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Abstract

We describe the real-time movements of the last of the marine mega-vertebrate taxa to be satellite tracked – the giant
manta ray (or devil fish, Manta birostris), the world’s largest ray at over 6 m disc width. Almost nothing is known about
manta ray movements and their environmental preferences, making them one of the least understood of the marine mega-
vertebrates. Red listed by the International Union for the Conservation of Nature as ‘Vulnerable’ to extinction, manta rays are
known to be subject to direct and incidental capture and some populations are declining. Satellite-tracked manta rays
associated with seasonal upwelling events and thermal fronts off the Yucatan peninsula, Mexico, and made short-range
shuttling movements, foraging along and between them. The majority of locations were received from waters shallower
than 50 m deep, representing thermally dynamic and productive waters. Manta rays remained in the Mexican Exclusive
Economic Zone for the duration of tracking but only 12% of tracking locations were received from within Marine Protected
Areas (MPAs). Our results on the spatio-temporal distribution of these enigmatic rays highlight opportunities and challenges
to management efforts.
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Introduction

Satellite tracking has yielded key information about the life

history of marine vertebrates, many of which engage in long

migrations (travelling thousands of kilometres) [1] and make deep

dives [2], beyond the temporal and logistical abilities of

researchers to follow them. The insights afforded by such tracking

have provided structure around which conservation frameworks

and regulations can be built [3] and an understanding of spatial

ecology around which marine protected areas (MPAs) can be

established (e.g. [4]). Satellite tracking has further provided

parameters for models of distribution to enable forecasting of

effects of, e.g. climate change, to marine vertebrates (e.g. [5,6]).

Manta rays (or devil fish, Manta birostris) are the world’s largest

batoid fish (reaching a measured disc width of 7.1 m), with slow

growth and low fecundity, birthing only one or two live ‘pups’

every one to two years following a gestation period of 12 months

[7]. They are listed by the International Union for Conservation of

Nature (IUCN) as ‘‘Vulnerable’’ to extinction [7] and included on

Appendix I and II of the Convention on Migratory Species of Wild

Animals. Recently Manta rays were found to encompass a second

species Manta alfredi that ranges throughout the Central Eastern

Atlantic and Indo-Pacific and possibly a third species constrained

to the Gulf of Mexico and the Caribbean [8]. They are known to

be purposefully and accidentally captured in fisheries operations

and populations in the Pacific, Indian Ocean and Caribbean are

apparently declining [7]. Critical information for conservation

planning, such as knowledge on their movements and ecology, are

however lacking. Indeed, the manta rays may be the least

understood of the marine mega-vertebrate groups, and one of the

last to be satellite tracked.

Manta rays are most often reported in coastal areas and

continental shelves, near seamounts and in upwelling zones

[9,10,11]. From unpublished reports and popular media, it would

appear that manta rays are known to congregate in enormous

numbers (up to hundreds of individuals) in some areas (e.g.

Mexico, Mozambique, Maldives, Hawaii and Micronesia) for

courtship, breeding and to visit cleaning stations. While manta

rays are thought to remain resident to some areas [7], particularly

the smaller and more coastally-constrained M. alfredi [10], in other

areas they are thought to make seasonal long-distance migrations

away from breeding areas, although non-breeding sites are not

known [12].

Here, we describe the use of real-time satellite telemetry to

gather insights into manta ray movements, allowing us to begin to

generate environmental parameters for their distribution and

assess the extent to which manta rays occur in protected areas.
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Figure 1. Movements of manta rays in the western Caribbean and south-east Gulf of Mexico. Frequency histograms of (a) bathymetry, (b)
SST and (c) chlorophyll-a determined from the locations of all satellite tracked manta rays. Regional mapping of (d) bathymetry, (e) SST and (f)
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Materials and Methods

We deployed six towed satellite transmitting position-only tags

(Wildlife Computers SPOT5; http://wildlifecomputers.com/spot.

aspx) on manta rays, in the southern Gulf of Mexico near Mexico’s

Yucatan peninsula over the duration of a 13-day research cruise.

The research was carried out under permit from the Mexican

federal government agency (OFICIO NÚM/SGPA/DGVS/

05241). Tags were programmed to record ambient temperature

(in asynchronous binning intervals selected to maximise recording

around crespuscular periods, at 00:00, 05:00, 11:00, 12:00, 17:00

and 23:00) and to transmit continuously at the sea surface. The

tags’ position was determined by the Argos System (www.argos-

system.org). Tags were attached while swimming behind and

above the animal, using a small percutaneous nylon umbrella dart

attached to a 1 m long 1/160 (1.59 mm) stainless steel cable

containing a mid-line swivel, inserted into the lower left or lower

right quadrant shoulder musculature using a 2 m pole spear. The

tags were covered with dark blue antifouling paint to minimize

bio-fouling. Manta ray body size, or disc width, the distance

between the two unfurled wingtips 650 cm, was estimated by

comparing the ray to a 2 m tagging pole or a snorkeler of known

height. Sex was determined by the presence of ‘claspers’ (male

sexual organs) [13]. Despite their size, manta rays are cryptic and

rarely encountered, we thus applied tags to all the manta rays we

were able to encounter during the 13-day sampling period.

Tag-derived ambient temperature data were expressed as a

proportion of time spent within predetermined temperature ranges

by local night and day periods. These were calculated using the

NOAA sunrise/sunset calculator (http://www.srrb.noaa.gov/

highlights/sunrise/calcdetails.html) with manta ray latitudes and

longitudes, custom coded into MATLAB.

Argos data was filtered to only include location classes (LC) A,

B, 0, 1, 2 and 3 for which location accuracy has been determined

[14,15]; locations with LC Z were removed. Unrealistic locations

were also removed (swimming speeds greater than 20 km/hr). A

behaviourally switching state-space model (SSM) was applied to

Argos tracking data to handle observation error, improve data

retention, and infer animal behavioural state (referred to as

‘transiting’ and ‘foraging’) from the movement patterns [16]. We

used the model originally described by Jonsen et al [17] and

refined by Breed et al [16], which has been successfully applied to

a number of marine species including pinnipeds [16,18], sea turtles

[19,20,21] and cetaceans [22]. The SSM was generated using the

software packages R and WinBUGS, and we estimated locations

at five-hour intervals, reflecting the average number of Argos

locations we received per day [16]. Model parameters were

estimated using Markov Chain Monte Carlo (MCMC) estimation

from two MCMC chains. We used 10,000 iterations after a burn-

in of 5,000 and thinned by five to give the mean and variance for

each location and behavioural parameter. Behaviour was

discriminated into the two states based on the mean turning angle

(c) and autocorrelation in speed and direction (h). We observed a

lack of overlap between the parameters representing the opposing

behavioural states, which indicated a true differentiation in

movement patterns.

Chlorophyll-a imagery with geostrophic currents for 10th Oct 2010. (g–i) Tracks of three of the six manta rays (one female, one male and the juvenile
manta ray, mantas 1, 5 and 6, Table 1) are shown with SST imagery (10th October). (j–l) Mean percentage time at temperature plots during night and
day (temperature recorded by animal-borne tags) for the same individuals.
doi:10.1371/journal.pone.0036834.g001

Figure 2. Utilisation distribution of manta ray locations (a) (quartic kernelling; grey polygons showing 25%, 50%, 75%, from
darkest to lightest grey). Blue polygons show marine protected areas, tourism ports are indicated (black crosses). Commercial shipping activity,
showing transit of boats belonging to the World Meteorological Organisation Voluntary Observing Ship Scheme (b) (red showing higher density of
ship transit) from [41]. Core manta ray foraging areas are indicated, with Mexican tourism ports (Holbox, Isla Mujeres, Cancun, Playa del Carmen and
Cozumel).
doi:10.1371/journal.pone.0036834.g002
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Movement metrics, describing transit speed and distance

travelled, and coincident environmental data (sea surface temper-

ature, chlorophyll-a, bathymetry and sea surface currents) were

determined for each position. Environmental data were down-

loaded from the GODAE High Resolution Sea Surface Temper-

ature Pilot Project (SST, http://ghrsst-pp.metoffice.com/, at

,1 km resolution), NASA Goddard space flight centre Ocean

colour (chlorophyll-a, http://oceancolor.gsfc.nasa.gov/SeaWiFS/,

,4 km product), the General Bathymetric Chart of the Oceans,

GEBCO (bathymetry, http://www.gebco.net/, at 30 seconds arc

resolution) and CLS AVISO OceanObs (sea surface currents,

http://www.aviso.oceanobs.com/, at a resolution of 0.3u at the

equator). Locations were also overlaid with the World Database of

Protected Areas (http://www.unep-wcmc.org/wdpa) to assess the

proportion of locations that were received from within Marine

Protected Areas (MPAs).

Areas of high use by manta rays were determined using a

quartic kernelling approach [23]. Data were first resolved to the

best daily location per individual (if .1 highest location classes

were received, the earliest was used) and data from all individuals

was grouped for analysis. A utilisation distribution was subse-

quently created from the satellite tracking data using a smoothing

parameter, h, of 10 km (which best represented the underlying

spatial architecture of the location data) on a 161 km grid and

percent volume contours (25, 50 and 75%) were created from the

resulting raster.

Results

Tags provided data for a mean of 27 days (621.6 s.d., range 2

to 64 days, Table 1). Tagged animals (n = four females, one male

and one juvenile ray of indeterminate sex) remained in frontal

zones off the Yucatan peninsula, traversing them repeatedly.

Tracks showed strong separation between the state-space model

behavioural parameters (c and h). Manta rays were in ‘foraging’

state for 97.7% of the locations received from the Argos System,

moving at 1.2 km.h21 (grand median of medians per individual,

range 0.9 to 1.7 km.h21) with animals covering as much 1,151 km

before transmission ceased (Fig. 1, cumulative straight line distance

between locations, mean track length 3686425 km s.d.). Manta

rays moved up to 116 km away from their tag attachment

locations and remained within Mexico’s territorial jurisdiction for

the duration of tracking. Most manta ray locations occurred

further than 20 km offshore (92% of all locations) and only 11.5%

locations occurred within MPAs (Fig. 2 a). Areas with high relative

densities of manta ray locations overlapped with dominant

shipping routes within the region (Fig. 2 b). There were no

apparent differences in movement patterns by sex or body size

(Table 1), or with ambient water-column temperature (Fig. 1 j–l).

Satellite-tracked manta rays were rarely located in water deeper

than 50 m (83% of all locations from waters shallower than 50 m,

with 92% of all locations received from waters between 5 and

100 m deep, Fig. 1). Manta rays foraged in waters with sea surface

temperatures ranging from 25.1 to 30.06C, with 95% of all

locations occurring in waters warmer than 26.16C. The majority

of manta ray locations occurred in waters with surface chlorophyll-

a values between 0.14 and 0.76 mg.m23 (5th to 95th percentiles,

median 0.28 mg.m23), and geostrophic current speeds of 8.4 to

94.0 cm.sec21 (5th to 95th percentiles, median 76.6 cm.sec21).

During our 13 days of boat surveying, including the period in

which satellite tags were deployed, we made opportunistic

plankton tows (using a 212 mm mesh, 50 cm diameter net) when

we observed manta rays ram filter feeding at the surface and sub-

surface to identify the prey species they were consuming. Manta

rays were observed feeding in both oligotrophic waters during a

seasonal spawning event of little tunny (Euthynnus alletteratus) and in

eutrophic waters where a seasonal upwelling event (lasting

between May and September) gave rise to significant concentra-

tions of zooplankton. Our survey thus enabled us to confirm that

manta rays were likely consuming sergestid shrimp and calanoid

copepods, as well as chaetognaths and fish eggs.

Discussion

Effective establishment of marine protected areas for the

conservation of species of concern depends on a robust under-

standing of their spatio-temporal distribution [24,25,26,27]. Such

understanding has now been gained for many marine species,

including some that make basin-wide migrations

[28,29,30,31,32,33]. With technological improvements, the accu-

racy with which marine species can be localised has improved

more than ten-fold [15,34,35] and a suite of ancillary data is now

often collected as well as location to inform on migratory and

foraging strategies [36,37,38].

Models of the spatio-temporal distribution of marine mega-

vertebrates may enable both site- based conservation, such as the

design and siting of marine protected areas, and the forecasting of

climate change effects that may inform future mitigation measures

(13). The Whale Shark Biosphere Reserve, declared in 2010, was

intended to specifically enhance protection of whale sharks

foraging off the Yucatan peninsula; however, it does not

encompass the movements of manta rays tracked in this study

[39,40]. Further, it seems that manta ray aggregations coincide

with some of the Caribbean’s busiest shipping lanes [41], whose

impact on manta rays is as yet unknown. Despite legal protection

in Mexican waters (Norma Oficial Mexicana NOM-029-PESC-

2006, 14 Feb 2007 Diario Oficial), occasional targeted and

bycatch capture of manta rays still takes place (Anonymous

Fishermen from Quintana Roo, Pers. Obs.) to be used for food

and as bait in the shark fishery. There is also a growing demand in

Asia for their gill rakers, which are used in traditional medicine

[42]. The greatest impact on the aggregation in the next decade,

however, may come from the region’s expanding and largely

unregulated marine megafauna tourism industry.

Acoustic tracking and photo-identification work have suggested

strong site fidelity by manta rays to foraging areas in Indonesia

[11], Hawaii [13] and Mozambique [43]. Our data add to this

picture for the Atlantic Ocean; however, the capacity of manta

rays for undertaking long-range migrations still remains uncertain.

Without depth recording tags or detailed knowledge on the

Table 1. Deployment metrics for six manta rays.

Manta
Ray Location Deployed Detached Duration Sex

DW
(cm)

1 Oligotrophic 10-Sep-10 10-Oct-10 32 F 400

2 Eutrophic 20-Jul-10 10-Aug-10 19 F 300

3 Eutrophic 21-Jul-10 24-Jul-10 4 F 450

4 Oligotrophic 08-Sep-10 10-Sep-10 2 F 400

5 Oligotrophic 09-Sep-10 14-Oct-10 41 UNK 400

6 Oligotrophic 08-Sep-10 29-Oct-10 64 M 350

Mean
(range)

27 (2–64) 383
(350–
450)

doi:10.1371/journal.pone.0036834.t001
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vertical structure of the water-column, we cannot confirm whether

manta rays in this study, like many other planktivores, exhibited

diel vertical migration, where animals track their diel migrating

planktonic prey through the water column [44,45]. Manta rays in

this study likely foraged on three major prey types: (i) copepods

(occurring in eutrophic waters), (ii) chaetognaths (known predators

of copepods, influencing their distribution [46]) and (iii) fish eggs

(spawned in oligotrophic waters where larval transport is

optimised). However, manta 3, tagged in eutrophic waters

(observed foraging on copepods), was re-sighted 57 days later

foraging on fish spawn in oligotrophic waters, demonstrating that

mantas can switch between habitat and prey types. Such plasticity

in diet is worthy of further investigation.

Our data suggest that manta rays are foraging over large spatial

scales (,100 km long), too far offshore and too wide ranging to be

included within existing MPA networks. Nevertheless, our data

highlight significant site fidelity and association with frontal zones,

which could be used to assess current biosphere reserve boundaries

or to establish new dynamic protected areas overlaying the frontal

region. The use of spatial data sets encompassing longer tracking

periods are desirable to better inform manta ray management.

We provide a detailed description of the movements and

environmental preferences of manta rays, highlighting what are

likely foraging movements in shallow waters, in broad thermal

fronts off an upwelling zone. We emphasise that few locations are

received from protected areas and that manta rays may be subject

to anthropogenic threats throughout their putative foraging range.

While the broader migratory movements of manta rays are still not

known, it is clear that satellite tracking technology has the

potential to offer great inroads into understanding movements and

contextualising spatially explicit threats to this species.
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