These clusters comprised the target species factor in the GLM.
Here, as in Carvalho et al. (2014), the cluster analyses resulted in the
separation of the catch into six different clusters representing fishing
or target strategies. The models used the following formulae:

E[Y](= E[CPUE] = u) = exp{intercept + year
+ quarter of the year + depth + target}

Var[Y](= ¢var[u]) = o*p?,

where . is the location parameter, o2the diffusion parameter, and
p the power parameter (Shono, 2008).

The selection of predictors was evaluated exclusively on AIC. The
GLMs were computed in the R Project for Statistical Computing
version 2.14.1 (R Development Core Team 2012) using functions
available in library “tweedie” (Dunn, 2011).

Statistical catch-at-age model

There are several age-structured stock assessment methods;
however, one of the most commonly used in stock assessment for
many exploited fish stocks is statistical catch-at-age analysis
(Quinn and Deriso, 1999). SCAMs are based on the age structure
of a fished population and generally consist of two submodels,
one describing the population dynamics of the stock and a second
that predicts observed data, given the estimated population each
year (Fournier and Archibald, 1982).

An estimate of historical blue shark abundance in the South
Atlantic Ocean was reconstructed using a modified SCAM that was
originally developed by Frisk et al. (2010). Our SCAMs use the
“areas-as-fleet” approach and include the Brazilian pelagic longline
Fleets A and B. The biological parameters used for the calculations,
as well as subscripts, input data, and estimated parameters, are
shown in Table 2, and the model equations are shown in Tables 3
and 4. The model considered annual time intervals, the period from
2002 and 2012, and ages 2 through 16 (age 16 was an aggregate class
that included all sharks of age 16 and older). The model produced esti-
mates of fishing mortality rates, abundance, total biomass, and SSB
(i.e. the biomass of mature females in the population). Calculated
harvest management points were based on Maximum Sustainable

F. Carvalho et al.

Table 2. Definition of subscripts, input data, and input parameters
used in the SCAM

Indices
Index for age a
Age of plus group A
Index for time t
Index for fishery f
Data
Fishery observed catch Cf
Fishery relative abundance e f
Fishery age proportions Pais
Life-history information
Instantaneous mortality rate M=02year "
von Bertalanffy growth parameters Lo = 352.1
k = 0.16 year™"
Allometry for length — weight w=alf
@=1901x 10°
B=3134
Age-at-50% maturity ap =5 years
Standard deviation in age-at-maturity yh = 0.65
Calculated parameters
Average recruitment R
Average fishing mortality F
Reproductive rate in equilibrium conditions be; b
Vulnerable biomass bg; Oy
Equilibrium recruitment Ro
Virgin biomass By
Equilibrium biomass B
Abundance-at-age in year t Na.t
Model predicted catch-at-age Cats
Instantaneous total mortality rate Zat
SSB St
Maximum survival rate from egg to age 1 So
Asymptotic limit b
Model predicted proportions of catch-at-age Py 5
Model predicted total catch %
Total number of individuals T.
Total vulnerable biomass B:
Model predicted abundance index 7tj
Estimated parameters
Age-at-50% vulnerability as
Maturity-at-age mg
Vulnerability-at-age for each fishery Va.f
Standard deviation in vulnerability-at-age Vs
Unfished age-1 recruits Ro
Recruitment compensation k
Equilibrium fishing rate Fe
Recruitment deviations Wy

Upper and lower case subscripts indicate unfished and fished conditions,
respectively.

Yield (MSY), using the stock assessment model in equilibrium with
a given F and Fysy, that maximizes the yield. The fishing mortality
rate that maximizes yield (Fysy) is calculated numerically using a
Newton—Raphson approach to solve the instantaneous catch equa-
tion (Martell et al., 2008) assuming steady state conditions. Given
an estimate of Fysy, other reference points are derived based on equi-
librium recruitment at Fyysy and per recruit incidence functions.

To estimate vulnerability-at-age for Fleet A, a standard logistic
function was used. To estimate vulnerability-at-age for Fleet B, a
dome-shaped selectivity was used. To implement a dome-shaped se-
lectivity, an additional penalty weight was added to the objective func-
tion that controls how much curvature there is and limits how much
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Table 3. Notation for estimated parameters, age-schedule
calculations

Biology
lg = looe( k@) T3.1
w, = al,? T3.2
my = {1+ el@—a/my=1 T33
Vas = {1+ el@=amh= T34
Survivorship
1 a=1 T35
Sa = Sa_1e’M a>1
Se/(1—e™) a=A
1 a=1 T3.6
Sp =1 Sqqe MRt A > g >
Sa/(1—eMFeva g =A
b = 22:1 Sama b, = 22:1 SaM 137
Py = 22:1 SaMaVy b, = 22:1 g;'1":1'/:: T3.8
Re =Ro((k — ¢/ )/ (k= 1) /b <k, k>1 139
where k is given by: 4h/(1 — h)
Bo = Roh, Be = Redh, T3.10
Initial state
Nat = Reé;e(“"*") T3.11
State dynamics
Catf = FarfNatWaVa(1 — e7%4)/Z, ¢ T3.12
Zsy =M+ Fa.t,fva T3.13
St =0y Naxma T34
(50S¢/(1 + bS))e™ 057 g =1 T3.15
Na,t = Naf1,¢71eiz‘“ a>1
Naﬁt_1e‘zﬂf‘-f a=A
So = k/d)E T3.16
b= (k—1)/Rod T3.17
ﬁa‘t,f = (Ca‘t,f/zacaj,f) T3.18
Cf = 2 0 CatfWa T3.19
Te =0y NatVay T3.20
B = 22=1 Na,tVa.fWa T3.21

Upper and lower case subscripts indicate unfished and fished conditions,
respectively.

dome-shaping can occur. To penalize the curvature, the square of the
second differences of the vulnerabilities-at-age were added to the ob-
jective function. The selectivity pattern for each fleet used within the
SCAM was chosen based on the shape of the tag-based selectivity.

It was assumed that each individual’s growth followed a von
Bertalanffy equation (T3.1) (Lessa et al., 2004). Natural mortality
(M) was assumed to be age-independent and time-invariant and
was fixed at a constant 0.2 year ! based on the ICCAT 2008 assess-
ment. The mortality parameters, along with the age-specific infor-
mation, were used to derive parameters for the Beverton—Holt
stock recruitment relationship, in which equilibrium and unfished
conditions were assumed. A commonly used parameterization of
the Beverton—Holt stock recruitment model, the so-called steepness
parameterization, was applied.

The SCAM was developed and implemented using ADMB
(Fournier et al., 2012). A Bayesian approach was used to obtain pos-
terior probability estimates for the parameter values and quantities
of interest. The model was fitted to standardized cpue indices, total
commercial catch, and catch-at-age data. To improve model conver-
gence, informative prior distributions were used on some model
parameters. A beta prior (0.9, s.d. = 0.2) was assigned for the steep-
ness parameter (h) of the Beverton—Holt stock—recruitment rela-
tionship. This value is based on previous blue shark stock
assessments in the North Pacific (Kleiber et al., 2009) and Atlantic
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Table 4. Residuals and likelihoods

Residuals
Abundance index
It =In(lf) — In(B,) T4.1
where I, is given by:
lef = qrsBre™
qif = €xp Ztel, In(ltf) — In(B¢)
Recruitment

6 = In(N1.1) — In(Ry) T4.2
Age proportions
Vatf = In(Qa.t,f) - In(Qa,t.f) T44

where Qatf = (Va,t,f/zavaj,f) and VaJ,f = NaJVa,f
Mot = IN(Pac) = IN(Pa) = (1/A) X0, In(Pacg) = In(Paey)  T45
Negative log-likelihoods

Catch

le = In(0c) + Y iy (e — Cep) /20 T46
Abundance index

hy = In(onp) + Y1, (€/20%) T47
Recruitment

lo = In(7) + YL, (@?/27) T48
Age proportions

lg=(A=DTIN((A—-DT) Y0 L V2, T49

b= (A=DT (/A = DT) X a, YL, 72, T4.10

Age-specific selectivity constraints
Curvature penalty

N3 o" Vpa = Whao + Vka—a) T4.11
Dome-shaped penalty
{A} Yort Wlpa = Viar1)  Vien < Via } e
0 Viat1 = Vfa

where /\f1 and )\} are the relative weights

Oceans (ICCAT, 2008). Recruitment deviations (w;) were assumed
to be lognormally distributed, with an unknown variance to be esti-
mated from the data (Maunder et al., 2006a). The parameters w;
represent the process error component in the model. Other para-
meters have the default ADMB uniform prior on the scale that the
parameter is estimated on from —inf to inf.

Regarding the initial conditions of the stock used in the model, it
was assumed that the first year for which annual catch data were
available might not have corresponded to the first year of (appre-
ciable) exploitation. Therefore, for the first year considered in the
model, the stock was assumed to be at 80% of its pre-exploitation
biomass. This value is based on the results from the South
Atlantic blue shark stock assessment, using a Bayesian state—space
surplus production model (SPM), presented in Carvalho et al.
(2014). Their results indicated that in 2002 the South Atlantic
blue shark stock had decreased 20% of its pre-exploitation biomass.

In the Bayesian framework, samples are generated from the pos-
terior distribution of parameters, which can be implemented using
Markov Chain Monte Carlo (MCMC) techniques (MacKay, 2003).
The MCMC samples were calculated using the default algorithm in
ADMB (Fournier et al., 2012). Each simulation included three
chains with 2 million cycles, discarding the first 200 000 iterations
as a burn-in phase then thinning the chain by saving every 200th it-
eration to reduce autocorrelation. The final step in the SCAM was to
compute the residuals between the observations and predictions for
the relative abundance indices and the catch-at-age proportions
used in the negative log-likelihoods during parameter estimation
or numerical integration of posterior distribution (Table 4).
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Model fit was evaluated by assessing whether the distribution of
predicted catch rates, and proportions-at-age calculated using para-
meters sampled from the joint posterior distribution corresponding
to MCMC simulations, included the corresponding observed value
at the 95% credible level (posterior predictive check; Gelman et al.,
2004).

Results

Movement

Tracking results showed complex and remarkable movement pat-
terns by blue sharks in the Southwest Atlantic Ocean. Most

Blue shark 1
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-45 -40 -35 -30 -25 -20 -15
Longitude
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-45 -40 -35 -30 -25 -20 -15
Longitude

F. Carvalho et al.

individuals stayed in the area of the tagging location (Figures 4
and 5); however, one mature female (“Blue shark 2”) performed a
trans-oceanic migration, spanning the entire equatorial Atlantic
Ocean in 209 d from the northeast coast of Brazil to the Gulf of
Guinea, Africa. From Area II, a mature female (“Blue shark 15”)
arrived in Area I after travelling along a large portion of the
Brazilian coast in 175 d, a distance of 3470 km. Time-at-depth box-
plots show that patterns of segregation varied based on which area
the blue sharks were tracked in (Figure 6). Within Area I, adults oc-
cupied shallower depths while juveniles spent most of their time in
waters deeper than 100 m. The 4-year-old juvenile exhibited the

Blue shark 2
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Figure 4. MPT for blue sharks across Area |, fit with Kalman Filter State - Space Model.
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Figure 5. MPT for blue sharks across Area Il, fit with UKFSST.

greatest depth range, occupying waters between 40 and 335 m. In
Area II, it was the juveniles that mostly occupied shallower depths
between 0 and 100 m.

Availability

The mean depth of the deepest hook of a set observed by the
TDRs was 62.4 (+s.d. 18.7) m for Fleet A and 66.8 m (+s.d.
20.2 m) for Fleet B, and the maximum depth recorded was 97.1
and 98.6 m for Fleets A and B, respectively. The time-at-depth
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distribution for the TDR dataset for the deepest hook and the
time-at-depth distribution of blue sharks tagged show a high per-
centage of overlap with adults in Area I and juveniles in Area II
(Figure 6).

Selectivity from tagging data

The selectivity patterns obtained using tagging data alone had an
asymptotic selectivity for Fleet A and dome-shaped selectivity for
Fleet B. Fishing mortality was higher for juvenile blue sharks (ages
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Figure 6. Boxplots of time-at-depth by age for tagged blue sharks in Areas | and Il. Black horizontal dotted line indicates the maximum depth

recorded for the observed hooks.

3and 4) in Fleet B than in Fleet A. In Fleet B, there was a clear drop in
selection patterns for blue sharks older than age 10, with age 7 being
fully selected, whereas for Fleet A, blue sharks from age 9 to 16 were
fully selected (Figure 7).

cpue standardization

The final model for the blue shark cpue standardization for both
fleets consisted of four variables and explained 59 and 58% of the
total deviance for Fleets A and B, respectively. The relative contribu-
tion from each variable to the total explained deviance for the model
for Fleet A showed that target (42%) was the most important factor,
followed by year (32%), quarter (19%), and depth (7%) (Table 5).
For Fleet B, target (45%) and year (37%) were the most important
factors, followed by quarter (15%) and depth (3%). Residual diag-
nostic plots and Q—Q plots showed that a good fit was obtained and
that the assumed error structure was satisfactory for both models. In
terms of nominal cpue for the blue shark, there was a relatively small
variability in the time-series for both fleets (Figure 8). cpue values
oscillated between 2 and 3 individuals per 1000 hooks for Fleet A;

and around 2 individuals per 1000 hooks for Fleet B. In general,
the trend of standardized cpue time-series was stable and similar
to that nominal cpue for both fleets. However, Fleet B showed
lower values for nominal and predicted cpue during the entire
time-series (Figure 8).

Stock assessment model

The SCAM produced a reasonable fit, with posterior median esti-
mates of steepness for the stock—recruitment relationship very
similar to the prior. This is expected, given the relatively low vari-
ability and short length of the cpue time-series, as well as the in-
formative nature of the prior on h. For cpue, the model predicted
the same stable trend as was observed, producing lower predictions
of cpue for Fleet B than for Fleet A (Figure 8). Observed age for both
fleets showed a stable trend during the study period, with Fleet A
catching predominantly adult individuals and Fleet B catching
mostly juveniles (Figure 9). Residual patterns in the age compos-
ition data from both fleets do not appear to show any significant
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Figure 7. Selectivity curves for Fleets A and B constructed using
regression models and tagging data alone; and estimated internally in
the assessment model.

Table 5. Deviance analysis of explanatory variables in the Tweedie
models for blue sharks caught by the Brazilian pelagic tuna longline
fleet from 2002 to 2012

Deviance Resid.d.f. Resid. Dev Significance (p-value)
Model for Fleet A

Null 3882 124 598

Quarter 21316 3874 103 282 <0.001
Year 32969 3873 70313 <0.001
Depth 8454 3871 61859 <0.001
Target 43390 3863 18 469 <0.001

Model for Fleet B

Null 2271 3994

Quarter 462 2265 3532 <0.001
Year 784 2261 2748 <0.001
Depth 276 2259 2472 <0.001
Target 1839 2256 633 <0.001

patterns that would indicate a major model misspecification
(Figure 9).

Selectivities estimated by the SCAM show a clear difference
between fleets, with age 9 being fully selected by Fleet A and age 7
by Fleet B (Figure 7). The shapes of the curves were very similar to
the ones constructed using tagging data alone. In addition, these
results clearly demonstrate that when fishing effort is concentrated
in a shallower depth (0—100 m) and there is an ontogenetic
shift toward deeper waters for older blue sharks, the result is a
dome-shaped selectivity.

Changes in posterior median estimates of total biomass, vulner-
able biomass, and SSB were relatively small throughout the time-
series for both scenarios. The posterior median estimate for MSY
was 879 490 metric tonnes (+108 637 metric tonnes), with a corre-
sponding estimate of SSBy;syof 682 741 (488 721). The estimates of
the current stock status suggest that total biomass in 2012 decreased
by 4% of the initial total biomass, whereas SSB decreased by 5%
(Figure 10). The posterior median estimate for SSB,y;2/SSBumsy
was 1.49, whereas F,q1,/Fysy was 0.32. The current stock status rela-
tive to MSY (Fa012/Fumsys SSBao12/SSBusy) suggests that the stock is
not overfished (SSB,g1, > SSBysy), nor is overfishing occurring
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(Fa012 < Fusy), and the stock is therefore not in danger of overex-
ploitation or collapse (Figure 11).

Discussion

Size and space segregation of blue shark

Our study is the largest spatially stratified satellite tagging study of
South Atlantic blue shark to date. Most blue sharks showed relatively
high levels of residency, staying near the release site. These results
support a growing number of studies, indicating that oceanic
sharks show site fidelity within core areas, although some indivi-
duals also undertake long range movements (Kohler et al., 2002;
Weng et al., 2005).

Results also revealed variability in vertical habitat utilization
between juveniles and adults. Fishing records have shown that
juvenile sharks will vertically segregate from adults sharks
(Papastamatiou et al., 2006). Vertical size segregation is common in
elasmobranchs and may be related to juveniles avoiding predation by
the adults (Papastamatiou et al., 2006) or physiologically optimal con-
ditions for gestation or parturition (Hight and Lowe, 2007;
Wearmouth and Sims, 2008). Pregnant female sharks are hypothesized
to select warmer waters to reduce gestation and development time of
embryos (Jirik and Lowe, 2012). On the other hand, adult female
blue shark generally prefers relatively cold waters during outside of
the ovulation—fertilization—parturition periods (Pratt, 1979).

Hazin and Lessa (2005) suggested that, in the South Atlantic,
blue shark mating occurs off the Southeast coast of Brazil (Area
IT), and ovulation and fertilization occurs off the northeast coast
of Brazil (Area I). In general, the sea surface temperature in Area
IT is much lower than in Area I throughout the year (Carvalho
et al., 2011). Area I is mainly under the influence of the warm
South Equatorial Current, and Area II is characterized by the pres-
ence of the cold, north-flowing Malvinas (Falklands) Current
(Garcia, 1997; Seeliger et al., 1997). This variability in habitat pref-
erence of adult female blue shark and threat of predation during
juvenile life stages might explain the size and spatial segregation
observed here.

Incorporating PSATSs data into stock assessment

Onereason for the absence of PSATs data in selectivity models is that
PSATs are much more expensive than conventional tags (one PSAT
is ~$USD4000). This can be problematic as tag-based selectivity
studies require recapture of enough tags in each spatial—temporal
stratum from each age-cohort to estimate how the species interact
with the fishing gear. We selected the entire Southwest Atlantic as
a tagging site, which was an appropriate spatial scale to cover
fishing grounds from Fleets A and B. However, most of the PSATs
were deployed in 2009 and 2011 and stayed attached to the animal
for no longer than 6 months. An appropriate temporal scale for
tagging studies may need to cover multiple seasons and years, as
individuals can modify their behaviour in response to long- or
short-term changes in the environment (Vandeperre et al., 2014).
In the present study, for example, the mature female blue shark 15
changed significantly its preferred depths when it migrated from
Areas II to I. We believe that a larger number than 16 tags would be
needed to fully understand the migration patterns of juvenile and
adult blue shark and its interaction with fishing gear across the
South Atlantic Ocean. However, even under low sample sizes, the
completely fishery-independent nature of the PSATs data and
the detailed information about horizontal and vertical movements
that these tags can provide are unique. It is our hope that by introdu-
cing this new application that integrates PSATs data into selectivity
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Figure 8. Nominal (circle) and standardized (line) cpue of blue sharks caught by the Brazilian pelagic tuna longline Fleets A and B from 2002 to
2012 (Top panel). Observed (circle) and predicted (line) cpue from the South Atlantic blue shark stock assessment using a SCAM (Bottom panel).
Dotted lines represent the 95% confidence interval for predicted cpue values.

models, their popularity for assessment purposes will continue to
increase despite the financial costs.

Here, we have shown that logistic regression models can be used
to estimate selectivity based on PSATs data. However, while its
asymptotic properties are recognized and can be demonstrated, it
is concerning that maximum likelihood estimation of the logistic
model suffers from small-sample bias. To reduce the bias and
predict the selectivity for age-classes of fish with very few observa-
tions, we used the alternative penalized likelihood estimation
method proposed by King and Zeng (2001).

Integrated assessment methods are capable of estimating
selectivity within models when the data are sufficient. This typic-
ally requires that assumptions be made about the shape and tem-
poral stability of the selectivity curve (Methot and Wetzel, 2013).
Externally derived estimates of selectivity, such as those obtained

here using PSATs data, can assist in identifying which selectivity
curve is the most appropriate for each fishery, especially in cases
where there are not enough data to estimate selectivity within
the model. However, given the increasing use of modern inte-
grated stock assessment models (e.g. Stock Synthesis), future re-
search should address the idea of integrating a priori
information on selectivity directly into the assessment model.
External analysis of selectivity might also help to understand
overall estimates of other quantities, such as M. Estimating M,
which is one of the most influential quantities in fisheries stock as-
sessment and management, is notoriously difficult because of con-
founding from other model parameters estimates, including
selectivity (Thompson, 1994). Good estimates of Z can be
obtained from good catch composition by cohorts, including rela-
tive/absolute abundance and a way to deal with selectivity
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Figure 9. Observed age-composition (top panel) and Pearson residuals between observed and predicted proportions-at-age (bottom panel). Blue

circles denote negative residuals.

externally leaves a good potential source of information on natural
mortality.

The use of “areas-as-fleets” approach in stock assessment has
been criticized. Some concerns are that it assumes that the stock is
evenly distributed in a given area and fleets have complete access
to it and that any difference in length and age structure is due to
gear selectivity (Hurtado-Ferro et al., 2014). In fact, in the present
study, these assumptions did not hold true. The spatial segregation
pattern between juvenile and adult blue shark observed in the
PSATs data were also seen in the catch-at-age data. Interestingly,
results from 63 fishery-independent deep longline survey sets (i.e.
deepest hook depth between 200 and 250 m) conducted in Area I
(36 sets) and Area II (27 sets) in 2012, showed that 78% (317 indi-
viduals) and 28% (219 individuals) of the blue sharks caught in
Areas I and II, respectively, were juveniles (unpublished data).
These findings, in conjunction with information presented here,
lead us to conclude that Areas I and II are occupied by adult and

juvenile blue shark and that some level of vertical segregation is oc-
curring. Thus, the differences in length and age structure of blue
shark between Areas I and II found in the catch-at-age data used
in the SCAM are due to the difference in population spatial struc-
ture, not selectivity. It is still not clear in what circumstances the
“areas-as-fleets” method is sufficient to model spatial (depth) dif-
ferences in age or length structure of the population.

Status of the South Atlantic blue shark stock

Regarding the overall stock status, the estimated biological reference
points showed that the South Atlantic blue shark stock has
been exploited below their maximum sustainable levels, similar to
the conclusion reached by the ICCAT assessment (2008) and
Carvalho et al. (2014), both using SPMs. It is important to high-
light that SPMs treat stocks as an undifferentiated biomass, ignor-
ing gender, size, and age-based differences among individuals.
The minimal data requirements of SPMs lead many fisheries
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Figure 11. Estimated trajectories for the posterior median of SSB/
SSBmsy and F/Fusy from the southern Atlantic blue shark stock
assessment using a SCAM. Black solid line represents the 95%
confidence interval for SSB,g12/SSBmsy and Fagqa/Fpmsy values.

management agencies, including ICCAT, to use these SPMs, but
ecological differences within and between members of a population
suggest that this simple form of model may overlook important
influences on population dynamics. SPMs also ignore the spatial
structure of the population and assume that the stock is homo-
geneously distributed (i.e. fully mixed; Punt and Hilborn, 1997).
It is clear that the blue shark stock in the Southwest Atlantic
Ocean segregates spatially at a large scale, which violates the fully
mixed assumption for this stock. Consequently, spatially explicit as-
sessment models, as the one presented here, may lead to a better
understanding of the spatial aspects of the population dynamics,
as well as improve the quality of stock status information for
fishery management decisions.
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