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Abstract

Areas beyond national jurisdiction, or the high seas, are vital to life on Earth.
However, the conservation of these areas, for example, through area-based
management tools (ABMTs), is challenging, particularly when accounting for
global change. Using decision science, integrated population models, and a
Critically Endangered seabird (Kuaka; Pelecanoides whenuahouensis) as a case
study, we evaluated potential ABMTs in the high seas under global change and
different governance structures, while accounting for uncertainty and imper-
fect compliance. Our study highlighted that global change in these areas will
likely cause population declines of ~60% by 2050. However, decisive conserva-
tion action could cost-effectively address predicted declines, particularly when
implemented as soon as possible and under the Biodiversity Beyond National
Jurisdiction Treaty. We illustrate how decision science can transparently navi-
gate a complex seascape of management decisions and we advocate for its wider
integration in the management of the largest sections of our planet, the high seas.
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1 | INTRODUCTION

Areas beyond national jurisdiction (the high seas) cover
nearly two thirds of the ocean surface and ~90% of the
ocean volume on Earth (Visalli et al., 2020; Nocito et al.,
2022). The high seas support an extreme abundance and
diversity of life, global nutrient cycles, carbon seques-
tration, climate regulation, fisheries, tourism, and other
economic activities (Rochette et al., 2014; Popova et al.,
2019). Despite recent commitments through the United
Nations Convention on Biological Diversity to protect 30%
of the globe, including the high seas, by 2030 (30 x 30;
Dinerstein et al., 2019, CBD, 2023), currently only ~1.2%
of the high seas are protected (Visalli et al., 2020). High
seas biodiversity faces numerous threats including com-
mercial fishing, pollution, and climate change (Laffoley
et al., 2019). Additionally, the governance of the high seas
is complex and fragmented, with multiple invested bodies,
including Regional Fisheries Management Organizations
(RFMOs; Table 1), whose mandates cover managing fish-
eries and their impacts on nontarget species within their
competence area, and the Commission for the Conser-
vation of Antarctic Marine Living Resources (CCAMLR),
whose mandate extends beyond that of RFMOs and
includes explicit conservation objectives. However, there
is no single overarching legal framework for the conser-
vation and management of all activities within the high
seas, complicating conservation efforts (Blanchard, 2017).
To address these challenges, the overarching Agreement
under the United Nations Convention on the Law of the
Sea on the conservation and sustainable use of marine
biological diversity of areas beyond national jurisdiction,
also known as the Biodiversity Beyond National Jurisdic-
tion Treaty (BBNJ), was recently adopted (United Nations
General Assembly, 2023). This is a multilateral, legally
binding treaty that covers marine genetic resources, area-
based management tools (ABMTs), environmental impact
assessments, and capacity building.

Marine conservation across the seascape is mostly pro-
vided through ABMTs. ABMTs are tools for geographically
defined areas through which one or several sectors or
activities are managed to achieve specific conservation
and sustainable use objectives (United Nations General
Assembly, 2023). ABMTs can provide various levels of pro-
tection from minimal (extensive extraction allowed) to full
protection (e.g., no-take zones) through different guide-
lines or legislation, depending on location and relevant
threats (Grorud-Colvert et al., 2021). Locations for ABMT
proposals have been based on bathymetry features or pres-
ence of important congregations of threatened species
(e.g., Davies, Carneiro, Tarzia et al., 2021; Davies, Carneiro,
Campos et al., 2021). For seabirds, one of the most threat-
ened species groups (Dias et al., 2019), target areas for

TABLE 1 Glossary of acronyms used in this article.
Acronym
ABMT

BBNIJ Treaty

Meaning
Area-based management tool

Biodiversity Beyond National
Jurisdiction Treaty (Agreement under
the United Nations Convention on
the Law of the Sea on the
conservation and sustainable use of
marine biological diversity of areas
beyond national jurisdiction; United
Nations General Assembly, 2023 )

Commission for the Conservation of
Antarctic Marine Living Resources

CCAMLR

RFMO Regional Fisheries Management

Organization

ABMTs, can be identified using tracking, as illustrated by
a new 600,000 km? ABMT within the North Atlantic high
seas (Davies, Carneiro, Tarzia et al., 2021; Davies, Carneiro,
Campos et al., 2021). However, the remoteness of the high
seas can reduce ABMT compliance (Collins et al., 2021).
Although often assumed, the efficacy of ABMTSs in revers-
ing current and preventing future population declines has
rarely been tested a priori, especially in the high seas.

Conservation decisions, particularly those pertaining to
high seas ABMTs, are highly challenging due to extreme
uncertainty, multiple competing values, complex man-
agement alternatives, and irreversible consequences (e.g.,
extinction) (Hemming et al., 2022). In such situations, deci-
sion science aids rational and transparent decision-making
by articulating objectives relevant to a decision, identifying
management alternatives, and predicting consequences
while accounting explicitly for uncertainty (Canessa et al.,
2020; Hemming et al., 2022). Decision science offers an
ideal approach to overcome the challenges of decision-
making in the high seas, including for ABMTs, yet it is
rarely applied in this context, despite the recent focus on
the BBNJ Treaty and 30 X 30.

In this study, we used the Critically Endangered Kuaka
(Whenua Hou Diving Petrel; Pelecanoides whenuahouen-
sis) to demonstrate how decision science can aid decisions
on ABMTs in the high seas for species recovery, now
and in the future. Kuaka consistently use a distinct area
in the high seas of the Southern Ocean, which is there-
fore of high conservation concern (Fischer, Debski, Spitz
et al., 2021). We used decision science to evaluate the cost-
effectiveness of alternative ABMTSs for Kuaka either under
RFMO/CCAMLR or BBNJ governance by combining inte-
grated population models, expert elicitation, and decision
trees. Our predictions incorporated various sources of
uncertainty, including uncertainty that a proposed ABMT
will be successfully established and imperfect compliance.
To our knowledge, our study is the first a priori assess-
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ment of ABMT effectiveness in the face of global change as
well as the first application of decision science to identify
cost-effective high seas ABMTs for species recovery.

2 | METHODS

2.1 | Study species

Kuaka are Critically Endangered seabirds and histori-
cally inhabited dunes throughout southern Aotearoa (New
Zealand; Fischer et al., 2020). Invasive predators extirpated
all colonies, except on Whenua Hou (Fischer et al., 2020).
Kuaka persist there in a single colony (0.018 km?). Whenua
Hou was declared free of invasive predators in 2000,
yet the Kuaka population remained at ~200 adults, well
below carrying capacity (Fischer et al., 2020, 2022). Ongo-
ing threats impact Kuaka within their breeding range:
storm-induced erosion of breeding habitat, interspecific
competition for burrows, and inshore vessel strikes (col-
lisions following light-pollution-induced disorientation)
(Fischer et al., 2023). During the nonbreeding period
(January-September), Kuaka migrate to the high seas
south of Australia (Fischer, Debski, Spitz et al., 2021). The
core nonbreeding area covers ~1.5 million km? (Figure 1),
where Kuaka encounter no direct anthropogenic threats.
However, this beneficial situation is likely to change as
human activities within the high seas expand in the future
(e.g., Kriiger et al., 2018).

2.2 | Decision framing and objectives

The Kuaka population is extremely small, so all future
threats, including high seas threats, require decisions
about mitigation to minimize extinction risk. We used var-
ious decision analytical tools to evaluate the need for, and
the cost-effectiveness of, ABMTs within the high seas non-
breeding range of Kuaka. We identified two fundamental
objectives for ABMTs: (1) maximizing the Kuaka popula-
tion size (number of adults in 2050) and (2) minimizing
establishment costs (total cost in NZ$ of ABMT establish-
ment to the New Zealand Department of Conservation).

2.3 | Target area

To develop ABMTs for future Kuaka management in the
high seas, we first identified the target area using a tracking
dataset spanning multiple nonbreeding periods (Fischer,
Debski, Spitz et al., 2021) together with a standardized
workflow (track2KBA; Beal et al., 2021) to delineate a
proposed Key Biodiversity Area (IUCN, 2016) for Kuaka

(Supplemental Material S1). This area was then simplified
by minimizing the area-to-boundary ratio (Handley et al.,
2020), enhancing the practicality of ABMTs, and resulting
in our final target area (Figure 1a).

2.4 | ABMT alternatives

To identify the most cost-effective ABMT for Kuaka con-
servation, we developed several alternative management
strategies. We first used formal expert elicitation (Hem-
ming et al., 2018) to identify future threats in the target
area. Seven diving petrel experts were asked to define
future threats, identify which vital rates those threats
would impact (juvenile survival, adult survival, breeding
probability, breeding success; Fischer et al, 2022, 2023),
and articulate during which decade impacts would occur
(2020-30, 2030-40, and 2040-50). At this stage, experts
were not yet asked to provide insights on the magni-
tude of threats (see below). During a follow-up online
discussion, experts were shown anonymous summaries
of responses and discussed mitigation measures for each
threat. Experts could then revise their initial answers.
Experts highlighted vessel strikes due to increased light
pollution under increased anthropogenic activity (Fischer,
Debski, Taylor et al., 2021), marine climate change impacts
(IPCC, 2023), resource competition with humans following
the expansion of Antarctic krill fisheries (Trathan, 2023),
and expanding energy infrastructure (e.g., high seas wind
farms; Zheng et al., 2018) as most likely future high seas
threats (Figure 1b). Simultaneously, experts were asked to
provide input for mitigation measures, which we distilled
into Status Quo and 12 fully specified ABMT alternatives
(Table 2). ABMT alternatives included voluntary miti-
gation, compulsory mitigation, and compulsory seasonal
closures, implemented from 2030 or 2040 onward, under
either RFMO/CCAMLR or BBNIJ (enabling mitigation of
threats beyond fishing) governance. For ABMTs imple-
mented under the BBNJ Treaty, recommendations on the
implementation of measures would be made to RFMOs
and CCAMLR falling within their competences (United
Nations General Assembly, 2023).

2.5 |
costs

Predicting ABMT establishment

We estimated the total costs to the New Zealand Depart-
ment of Conservation of establishing ABMTs using stan-
dard business planning procedures. We first defined the
perceived full-time equivalents and timespan (years) of
personnel required to advocate internationally for the
establishment of an ABMT. We then used the pay bands
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FIGURE 1 Target area in the high seas for future Kuaka area-based management tools as identified using tracking data (a), future

threats perceived by experts to impact Kuaka within this area (b), and the first-ever photograph of a Kuaka at sea (C; credit: H Shirihai, the
Tubenoses Project). CCAMLR, Commission for the Conservation of Antarctic Marine Living Resources; SIOFA, Southern Indian Ocean
Fisheries Agreement, SPRFMO, South Pacific Regional Fisheries Management Organization.

per full-time equivalent in New Zealand $ (DOC, 2021) to
define an annual cost range. To incorporate uncertainty,
we considered costs to be uniformly distributed over this
range and randomly drew 5000 values, which we mul-
tiplied by the full-time equivalents and years required
to derive a total establishment cost estimate per ABMT
(Supplemental Material S2).

2.6 | Predicting Kuaka population size
under ABMTs

To predict the Kuaka population trajectory under each
ABMT, we combined an integrated population model
fitted to long-term data with formally elicited expert
judgment where empirical data were unavailable (Sup-
plemental Material S3). Our integrated population model

85U8017 SUOWILLIOD A1) 8|qeo! dde 8y Aq peusenob aJe Ssjoie O ‘8sn Jo se|nJ Joj Akeid18Ul|UO /8|1 UO (SUONIPUD-pUE-SWB) W00 A8 |1 Afe.d jpuluo//:SAny) SUORIPUOD pue swie | 8y18es *[£202/ZT/c0] Uo Ariqiauliuo A8|IM ‘YiesH JO AnSIulIN A 68621 [UCO/TTTT OT/I0P/W0D A8 | 1M Aeiq1|BUI UO"01qUOD//Stny Wo.j pepeo|umod ‘0 ‘XE92SG.LT



GEE ET AL.

WILEY -2

combined an open-population state-space Cormack-Jolly—
Seber model, two generalized linear mixed-effect models
for breeding probability and success, and a hierarchical
count model (Fischer et al., 2022). This model allowed us
to estimate current vital rates and population size, while
accounting for all sources of uncertainty. For parameters
that could not be estimated empirically (i.e., impacts of
future threats on vital rates per ABMTs, ABMT establish-
ment probabilities, and ABMT compliance), we conducted
two further expert elicitations following standardized pro-
tocols (Hemming et al., 2018), which were hosted through
user-friendly Shiny apps containing the relevant back-
ground information on Kuaka, the anticipated threats,
and the ABMT alternatives: a biological expert elicita-
tion with seven diving petrel experts and an implemen-
tation expert elicitation with six high seas governance
experts.

Through the biological expert elicitation, we obtained
four-point estimates on how vital rates were perceived
to change following the onset of all anticipated future
threats in conjunction (Figure 1b and Section 2.4) and how
the ABMTs would mitigate these impacts (assuming 100%
compliance) for each decade. To integrate expert judgment
in our model, we (1) rescaled each expert response to 100%
confidence (Speirs-Bridge et al., 2010), (2) fitted individual
beta-PERT distributions, (3) resampled and refitted those
distributions to combine them into single beta distribu-
tions, and (4) used the differences between cumulative
density functions of current model-derived estimates and
expert-elicited estimates of vital rates to derive normally-
distributed §-coefficients (Fischer et al., 2022, 2023). These
transformations allowed us to estimate past vital rates
and population size and project the fates of Kuaka under
different ABMTs simultaneously.

Through the implementation expert elicitation, we
obtained four-point estimates of probabilities of the estab-
lishment of ABMTs, assuming that the estimated costs
could be covered (Supplemental Material S2), and the
perceived level of compliance per ABMT if established.
To integrate this expert judgment into the model, we
repeated steps 1-3 in the biological elicitation above and
derived aggregated beta-distributed parameters. We then
incorporated uncertain establishment using a decision
tree approach (Figure 2; Fischer et al., 2023; McMurdo
Hamilton et al., 2023), and imperfect compliance by multi-
plying ABMT-specific 5-coefficients per vital rate with the
beta-distributed compliance parameter.

Ultimately, we projected the Kuaka population under
Status Quo excluding future threats, Status Quo, includ-
ing future threats, and 12 ABMT alternatives under three
different scenarios: (1) assuming perfect compliance and
guaranteed establishment, (2) including imperfect com-

pliance, and (3) including imperfect compliance and
uncertain establishment.

2.7 | Cost-effectiveness analysis

We assessed the balance between the cost of establishing
each ABMT and their effectiveness (projected Kuaka pop-
ulation size) through the incremental cost-effectiveness
ratio (Ferriére et al., 2021). We first drew 5000 random val-
ues from predicted cost and population distributions and
then calculated the incremental cost-effectiveness ratio by
dividing the difference between ABMT k and status quo
costs by the difference between ABMT k and status quo
effectiveness. We assumed perfect covariance between,
and equal weight placed on, cost and effectiveness. Con-
sidering the objectives, the closer the ratio was to zero, the
better.

3 | RESULTS

3.1 | Population projections under
ABMTs

When ignoring anticipated global change, predic-
tions indicated a stable Kuaka population trajectory
(Nad.2050 = 189; 95% CI = 36-574), yet under global change
and without intervention, all Kuaka vital rates were
predicted to deteriorate increasingly over the next three
decades, resulting in a predicted population decline of
~60% by 2050 (Ngq2050 = 77; 14-258) (Figures 2-4). All
high seas ABMTs were predicted to counter this future
decline, albeit to varying degrees. When assuming perfect
compliance and guaranteed establishment, mitigation
implemented in 2040 under RFMO/CCAMLR governance
performed the worst (Ngq2050 = 96; 18-312), whereas
a seasonal closure implemented in 2030 under BBNIJ
governance performed the best, as it prevented the
impending population decline (Ngq5050 = 182; 39-536).
In general, ABMTs established under BBNJ governance
outperformed those established under RFMO/CCAMR
governance.

Levels of compliance were predicted to vary, albeit with
high levels of uncertainty (Figure 3). Voluntary mitigation
measures were predicted to have the lowest levels of com-
pliance, and seasonal closures the highest, regardless of
governance structure and implementation year. Imperfect
compliance considerably reduced the effectiveness of all
ABMTs to counter the future population decline, but the
order of ABMT performance remained largely unchanged
(Figure 4).
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FIGURE 2 Decision tree illustrating predicted (decision) outcomes of area-based management tools (ABMTs) for Kuaka management

in the high seas in medians (95% CIs). Darker shades of green indicate more desirable outcomes per objective. Source: Artwork provided by A

Jearwattanakanok.

Similarly, there was considerable uncertainty on ABMT
establishment probability estimates (Figure 3). Voluntary
mitigation measures were considered more likely to be
established successfully than compulsory mitigation and
seasonal closures. Imperfect compliance and uncertain
establishment further reduced the performance of ABMTs
(Figure 4), but the ranking of ABMTs remained largely
unaltered.

3.2 | Costs of ABMT establishment

Establishment costs varied highly between ABMTSs
(Figure 2, Supplemental Material S2). Aside from status
quo (0$), establishing voluntary mitigation measures
under RFMO/CCAMLR (regardless of year) was con-
sidered the least expensive (54,000; 45,000-64,000%) as
it required the least resource (0.3 full-time equivalents
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FIGURE 3

Estimated and predicted vital rates of Kuaka under area-based management tools (ABMTs) in the high seas (a-d), levels of

compliance (e), and probability of establishment (f) of high seas ABMTs for Kuaka. Symbols represent medians with 95% Cls.

across 2 years), whereas establishing a seasonal closure
under BBNIJ governance in 2040 was considered the
most expensive ABMT (323,000; 268,000-383,000%) as it
required the most investment (0.9 full time-equivalents
across 4 years).

3.3 | Cost-effectiveness of ABMTs
Cost-effectiveness of high seas ABMTs for Kuaka man-
agement varied considerably, but ABMTs established
in 2030 were consistently predicted to be more cost-
effective than ABMTs established in 2040 (Figure 5,
Supplemental Material S4). Assuming perfect compliance
and guaranteed establishment, voluntary mitigation
under RFMO/CCAMLR governance in 2030 was the
most cost-efficient ABMT, whereas a seasonal clo-
sure under BBNJ governance in 2040 was the least
cost-effective. Seasonal closures established in 2030,
under BBNJ or RMFO/CCAMLR governance, were
the only ABMTs with positive uncertainty bounds.
Imperfect compliance and uncertain establishment
reduced the cost-effectiveness of ABMTs but did not
reshape the cost-effectiveness landscape (Supplemental
Material S4).

4 | DISCUSSION

Our analyses predicted that without intervention, Kuaka
are likely to decline by ~60% by 2050, indicating that
expected gains of current conservation efforts (Fischer
et al., 2023) are likely to be undone by future impacts in
the high seas. However, high seas ABMTs can prevent the
predicted decline. Evaluated ABMTs differed substantially
in effectiveness and cost. Voluntary mitigation measures
established in 2030 through RFMO/CCAMLR governance
were predicted to be the most cost-effective solution, but
compulsory seasonal closures established in 2030 were the
only ABMTs with certain conservation benefits. Seabirds
like Kuaka thus require holistic conservation across land,
inshore waters, and the high seas.

Our results highlighted early and decisive action in the
high seas as paramount for conservation success and cost-
effective management. Early implementation was pre-
dicted to limit population declines, as ABMTs prevented
future threats. Delayed implementation resulted in more
substantial declines, as ABMTs addressed threats after they
arose. Early establishment would also be cheaper, requir-
ing less international negotiation effort, as establishing
high seas ABMTs is a complex process. Member coun-
tries of RFMOs, CCAMLR, and/or the BBNJ Treaty must
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FIGURE 4 Kuaka population projections under various high seas area-based management tools, with (solid lines) or without impacts of
future change (dashed dark-green line), assuming perfect compliance and guaranteed establishment (a), imperfect compliance, but
guaranteed establishment (b), and imperfect compliance and uncertain establishment (c). Lines represent predicted medians; shading
represents 95% CIs. Source: Artwork provided by A Jearwattanakanok.
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FIGURE 5 Cost-effectiveness of high seas area-based management tools (ABMTs) for Kuaka management, assuming perfect

compliance and guaranteed establishment. Solid symbols represent medians, whereas translucent symbols represent 5000 random draws per
ABMT, illustrating uncertainty. Orange symbols represent ABMTs established in 2030, and blue symbols indicate ABMTSs established in 2040.
Triangles represent ABMTs established under Biodiversity Beyond National Jurisdiction Treaty (BBNJ) governance, and squares indicate

ABMTS: established under Regional Fisheries Management Organization (RFMO)/Commission for the Conservation of Antarctic Marine
Living Resources (CCAMLR) governance. Cost-effectiveness graphs of ABMTs, while accounting for imperfect compliance and uncertain
establishment, can be found in Supplemental Material S4. Source: Artwork provided by J de Hoop.

cooperate, and their internal processes can be challenging
for conservation, particularly when consensus decision-
making is employed (e.g., most RFMOs and CCAMLR;
Wright et al., 2015; Haas et al., 2020). For example, com-
mercial interests can challenge ABMT establishment, as
was the case for the Ross Sea Region Marine Protected
Area (Brooks et al., 2019). Our target area is currently
spared from commercial interests (Fischer, Debski, Spitz
et al., 2021), but this beneficial situation is likely to change.
Once commercial interests are established, ABMT estab-
lishment costs were expected to increase, as international
negotiation challenges would increase. Considering both
the impending threats in the face of global change and the
biological benefits and cost-effectiveness of acting early,
decisive conservation action in the high seas is crucial.
The BBNIJ Treaty creates a global governance framework
for the implementation of conservation management and
as such has the power to instigate urgently needed decisive
high seas conservation action. Our predictive assessment
of the effectiveness of conservation action under BBNJ gov-
ernance reinforces the Treaty’s potential for conservation.

Experts expressed substantial uncertainty about BBNIJ
governance, partially because ABMTs proposed through
the BBNJ Treaty would partially rely on implementation
through other bodies. Yet, experts also considered the
BBNIJ Treaty the most beneficial governance structure for
conservation action in the high seas because of its ability to
address threats beyond fisheries (e.g., offshore renewables;
Zheng et al., 2018). The BBNJ Treaty will utilize majority
decision-making, reducing the power of single countries
in negotiations, and providing a framework for coordina-
tion and cooperation across oceans, potentially resulting
in more robust ABMTs (Haas et al., 2020; United Nations
General Assembly, 2023). Thus, the BBNJ Treaty may
enable the decisive, wide-reaching conservation action
required for species recovery and overarching global con-
servation goals such as 30 x 30 (Dinerstein et al., 2019,
CBD, 2023).

Decision science can transparently inform future deci-
sions on high seas ABMTs, but like all decisions, the
best choice depends on the underlying values (Hemming
et al., 2022). We assumed two equally weighted objectives;
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explicit weighting and/or additional objectives would be
a logical next step beyond the scope of our study (e.g.,
Fischer et al., 2023). An additional objective could be
to maximize ecosystem benefits of ABMTs (e.g., Davies,
Carneiro, Tarzia et al., 2021; Davies, Carneiro, Campos
et al., 2021), as >33 additional seabird, marine mammal,
and elasmobranch species utilize our target area, 45% of
which are threatened (Supplemental Material 5). Includ-
ing this objective would further highlight the ecological
importance of this vast area of ocean (into which only a
small number of Kuaka disperse; Fischer, Debski, Spitz
et al., 2021). Another objective could be to minimize eco-
nomic impacts of ABMT establishment. However, the
commercial use of our target area is still absent (Fischer,
Debski, Spitz et al., 2021). Considering the high ecosys-
tem value and the currently limited commercial value,
this would likely further highlight compulsory (seasonal)
closures in 2030 under the BBNJ Treaty, as the preferred
ABMT choice across objectives.

Despite the vital importance of the high seas to life on
Earth, conservation in these areas is extremely challeng-
ing. Our study highlights three key conclusions: (1) global
change in the high seas will cause species declines, (2)
early, decisive conservation action is more cost-effective
to address these declines, and (3) BBNJ governance could
facilitate the implementation of the required action in the
high seas. We advocate for wider use of decision science
and predictive analyses such as ours to transparently navi-
gate the complex seascape of management decisions in the
high seas as the BBNJ Treaty and 30 X 30 gain traction.
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