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1.  INTRODUCTION

Sea turtle species are of great concern in marine
environments. The Gulf of Mexico and Caribbean
Sea host 5 species, including hawksbill Eretmochelys
imbricata, green Chelonia mydas, loggerhead Caretta
caretta, Kemp’s ridley Lepidochelys kempii and
leatherback Dermochelys coriacea turtles (Valverde
& Holzwart 2017). As integral components of these

large ecosystems, sea turtles provide important eco-
logical services, such as nutrient transport and recy-
cling, control of populations at lower trophic levels
and ecosystem maintenance, among others (Bouchard
& Bjorndal 2000, Heithaus 2013).

Hawksbill and green turtles are important to 2 of
the most productive marine ecosystems in the trop-
ics: reefs and seagrass meadows. The Gulf of Mexico
harbors the largest nesting population of hawksbill
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turtles in the Western Atlantic and the fifth largest
nesting population of green turtles (Garduño-Andrade
et al. 1999, Spotila 2004, Mortimer & Donnelly 2008).
Evaluating the threats to these sea turtle populations
and their habitats (particularly fisheries, climate
change and pollution) and understanding the move-
ment of individuals is needed in order to facilitate
informed conservation actions. This information is
considered a priority in sea turtle conservation and
management research worldwide (Jeffers & Godley
2016, Hays et al. 2019). In this context, it is important
to assess the ecological vulnerability of sea turtles to
better execute any preventive or emergency meas-
ures. These are key species in the ecosystems they
occupy, and therefore there is a clear interest in eval-
uating their vulnerability (Sanderson et al. 2002, Eck-
ert & Hemphill 2005).

Vulnerability evaluation for a given biological or
social entity has been a powerful tool for describing
the states of susceptibility and exposure to threats
(Adger 2006). For our purposes, we define ecological
vulnerability as the result of exposing a sensitive
attribute of an object of interest (OI) to a multi-level
threat while considering the internal and external
capabilities of the OI to cope with the impact
(Zacharias & Gregr 2005, Thiault et al. 2018). In the
past decade, several approaches and methods have
been proposed to quantitatively evaluate ecological
vulnerability (Fuentes et al. 2011, Tolotti et al. 2015,
Thiault et al. 2018). Although these methods differ
slightly depending on the target of the application,
almost all consider the same key parameters: sensi-
tivity, exposure and adaptive capacity (McCarthy et
al. 2001). The published methods have employed dif-
ferent quantitative techniques, both with and with-
out explicit spatial modules.

In this study, we used a scheme that combines the
evaluation of the impacts of several threats on 2
species of sea turtles in the Gulf of Mexico with spa-
tially explicit information. Our approach in this study,
which is the first spatially explicit evaluation of the
ecological vulnerability of sea turtles in the region,
was based on location data (satellite telemetry) of sea
turtle individuals and the threats acting on them and
their habitats (using public information and expert
knowledge).

To date, most published vulnerability assessments
have focused on whole ecosystems or regions of
interest, likely masking critical information about the
endangered species within those ecosystems. This
type of assessment is potentially problematic when
the information gathered is explicitly utilized for
decision making and management strategies, partic-

ularly for species such as sea turtles (Ban et al. 2010).
For example, Micheli et al. (2013) evaluated cumula-
tive human impacts on marine ecosystems in the
Mediterranean using a weighted cumulative impact
on this ecoregion; however, they did not evaluate sta-
bility coefficients or adaptive capacity, as suggested
by Intergovernmental Panel on Climate Change
(IPCC) (Füssel & Klein 2006). Due to a lack of infor-
mation on the resistance or resilience capabilities of
natural systems, evaluating their stability coefficients
or adaptive capacity is rare (Beever et al. 2016); thus,
many studies focus only on the potential impacts of
multiple threats.

Sea turtles are species of great concern in marine
environments in terms of the potential impacts of
human and natural threats acting on their popula-
tions and critical habitats (Frazier 2005, Mazaris et al.
2017, Valdivia et al. 2019). Nevertheless, there are
information gaps in terms of the vulnerability of their
populations and aggregation zones (i.e. areas used
for reproduction and feeding home ranges). Incorpo-
rating different tools for conservation research with
spatially explicit strategies will help to integrate the
critical information that is needed to implement con-
servation and management strategies for these en -
dangered species.

The objective of this study was to evaluate the eco-
logical vulnerability of 2 species of sea turtles in the
Gulf of Mexico to multiple threats, with the aim of
calculating the cumulative ecological vulnerability
for both species, determined by building and imple-
menting a spatially explicit approach. This concep-
tual framework allowed us to successfully use avail-
able geographic data (including satellite telemetry
records) to generate spatially explicit outputs regard-
ing the sensitivity, potential impacts of several threats,
coefficients of stability and ecological vulnerability
for these 2 species.

2.  MATERIALS AND METHODS

2.1.  Study site

We defined our study area as the reported geo-
graphic distribution of hawksbill and green sea tur-
tles in the Mexican waters of the Gulf of Mexico and
the Caribbean Sea, an area that includes the Exclu-
sive Economic Zone of Mexico and small portions of
other territories (Fig. 1). This study area also con-
tained the habitat suitability range for both species
described by Uribe-Martínez et al. (2017), which de -
scribe the geographic range of these species in this
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region. Both geographic ranges are included in the
Atlantic−Western Caribbean and Atlantic−North-
west regional management units for hawksbill and
green turtles, respectively (Wallace et al. 2010). Our
study area is also framed within the South Florida/
Bahamian Atlantic, Southern Gulf of Mexico and
Caribbean Marine Ecoregions of North America
(Wilkinson et al. 2009).

The study species (hawksbill and green sea turtles)
were selected because they are species with clear
engineering roles in the marine ecosystems they
occupy (Jackson 1997, Turner & Klaus 2005, Lal et al.
2010, Heithaus 2013) and data were available at the
time of this analysis.

2.2.  Ecological vulnerability assessment

We defined ‘ecological vulnerability’ as the condi-
tion in which at least one sensitive attribute of an OI
(in this case, hawksbill and green turtles) is exposed
to a multi-level threat (modified from Zacharias &
Gregr 2005). Within this definition, we integrated
complementary quantitative elements into a utility
model for an ecological vulnerability evaluation
(Fuentes et al. 2011, Thiault et al. 2018).

This methodological approach in cludes 2 comple-
mentary steps: para metrization of vulnerability equa-

tion components and spatially explicit
ana lysis. The parametrization analy-
sis was based on the Conservation
Action Plan (CAP) tool developed by
The Nature Conservancy (Granizo
et al. 2006, Carr et al. 2017) (https://
www. conservation gateway. org/ Conser
vation Planning/ Action Planning/ Case
Studies and Plan Examples/ Pages/ case-
studies-and-plan-exa. aspx). This tool
enables integration of scientific data
and expert knowledge (Carr et al.
2017) for ecological integrity and
threat assessment in order to provide
a synoptic panorama of the actual sta-
tus for the OI. The spatially explicit
evaluation employs map algebra op -
erations in geographic information
systems to conjugate the terms de -
manded by the general vulnerability
equation (Eq. 1) (Malczewski 1999);
this step is recognized as the natural
progression for using the CAP tool as
a spatially explicit analysis (The
Nature Conservancy 2015).

Based on this approximation, we followed a con-
ceptual framework in which we (1) quantified the
sensitivity of the 2 sea turtle species based on satel-
lite telemetry data, (2) evaluated the potential im -
pacts of individual in-water threats to their popula-
tions and habitats, (3) considered the action of a
stability coefficient through intrinsic and extrinsic
factors, (4) calculated the ecological vulnerability of
each sea turtle species to individual threats and (5)
quantified their cumulative ecological vulnerability
based on the individual assessments.

The calculation of the OI’s vulnerability to a spe-
cific threat (VulnTh) is mathematically expressed as:

VulnTh = Sens × ExpTh – SC (1)

where Sens is sensitivity, ExpTh is exposure to a
threat and SC is the stability coefficient of the sea tur-
tle population (modified from Füssel & Klein 2006,
Fuentes et al. 2011). Each of these terms is explained
in the following paragraphs.

2.3.  Conceptual framework and parametrization of
this approach

Here, we considered sea turtles as OIs character-
ized by their attributes, which are the dominant eco-
logical features that are critical to their ecological
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Fig. 1. Analyzed region including the Mexican Exclusive Economic Zone in
the Gulf of Mexico and the western Caribbean Sea where the hawksbill
Eretmochelys imbricata and green Chelonia mydas sea turtles occur. Pie plots
show locations where tags were deployed; the size of the plot reflects the num-
ber of tags deployed (max. 8). Gulf of Mexico shaded relief basemap by French 

& Schenk (2015); coastlines are from Sandivik (2009)
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integrity. Thus, if these attributes are negatively im -
pacted or disturbed to the point whre it impacts sur-
vival, the OI might disappear (modified from Granizo
et al. 2006). These attributes are directly linked to
indicators that are quantifiable variables and can be
mapped under the approach proposed in this study.
We used satellite tracking data to define the attrib-
utes of the OI, in this case their home ranges during
the internesting, migration and feeding phases of
their life cycle.

We applied map algebra for the vulnerability as-
sessment under this spatial multicriteria decision
analysis approach. For all indicators, SMART+ criteria
(specific, measurable, achievable, relevant and time-
bound + availability of their spatial representation)
were considered (Granizo et al. 2006, Carr et al. 2017).

Ecological vulnerability was evaluated within dis-
crete spatial units that were defined as a regular
 lattice of hexagons covering the entire study area.
Hexagons are convenient for representing neighbor-
hoods and connectivity, and they can be adjusted to
spatially evaluate large areas as well as combinations
of multi-resolution data sources (Birch et al. 2007). In
this case, hexagons with diameters of 25 km were
used (405.95 km2), which encompassed the spatial
resolution of the data available for the indicators of
all vulnerability terms.

To maintain mathematical consistency in the calcu-
lations, all variables were rescaled from 0 to 1 when
summed for each term in Eq. (1); in this manner, the
range of values was kept the same for all variables in
the solved equations.

2.3.1.  Sensitivity

The first term in Eq. (1), sensitivity, refers to the
degree to which the attributes of the OI are impacted
by a specific threat, considering their associated indi-
cators (Fuentes et al. 2011). This term is associated
with the ecological integrity of the OI (Granizo et al.
2006), which is defined as the ability of an ecological
system to withstand perturbations and maintain a
healthy condition within natural ranges of variation
(adapted from Parrish et al. 2003).

Under the conceptual premise that sensitivity to
threats increases as the ecological integrity (viabil-
ity) of an OI diminishes (Reza & Abdullah 2011), we
evaluated sensitivity as having an ecologically in -
verse relationship with the viability of the OI. This
term can be viewed as the response to the question
as to the attributes impacted or modified by the as -
sessed threats.

(2)

where each attribute indicator (Atti) has an assigned
λi that weights the attributes.

Using the CAP tool, we evaluated the ranks of
the sensitivity of the OIs and built the first term of
the vulnerability equation. Satellite tracking is an
expensive technology for defining the spatial and
movement ecology of large marine organisms; how -
ever, its efficiency has been widely proven (Hays
& Hawkes 2018). From existing literature (González-
Garza et al. 2015, del Corral-Mancera 2016,
Labastida-Estrada et al. 2019), we evaluated indi-
viduals from 9 green turtle and 12 hawksbill turtle
rookeries. Additionally, Jeffers & Godley (2016)
showed that only 3% of published papers tracked
more than 70 sea turtle individuals; thus, our study
based on the locations of 65 adult reproduc tive
females of both species captured during their
nesting season (43 for Chelonia mydas and 22
for Eretmochelys imbricata ) using satellite teleme-
try data (permit from SGPADGVS/SEMARNAT,
Mexico, No. 09583/15), includes a sufficient num-
ber of tracked individuals to infer the population-
level distribution, as indicated by Schofield et al.
(2013). The number of tracked individuals in the
present study was significantly larger than other
tracking projects around the world (Jeffers & God-
ley 2016), and adult reproductive females were
used as the life stage to study because nesting
females are critical for the recovery of populations
worldwide (Heppell 1998).

We considered adult reproductive females as a
compact life stage focus group. Variability in so -
matic and ethological conditions within the group
was expected but did not affect the general repre-
sentation of their spatial distribution and configura-
tion. Additionally, as sea turtles are loyal to their
nesting beaches (thus their internesting sites), feed-
ing grounds (even overwintering) and migratory
routes (philopatry) (Broderick et al. 2007, Hulin &
Guillon 2007, Lee et al. 2007, Stiebens et al. 2013,
Gaos et al. 2017), we assumed that the spatial con-
figuration elucidated by the tracked individuals from
several beaches in the study area was valid and
representative of the nesting female populations in
the study region, thus incorporating a connectivity
element (migratory routes) as has been encouraged
to enable better conservation plans (Mazor et al.
2016).

The tracking data were quality-controlled by run-
ning a speed-distance filter (‘vmask’) algorithm (im -
plemented in R ‘argosfilter’ package; Freitas et al.

Sens = AttΣi jj iλ
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2008), and any record on land was deleted, using
the mask from Global Administrative Areas (https://
gadm. org/). The data were then visually semi-quan-
titively classified as belonging to the internesting,
foraging or migration periods. Note that we had the
complete track of each individual when this stage of
classification was done, so the full spatial configura-
tion and behavior of the individual was available for
analysis. The first ecological attribute (internesting
period) was defined by the location of the tracked
females during the period in which they stayed near
their nesting beaches between consecutive egg-lay-
ing events, spatially circumscribing a well-defined
region close to shore in which all location records
overlapped (as previously described by Tucker et al.
1995) (Table 1).

The second attribute was built with the tracking
data during the individuals’ feeding/long-term ag -
gregations. These were defined once a female re -
stricted her movements (known from telemetry data)
to a defined space, in which she remained for years
while preparing for the next reproductive season,
and where all location records overlapped and clus-
tered in the area each individual delimited. Kernel
utilization distributions (KUDs) were calculated using
the function ‘kernelUD’ implemented in R package
‘adehabitatHR’ (Calenge 2006). These were calcu-
lated for every individual in each of the 2 abovemen-
tioned stages, with a spatial resolution of 1 km and a
smoothing factor (h) calculated using the ad hoc
method (Worton 1989). Home ranges were obtained
based on the 80% isopleth of each KUD (Calenge
2006). We then merged individual home ranges for
both types of aggregation area (internesting and
feeding/long-term periods) to obtain a single layer
for both stages for each species.

The third ecological attribute of sensitivity is the
connectivity between the internesting and feeding

habitats, which is essential for migration. Only those
records gathered during migration periods were
used to count the number of individuals which mi -
grated through each spatial evaluation unit (hexagon),
and were attributed to each corresponding unit. This
procedure was done for the migratory records of
each species derived from the satellite tracking data
sets, using the day after the last record in the area of
interest, and until the second day when the individ-
ual entered the feeding/residence area spatially de -
limited by the location records at this stage.

The weights of the stages (λi in Eq. 2) were 0.6 for
long-term aggregations (feeding), 0.3 for internest-
ing areas and 0.1 for migratory routes (modified from
Cuevas et al. 2018a). The main indicator for these
weights was the time spent during each stage at a
given site. For instance, in long-term aggregations,
individuals may stay for 2−3 yr, whereas migration
sites are occupied for only a short period as the in -
dividuals pass by; however, without those critical
migratory sites, sea turtles would not be able to com-
plete their life cycle.

Additionally, to obtain tabular outputs of the sensi-
tivity of the discrete categories (Table 1), we used the
Jenks method to maximize variability between cate-
gories and minimize variability within categories
(North 2009), using the minimum and maximum val-
ues for each attribute (KUD kernels and migration
site usage) as the domain range for our analysis.

2.3.2.  Exposure

The second term in Eq. (1), exposure, quantifies the
occurrence of a threat that negatively affects the
attribute(s) of the OI with variable intensity. This
threat is defined by 3 features according to the CAP
tool analysis approach: severity, scope and irre-

Ecological attribute Category Indicator Very high High Fair Very low

Aggregation of in-water Population size Sum of the kernel 0.1214 0.2929 0.5357 1.0000
reproductive females utilization densities

Feeding/long-term Population size Sum of the kernel 0.2150 0.4750 0.8000 1.0000
aggregations utilization densities

Spatial connectivity for Landscape Number of individuals 0.1493 0.3765 0.6924 1.0000
migration between context using each
critical habitats hexagon for migration

Table 1. Indicators of the ecological attributes used for the sensitivity term in the vulnerability assessment of hawksbill
Eretmochelys imbricata and green Chelonia mydas sea turtles in the Gulf of Mexico and western Caribbean. Values ranged
from 0 to 1 depending on the frequency distribution of the input data in the layers, and the sensitivity categories were assigned 

using the Jenks method. Procedures for determining indicators are presented in Section 2.3.1
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versibility. Severity is the degree or intensity of the
damage caused by the threat in a location; scope is
the geographic extent of the threat in the study area;
irreversibility is a measure of whether the negative
impact may or may not be reversed (Granizo et al.
2006). The CAP tool platform was used to rank the
threats based on a hierarchical process.

The sensitivity of an OI to the intensity of the inter-
action with a specific threat is termed the potential
impact (PITh), and it is mathematically expressed as:

PITh = Sens × ExpTh (3)

The threats used in this assessment were selected
from the Program of Actions for the Conservation of
Species (PACE in Spanish) for E. imbricata and C.
mydas (Comisión Nacional de Áreas Naturales Prote-
gidas 2009, 2011, Secretaría de la CIT 2010). A total
of 6 in-water threats were identified and quantified
by experts in terms of their severity, scope and irre-
versibility. We also collaborated in a workshop (in
2018) with more than 20 sea turtle conservation and
monitoring experts from Mexican institutions that
have studied nesting beaches and in-water critical
habitats for 5−30 yr in Mexico. Workshop partici-
pants came from federal, state and municipality
agencies, as well as nongovernmental organizations,
universities and research institutes, all of which were
active practitioners of sea turtle monitoring, conser-
vation, management and research in Mexico.

Through group dynamics, the experts ranked the
threats using the CAP tool rationale in terms of their
severity (magnitude and strength of the impact on

sea turtle populations and their habitats), scope (geo-
graphic coverage of the threat, including whether it
is punctual or impacts a wide geographic range) and
irreversibility (in time, how irreversible the threats
are, and if their reversibility is feasible); moreover,
combined with the analytic hierarchy process (Saaty
2008, Goepel 2013), a numeric weight was assigned
to each threat (Table 2). In this approach, we in -
cluded a sense of time and space in the qualification
of threats while updating and validating the in-water
threats used in this analysis (Fig. S1 in the Supple-
ment at www. int-res. com/ articles/ suppl/ n040 p337 _
supp. pdf).

The first identified threat was sea turtle bycatch,
and a modification of catch per unit effort (CPUE)
reported by Cuevas et al. (2018a) was selected as an
indicator of fishing intensity in the study area for the
quantitative assessment. The spatial layer was built
using historical data summarized over 10 yr from the
National Yearbooks of Fisheries in Mexico and the
National Fishing Chart (Diario Oficial de la Fed-
eración 2012), as well as from the available literature
on fishing effort in the Gulf of Mexico (Noguez
Fuentes et al. 2007). We included data from tuna,
shrimp and multi-species fisheries (snapper, mack-
erel, mullet, grouper, sea bass, tarpon, saw fish and
sea trout), as they are fished using longlines, gillnets
and trawl nets. Due to differences in the data
sources, we assembled the data in a fishery-intensity
index that considered different weights for the type
of fishing gear and the length of vessels used, multi-
plied by the number of vessels and the last 10 yr
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Threat Indicator Hawksbill and green turtles
Severity Scope Irreversibility Hierarchical value

(weight)

Fishing effort Index of fishing intensity High High High High
(0.481)

Increase in average SST Long-term trend of average Medium High High Medium
SST (2003−2016) (0.142)

Occurrence of hurricanes Frequency and intensity of Medium High High Medium
hurricanes (0.118)

Cargo vessel transit Large vessel transit intensity Low High High Low
(0.116)

Impacts by oil extraction Location of platforms Medium Low High Low
platforms (0.088)

Seismic surveys Polygons with permits for Low High High Low
exploratory surveys (0.054)

Table 2. Indicators of threats used for the exposure term in the ecological vulnerability assessment of hawksbill and green tur-
tles in the Gulf of Mexico and Western Caribbean. The selected threats were taken from published documents, and the quan-
titative values were obtained through interviews with experts and by using the analytic hierarchy process. Procedures for

determining indicators are presented in Section 2.3.2. SST: sea surface temperature

https://www.int-res.com/articles/suppl/n040p337_supp.pdf
https://www.int-res.com/articles/suppl/n040p337_supp.pdf
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annual mean production per capture group (Diario
Oficial de la Federación 2012, Comisión Nacional de
Acuacultura y Pesca 2014). The final fishing intensity
values were established between 0 and 1 in an inte-
grated, unique hexagonal lattice.

The next identified threat was variation in sea sur-
face temperature (SST). This factor is considered to
be one of the most important climatic threats affect-
ing sea turtle populations and habitats, as it can dis-
rupt reproductive rhythms (phenology), affect indi-
vidual fitness and change spatial and temporal
dis tributions (Hawkes et al. 2009, Hamann et al.
2013, Patrício et al. 2019). Moreover, there is evi-
dence of the impact of SST variations on the evalu-
ated hawksbill populations (Álvarez-Acosta 2016).
The indicator was the trend (the slope of a linear
model) in SST in the study area over the past 14 yr,
which was determined using MODIS satellite imagery
data from 2003 to 2016 (OBPG 2018). The response
curves of both species to SST (Uribe-Martínez et al.
2017) were used to define the range of values for
ranking adequate and poor SST conditions for these
species. The trend values were again transferred to a
hexagonal lattice with rescaled values (0 to 1).

Another threat to sea turtles is the occurrence of
hurricanes in the region. We used layers downloaded
from NOAA’s website (NOAA 2017) and from the
National Meteorological Service in Mexico (Servicio
meteorológico nacional 2018) that included tropical
storms and hurricanes from 1851 to 2016. Although
hurricanes may not be a direct threat to individual
survivorship, they have been accepted as an issue of
concern at the population and community levels
because of the effect they have on sea turtle habitat
and thus on their fitness and reproductive rhythms
(Fuentes & Abbs 2010, Dewald & Pike 2014). Region-
ally, it has been documented that hurricanes result in
alterations to the benthic ecosystems in which the sea
turtles feed (Cuevas 2004, Arellano-Méndez et al.
2011). Although hurricanes are natural and seasonal,
they are recognized as a threat by the information
sources we consulted (literature and experts), so we
included them as part of the multi-threat scenario
faced by sea turtles (although they are not one of the
determinant factors, as indicated by the impact
weight). Each line segment of a storm track was clas-
sified according to the Saffir-Simpson scale, and
ordinal weights from 1 to 6 were assigned to each of
the storm categories, from lowest (1: tropical storms)
to highest (6: category 5 hurricanes). A decay buffer
was generated for the trajectories of the hurricanes
with 10 km steps up to 40 km (Dewald & Pike 2014).
Each step was assigned a weight value of 1, 0.75, 0.5

or 0.25, from the closest to the farthest (adapted from
Zacharias & Gregr 2005). A rescaled sum (0 to 1) of
all intersecting buffer polygons in a hexagon was cal-
culated to obtain a single layer as an indicator of the
impact of hurricanes in the southern Gulf of Mexico.

The transit of vessels in the Gulf of Mexico was also
considered a threat to sea turtles and their habitats
because of the possible perturbations to turtle migra-
tion routes and reproductive aggregations, in addition
to direct turtle strikes. We accessed data on cargo ves-
sel density in the region from the Department of Com-
merce through NOAA’s Office for Coastal Manage-
ment, for 2011 and 2013 (ftp:// ftp. coast. noaa. gov/ pub/
MSP/ 2011AIS/ Gulf of Mexico Vessel Density 2011. zip).
These data were used as an indicator, and their den-
sity values were transferred to the hexagonal lattice
and rescaled from 0 to 1.

The location and influence of platforms and fields
leased for hydrocarbon extraction were also identi-
fied as a threat to the sea turtles. We obtained the
locations of active wells in the study area and found a
total of 556 platforms (Comisión Nacional de Hidro-
carburos 2017a). We defined a 30 km buffer of influ-
ence for each platform (modified from Zacharias &
Gregr 2005, Hu et al. 2009). We also obtained poly-
gons of the oil extraction fields designated by the
Mexican Government from the Mexican National
Hydrocarbons Commission (Comisión Nacional de
Hidrocarburos 2017b). We assigned distinct weights
to the platforms (active or on standby) and the class
of each field (for offer, contracted or planned). These
values were also included as a layer of the hexagonal
lattice.

Finally, seismic surveys associated with the oil
industry were also considered a threat in this evalu-
ation. Seismic surveys have been highly controver-
sial because of their potential impact on marine
fauna, particularly sea turtles and marine mammals
(Nelms et al. 2016). We included polygons where
seismic surveys had been performed, and we
assigned distinct impact values to the areas depend-
ing on the technology that was used (air guns for 2-
and 3-dimensional [2D and 3D] studies or magnet-
ism), with 3D studies having the highest values and
magnetism the lowest (Comisión Nacional de Hidro-
carburos 2017c).

2.3.3.  Stability coefficient

The third term of Eq. (1), SC, refers to the stability
capacity (modified from Zacharias & Gregr 2005)
and is defined as the intrinsic (structural or func-
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tional features of the individual by itself) or extrinsic
(environmental or anthropogenic features linked to
the individual) conditions of the OI that promote a
tendency to attain or maintain certain suitable con-
ditions for survival and development. We selected a
set of conditions that had been documented to con-
tribute to the stability of each OI when facing dif-
ferent threats (Hyrenbach et al. 2000, Scott et al.
2012).

The identified stability conditions for the evaluated
threats were represented by both intrinsic and
extrinsic features of the sea turtle populations and
their habitats (Table 3). The first stability coefficient
was identified as natural protected areas (NPAs),
which are considered an extrinsic condition that
diminishes the impacts of vessel traffic, fishing effort,
seismic surveys and hydrocarbon platforms. We
included a total of 19 NPAs in different conservation
categories (Table S1), classified according to the
level of restriction (Diario Oficial de la Federación
2014).

The second indicator was a set of safeguard
areas decreed by the Mexican government around
the coral reefs and rocky reefs in the Bank of
Campeche and the Mexican Caribbean. This exec-
utive order by the President prohibits any oil
exploration or exploitation activity inside the safe-
guard polygons (Diario Oficial de la Fedración
2016). The positive contribution of this feature to
the OI was considered only for seismic surveys
and oil extraction platforms.

The third and final indicator was an intrinsic indi-
cator attributable to the regional trends in the sea
turtle population. As a nesting population declines,
its extinction risk increases, and it could be inferred
that the population and genetic viability decrease at
the same rate. Each feeding aggregation area identi-

fied according to the analyzed satellite tracking data
was linked to its particular nesting population.
Therefore, the trends (slope of a linear regression
model) in the different nesting areas we studied were
used to quantify a mean indicator value for the linked
feeding/long-term aggregation areas. We used pub-
licly available data for the indicator of nesting activ-
ity per beach from The State of the World’s Sea Tur-
tles (SWOT; http://seamap.env.duke.edu/swot), and
completed an estimated time series for key nesting
beaches using historic data reported for Mexican
nesting beaches (Cuevas et al. 2018b).

The areas that harbored individuals from nesting
grounds with positive nesting trends received a
higher stability coefficient value than the areas that
harbored populations with negative nesting trends.

The values of the stability coefficients represent
the efficiency with which an OI would address a spe-
cific threat according to the indicators, and they were
standardized to values from 0 to 0.35. We used these
values based on the literature about the reported effi-
ciency of those positive features to contend with a
certain threat (Walters 2000, Christie & White 2007,
Dalton & Jin 2010) (Fig. S2). It is important to recall
the versatility that the approach in this analysis has,
to allow weights different from those in the present
case to be used (including the efficiency values that
were used).

2.4.  Cumulative ecological vulnerability 
assessment

Biodiversity is usually subjected to a cumulative
effect by multiple threats at the same time, affecting
its ecological integrity and viability (Halpern et al.
2008, Halpern et al. 2015, Tulloch et al. 2015).
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Threat                                                     Stability coefficient                                              Indicator

Fishing effort                                         Natural Protected Areas (NPAs)                         Polygons of the decreed NPAs 
                                                                No-take marine reserves (NTMRs)                     Polygons of the decreed NTMRs

Occurrence of hurricanes                     Population size trend                                           Location of indexed feeding grounds

Cargo vessel transit                               NPAs                                                                     Polygons of the decreed NPAs

Seismic surveys                                     NPAs                                                                     Polygons of the decreed NPAs 
                                                                Safeguards                                                            Polygons of the decreed safeguards

Impacts from oil                                     NPAs                                                                     Polygons of the decreed NPAs 
extraction platforms                            Safeguards                                                            Polygons of the decreed safeguards

Increase in average sea                        Population size trend                                           Location of indexed feeding grounds
surface temperature

Table 3. Indicators for stability coefficients used for the ecological vulnerability assessment of hawksbill and green turtles in
the Gulf of Mexico and the Western Caribbean. All stability coefficients had the same maximum weighting factor (35%). Data 

sources are presented in Section 2.3.3



Cuevas et al.: Spatial approach to assess sea turtle vulnerability

2.4.1.  Ecological vulnerability per species

Because the OI may be exposed to m number of
threats, cumulative vulnerability is defined as the
sum of its vulnerabilities to each weighted threat:

(4)

where VulnThj is the vulnerability to threat j (defined
by Eq. 1), and μj is the weight assigned to the specific
threat, j.

After acquiring all the spatially explicit quantita-
tive representations of sensitivity, the exposure to
each threat and the respective stability coefficients,
we solved Eq. (1) for each hexagon in the lattice. We
obtained 12 ecological vulnerability outputs for the
sea turtles, 1 per species for each of the 6 identified
threats.

We proceeded to calculate cumulative vulnerabil-
ity (Eq. 4), which uses the specific weight of each
threat to hierarchize the cumulative potential impact
on the ecological attributes of the OIs. As all the
inputs for Eq. (1) were rescaled before being entered
into the equation, the obtained vulnerability index
values were comparable among threats, where 0 is
no vulnerability, and 1 is the maximum vulnerability
value for that threat in the study area. In this manner,
the cumulative vulnerability of 1 OI to multiple
weighted threats was obtained.

2.4.2.  Multispecies ecological vulnerability

Once the cumulative vulnerability of several OIs
has been determined, the total cumulative vulnera-
bility for a group can be obtained:

(5)

where γ is the weight assigned to an OI based on
its relative importance among the evaluated biota.
As mentioned above, because all the indicators were
normalized and rescaled, all vulnerability measures
were comparable. We used Eq. (5) to perform a
final calculation in order to obtain the total cumula-
tive vulnerability of the 2 turtle species to the mul-
tiple threats identified. This last equation provides
the option of weighting the vulnerability of the dif-
ferent OIs because one OI may be considered more
important than the others; in this analysis, both OIs
were weighted the same (i.e. 1) (Granizo et al.
2006, Thiault et al. 2018). This result represents the
final value of the ecological vulnerability of sea
turtles in the Gulf of Mexico and the Mexican
Caribbean.

2.5.  Variability in ecological vulnerability 
quantification

To assess the variance in the ecological vulnerabil-
ity values under different weights for the major
threat (fishing effort) as a proxy of the sensitivity in
this analysis, we tested 30 different weighting values
for fishing effort in the quantification of the cumula-
tive vulnerability for C. mydas. Fishing effort values
from 0.2 to 0.5 (in 0.01 steps) were assigned, while
always maintaining the hierarchy of threat impor-
tance. Considering that the original value of this
threat was 0.481, the differences in the assigned val-
ues were added in equal portions to the rest of the
threats, and when the tested value was higher, the
difference was equally subtracted from the values of
the other threats.

We mapped the spatial configuration of cumulative
vulnerability under each of the tested scenarios, and
central and dispersion statistics for all mapped values
were then plotted and mapped.

3.  RESULTS

As the result of an integrated assessment that
merged different methods, we obtained spatially ex-
plicit quantitative representations of the sensitivity
and vulnerability of 2 species of sea turtles to 6 differ-
ent in-water threats in the Gulf of Mexico. The quanti-
tative spatial evaluation of attributes, threats and sta-
bility coefficients together with the following results
provides a measure of the ecological vulnerability of
sea turtle populations and their aggregation areas.

3.1.  Spatial distribution of sensitive features

The spatial distribution of the sensitivity indicators
for hawksbill and green turtles extended primarily
over the continental shelf in the Gulf of Mexico
(Fig. 2). The most sensitive areas were close to the
north and west shorelines of the Yucatan Peninsula,
as well as along the northeastern border of the Yu-
catan shelf. In Veracruz, a few small areas with high
sensitivity values were identified that were associated
with reproductive aggregations (Fig. 2a,b).

3.2.  Potential impacts

The 6 identified threats and their spatial inter -
actions with the sea turtles in the study area (Figs. 3

Ac.VulnOI = μ VulnThΣ j
m

j j= ×1

Total Ac.Vuln = Ac.VulnOLΣi
m

i i= ×1γ
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& S1) were quantified. Because both species’ dis -
tributions were mainly concentrated on the continen-
tal shelf, most of the interaction zones and those with
the highest intensities were in this area. These spe-
cies have benthic feeding habits so it was expected to
find them in areas on the continental shelf (Spotila
2004). As Uribe-Martínez et al. (2017) reported, both
hawksbills and green turtles widely use the conti-
nental shelf in the southern Gulf of Mexico through-
out their entire life cycle, as it contains the critical
habitats they require throughout their life.

As derived from the analytic hierarchy process for
threat-weighting based on expert knowledge (Table
2), the greatest threat was identified as fishing effort
(μ = 0.481), followed by increases in average SST (μ =
0.142), the occurrence of hurricanes (μ = 0.118),
cargo vessel transit (μ = 0.116), impacts from oil
extraction platforms (μ = 0.088) and the effects of
seismic surveys (μ = 0.054) (consistency ratio = 0.37,
geometry consistency index = 0.07, eigenvector
method check = 6.2E−08, consensus = 81.1%).

The sea turtle aggregations in Veracruz were
mainly affected by fishing effort; further, the sensi-
tive areas in the Yucatan Channel (located between
the northeastern corner of the Yucatan peninsula and
western Guanahacabibes peninsula, Cuba) were
impacted by hurricanes, cargo vessel transit and the
increases in SST (Fig. 3).

3.3.  Stability coefficient features

Given the nature of the 2 extrinsic stability coeffi-
cient indicators (NPAs and safeguards), their total
influence was distributed over the continental shelf
in the southern Gulf of Mexico (Fig. 4, Table S1).
Additionally, the intrinsic indicators (nesting popu -
lation trends) were mostly distributed in the same
region because the study species have benthic habi-
tats, and the nesting trends at the same nesting
beaches where we tracked the females were quanti-
fied for this variable.
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Fig. 2. Spatial distribution of ecological sensitivity categorized by life cycle stage for both (a) hawksbill and (b) green turtles in
the southern Gulf of Mexico. Maps in (c) and (d) represent the spatial integration of the 3 sensitivity stages (feeding, internesting 

aggregations and migratory corridors)
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3.4.  Cumulative vulnerability for each OI

After integrating all vulnerabilities, the spatial con-
figuration of the cumulative vulnerability showed the
highest values near Veracruz for both species, as well
as for some areas around the Yucatan Peninsula that
coincided with the zones mentioned in the sub-sec-
tions above (Fig. 5).

3.5.  Total cumulative vulnerability

Ultimately, the spatial configuration of the total
cumulative vulnerability revealed the assemblage for
the 2 species, displaying the sum of the most vulner-
able zones for each species and highlighting those
zones where both species occur (Fig. 6). The most
vulnerable zones for these species are located on the
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Fig. 3. Potential impacts of 3 different threats (fishing effort, occurrence of hurricanes and cargo vessel transit) on (a) hawksbill 
and (b) green turtles in the southern Gulf of Mexico
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continental shelf, where all 3 components of the vul-
nerability equation occur. Some zones were identi-
fied where vulnerability was equal to zero due to the
action of the stability coefficient.

3.6.  Variance in ecological vulnerability

After running the 30 different weighting scenarios
for the major threat (fishing effort), the general spa-
tial configuration of the cumulative ecological vul-
nerability for green turtles was preserved, with the
median and third-quarter values remaining stable
throughout the test, and maximum values slightly
increasing during the experiment (Fig. 7). Although

quantitative variations occurred in the spatial config-
urations of the ecological vulnerability assessment,
the standard deviation in the core critical areas
remained less than 0.06 (Fig. 7E).

4.  DISCUSSION

4.1.  Methodological approach

It has been well documented that the use of open
source planning tools in conjunction with spatial
products, such as remote sensing images and other
continuous surface inputs, provides a robust frame-
work for landscape-scale analyses (Carr et al.
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Fig. 4. Stability coefficient maps for threats to sea turtles from oil extraction platforms, derived from the integration of 3 indica-
tors (natural protected areas, safeguards and sea turtle population trends). The latter indicator was specifically associated with
nesting hawksbill and green turtle populations in the region. Together, the stability coefficients had a maximum reduction of 

35% of the impact caused by their respective threats

Fig. 5. Spatial configuration of the cumulative vulnerability to 6 different threats for hawksbill and green sea turtles in the 
southern Gulf of Mexico
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2017). Integrating tools from different frameworks,
including hard data enriched by expert knowledge
for explicit outputs, strongly enhances research
and the implementation of actions for conservation
and strategic assessments (Hays et al. 2019, Salaf-
sky et al. 2019), such as the one implemented in
this study.

The CAP tool provides such support, and it has
been used at numerous scales within several stake-
holder sectors (Carr et al. 2017). In contrast with
other existing evaluation frameworks, our approach
using the CAP tool integrates strategic planning
activities and outcomes in a systematic process that
enables it to be combined with other methods, partic-
ularly spatial analysis (Carr et al. 2017). As a contri-
bution to conservation, management and vulnerabil-
ity assessments, we addressed one of the limitations
of the CAP tool — insufficient explicit spatial capabil-
ities — by assembling tabular information with spa-
tially explicit procedures for completing landscape-
scale analyses. This contribution also explores one of
the future directions identified for CAP tool analyses,
as it uses well-known and simple transferable tools
for spatial analysis.

One important drawback to this tool is that addi-
tional input data and homologous vulnerability infor-
mation are rarely available to quantitively evaluate
accuracy and uncertainty, other than the expert opin-
ion of specialists. For the approach presented in this
study, a more detailed validation procedure for the
final outputs and sensitivity analysis is still needed

for optimization of results; however,
since the results come from hard data
and expert opinions, we assumed that
they accurately represent the spatial
configuration of vulnerability. These
points are important because such
uncertainty assessment will con-
tribute to better decision making cri-
teria and strengthen the spatially ex -
plicit outputs that are provided by this
approach.

A key contribution of this approach
is the evaluation of an integrated
suite of threats, as recommended by
Schwartz et al. (2017), to improve the
understanding of conservation and
management barriers. In conjunction
with the spatially explicit products,
this approach identifies locations
where actions must be implemented
in order to mitigate the impacts of a
potential threat. For instance, our

results are useful as a basis for oil spill and climate
change risk assessments and the evaluation of spatial
assemblages between species and life stages, among
others.

Several other approaches are available in the liter-
ature that can be used to evaluate the ecological vul-
nerability and sensitivity of coastal ecosystems and
species. One approach is the environmental sensitiv-
ity index (Jensen et al. 1998), which was developed
as an administrative response to oil spills off US
coasts. This index evaluates the sensitivity of the eco-
systems to a threat (i.e. oil spills), but it is restricted to
only evaluating the sensitivity of the OI. The environ-
mental sensitivity index has been widely used and is
a good tool for efficient planning (Helle et al. 2016,
Nelson & Grubesic 2017); however, from our per-
spective, it lacks some precision in terms of the tech-
nical and ecological information of the attributes
and the criteria for each term in the evaluation (sen-
sitivity, threats).

The equations that were adopted and modified for
our approach allow any number of input variables to
be included for each term, such as the number of OIs
and their ecological attributes, threats and stability
coefficients. Additionally, this spatial analysis strategy
allows variables to be taken from different sources
with a variety of spatial resolutions and scales and
then transforms these variables to common spatial
terms (Maxwell et al. 2013, Stokes et al. 2015).

Schumaker (2016) offers a complete and powerful
tool (HexSim) that utilizes a spatial approach similar
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Fig. 6. Spatially explicit representations of the total cumulative vulnerability of
hawksbill and green turtles to 6 different threats in the Gulf of Mexico
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to ours; however, the conceptual framework of Hex -
Sim assumes that all the required quantitative input
data are well accommodated in the spatial realm. In
the absence or in the case of poor quantitative and
geographic data, which is common in lesser devel-
oped countries, our method has the advantage of

allowing manually curated and expert knowledge to
be used in the model.

Love et al. (2017) and Hart et al. (2018) assessed a
spatially explicit impact score for Kemp’s ridley Lep-
idochelys kempii and loggerhead turtles Caretta
caretta after combining different in-water and terres-
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Fig. 7. (A−D) Spatial configuration of cumulative ecological vulnerability for green turtles under 4 different weighting values
for the main identified threat: fishing effort. (E) Standard deviation of ecological vulnerability quantification using 30 different
weighting values for fishing effort mapped for both sea turtle species (hawksbill and green turtles), and (F) central and dis-

persion statistics are kept stable throughout the experiment
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trial threats in the northern Gulf of Mexico. While
this assessment is comparable to the potential impact
maps that we obtained, the numerical and concep-
tual approach differs in that it considers only one spe-
cies at a time and does not include all the terms spec-
ified by the ecological vulnerability formula.

While we maintained a minimum level of complex-
ity, our analyses were sufficiently robust to respond to
conservation questions; we considered the scientific
approach used by the conservation stakeholders to
make decisions. Consequently, we increased the util-
ity of our final products, while retaining the complete
vulnerability assessment framework as well as a
multi-species approach. Such conditions will increase
the probability that this model will be adopted by
 decision makers and environmental authorities in-
stead of being restricted to strict scientific evaluation
(Schwartz et al. 2017). With the approach presented
here, even in circumstances of poor quantitative data,
we can provide spatially explicit information to sus-
tain more robust and effective management and pol-
icy decisions. Some management tasks that could be
accomplished are the definition of closure zones (no-
fishing reserves, marine protected areas) and biodi-
versity hotspots, among others.

4.2.  Spatially explicit ecological vulnerability 
of sea turtles

This study is the first spatially explicit assessment of
the ecological vulnerability of sea turtle species to
multiple threats in Mexican waters, and it acts as a
baseline reference for future evaluations and monitor-
ing of other species and groups to better represent the
biodiversity in this oceanic watershed. It also provides
a framework for comparative or contrasting studies

With the results obtained here, by incorporating
the 3 components of the vulnerability assessment, we
provide decision makers, scientists and any stake-
holder involved in sea turtle conservation and man-
agement with reference information for regional and
landscape strategies for the conservation and man-
agement of sea turtles (i.e. international cooperation,
feedback for regional management units, wider
vision for strategic planning for long-term financing).
It was important that we derived spatially explicit
information about specific threats occurring in the
most important sea turtle in-water habitats in the
southern Gulf of Mexico.

The in-water habitats for sea turtles represent a
challenge for any ecological assessment because of
the large information gaps that exist for individual

sea turtles and the threats they face in marine areas.
In this assessment, information about the spatial dis-
tribution of 2 sea turtle species was available, and the
spatial occurrence of threats was gathered from dif-
ferent sources.

The zones near Veracruz as well as those in the
southwest, northwest and northeast corners of the
Yucatan Peninsula are of interest because they have
important aggregations of multiple individuals, and
some of the major potential impacts caused by the
threats occur in those zones. For several of those
threats, there was no literature available that pro-
vided spatially explicit information, so we present
information that is completely new for the southern
Gulf of Mexico in this study, including the intermedi-
ate outputs (i.e. the spatial configuration of fishing
effort). Given the information gaps, it is difficult to
find similar spatially explicit products with which to
compare our results.

The calculation of kernel utilization distributions
(KUD) for marine animals is a common practice in
threat and ecological vulnerability assessments. Here,
we used it as an indicator of ecological attributes for
hawksbill and green sea turtles, and the results were
consistent with those of other studies. For instance,
Fossette et al. (2014) used density maps from track-
ing-duration-weighted location data as the sensitive
attribute of leatherbacks Dermochelys coriacea ex -
posed to longline fisheries in the Atlantic. We decided
to use the KUD because this quantitative variable
provides more traceable information for the interpre-
tation of potential impacts (derived from sensitive
attributes ex posed to a threat) (Thiault et al. 2018).

Quantitative weighting for different threats is a
common practice in spatial multi-criteria analyses as
well as in ecological and social vulnerability assess-
ments (Saaty 2008, He et al. 2018). This practice is
consistent with our approach of weighting the threats
according to their intensity, scope and irreversibility.
The weighting values used in this study were sup-
ported by specialized literature and expert knowl-
edge, but one of the advantages of the conceptual
framework and the approach used in this analysis is
that the user can adjust and define the values that
they consider most appropriate, enabling the evalua-
tion of different weighting scenarios for the vari-
ables. However, in terms of the potential impacts of
the 6 threats evaluated here, sea turtle bycatch (with
its origin in fishing effort and inappropriate fishing
practices) is considered one of the greatest threats
to these species worldwide (Lewison et al. 2014,
Squires et al. 2018), so it is not unusual that the spe-
cialists scored this as the top threat.
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In the southern Gulf of Mexico, some studies have
assessed the impacts of sea turtle bycatch, and Cuevas
et al. (2018a) noted the same zones around the Yucatan
Peninsula as the most threatening areas for sea turt les.
As this threat had the greatest weight at several sites
in the present study, the occurrence of high levels of
fishing effort (with its corresponding high weight)
strongly de fines the high vulnerability values, parti -
cularly when it is also present alongside other threats.

Ban et al. (2010) reported similar magnitudes of dif-
ferences between the assigned weight for fishing
effort and the remaining threats they evaluated on
the western coast of Canada. They used a weight
value for fishing effort that tripled the value of the
next greatest threat (3.38), which was similar to the
value used in this study for fishing effort . As multiple
threats often act on the OI, it could be expected that
one or a few threats drive an important portion of the
process; however, the rest of the factors also con-
tributed to modeling the final configuration of the
evaluated system.

After quantifying the variance in cumulative eco-
logical vulnerability under 30 different fishing effort
values, the core spatial configuration of the calcula-
tion remained consistent. The variability graph and
maps constructed here provide important reference
tools for sustaining the spatially explicit products
presented in this analysis.

In the case of the increasing average SST, climatic
variables can affect the phenology, distribution
range, trophic status and nesting seasons of sea tur-
tles around the world (Broderick et al. 2001, James et
al. 2006, Patel et al. 2016). Uribe-Martínez et al.
(2017) showed that an increase in SST would modify
the spatial configuration of suitable habitat for
Chelonia mydas and Eretmochelys imbricata in the
southern Gulf of Mexico, so important consideration
in this region should be given to the threat of
increased SST to sea turtle aggregations.

Micheli et al. (2013) identified oceanic environ-
ment variables as major threats for marine ecosys-
tems, assuming the potential impacts of variables
such as pH decreases, as well as SST and UV in -
creases. Although that study did not focus on sea tur-
tle populations, the concern the authors express about
these threats is similar to the basic reasons why vari-
ables such as SST increases are of concern for sea
turtles, since these are elements of the marine eco-
systems they evaluated.

The southern Gulf of Mexico and the western Car-
ibbean are regions with a high incidence of hurri-
canes, and the impacts of these hydrometeorological
phenomena on sea turtle populations and habitats

are well documented (Pike & Stiner 2007, Dewald &
Pike 2014, Bilskie et al. 2016, Wilson et al. 2017).
Most of the impacts from hurricanes occur on the east
side of the Yucatan Peninsula, and this threat was
considered; however, its weight was not significant
enough to drive the spatial configuration of the total
cumulative vulnerability.

Along the Quintana Roo coast, which is also on the
east side of the Yucatan Peninsula, fishing effort is
practically absent because the area is primarily used
for tourism. Other threats such as the occurrence of
hurricanes and increasing SSTs impact this zone, but
the weights given to these threats were much lower
than that given to fishing effort. Furthermore, the
protection in this area provided by NPAs and safe-
guards apparently ensure that the stability coeffi-
cient is sufficient for mitigating the exposure to these
threats. This information does not mean that in-water
aggregations of sea turtles in Quintana Roo are not
under pressure. At this geographic scale and with the
variables included in this assessment, the in-water
habitats in this area are less vulnerable than those in
areas in Campeche and Veracruz (southern Gulf of
Mexico), where the cumulative impacts on the ag -
gregations are much higher. However, attention to
more local in-water threats such as benthic habitat
degradation should be considered for the recovery of
these species and the maintenance of the ecosystems
they occupy in Quintana Roo; although the regional
context is also important for these highly migratory
species.

We are aware that there are other in-water threats
to sea turtles and their habitats (e.g. pollution, habitat
degradation because of land runoffs, red tides, dis-
eases); during the workshop with experts some of
these threats were stipulated, but were ranked with
minor grades (data not shown), reinforcing the infor-
mation contained int the National Recovery Plans for
both green and hawksbill turtles (Comisión Nacional
de Áreas Naturales Protegidas 2009, 2011) that we also
took into account for defining the threats in this study.
For instance, an assessment of the impact of tourism
was beyond the scope of this work, and it is possible
that overdeveloped touristic regions may show differ-
ent trends in the vulnerability of nesting beaches. 

Although we would expect that the inclusion of
additional threats in this analysis could change the
spatial configuration of ecological vulnerability of
these species, the threats used for this analysis were
ranked as the top 6, and spatial information for them
was available for this assessment. On the other hand,
for the evaluated region there was no spatially ex -
plicit information on the other in-water threats nor
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were they highlighted as being issues of concern.
This analysis is a baseline and could be considered a
platform for the detection of such data/information
gaps that should be included in a spatially explicit
evaluation, and in subsequent analyses and updates,
we will work to identify proxies and data sources for
those threats without explicit spatial information for a
complete assessment as in this study.

Consistent with several other studies (Wallace et al.
2010, Maxwell et al. 2013, 2015), the spatially explicit
information presented here contributes key knowl-
edge to marine spatial planning. The results of this
study aid in the implementation of specific strategies
for conservation, management and policy for the
recovery of other endangered species (i.e. other sea
turtle species, marine mammals, sea birds, large
fishes) in the Large Ecosystem of the Gulf of Mexico.

This study presents a utility model and an example
of the application of an open source planning tool
(the CAP tool) combined with standardized protocols
as well as spatial analyses based on multi-criteria
rationale. The resulting approach can be character-
ized by its feasibility and replicability for other envi-
ronmental systems.
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