
Methods Ecol Evol. 2023;00:1–15.    | 1wileyonlinelibrary.com/journal/mee3

Received: 6 February 2023  | Accepted: 5 June 2023

DOI: 10.1111/2041-210X.14167  

R E S E A R C H  A R T I C L E

A deep learning approach to photo– identification demonstrates 
high performance on two dozen cetacean species

Philip T. Patton1,2  |   Ted Cheeseman3,4  |   Kenshin Abe5 |   Taiki Yamaguchi5 |   
Walter Reade6 |   Ken Southerland4 |   Addison Howard6 |   Erin M. Oleson2  |    
Jason B. Allen7 |   Erin Ashe8  |   Aline Athayde9  |   Robin W. Baird10  |   
Charla Basran11  |   Elsa Cabrera12 |   John Calambokidis10  |   Júlio Cardoso9  |    
Emma L. Carroll13  |   Amina Cesario14,15  |   Barbara J. Cheney16  |   Enrico Corsi10  |   
Jens Currie1,17  |   John W. Durban18 |   Erin A. Falcone19 |   Holly Fearnbach18 |   
Kiirsten Flynn10 |   Trish Franklin3,20  |   Wally Franklin3,20  |   
Bárbara Galletti Vernazzani12,17 |   Tilen Genov21,22  |   Marie Hill2,23 |    
David R. Johnston24 |   Erin L. Keene19 |   Sabre D. Mahaffy10  |   Tamara L. McGuire25 |   
Liah McPherson1 |   Catherine Meyer26 |   Robert Michaud27 |   Anastasia Miliou28  |    
Dara N. Orbach29 |   Heidi C. Pearson30  |   Marianne H. Rasmussen11  |    
William J. Rayment31 |   Caroline Rinaldi32 |   Renato Rinaldi32 |   Salvatore Siciliano33  |   
Stephanie Stack17,34  |   Beatriz Tintore28  |   Leigh G. Torres35 |   Jared R. Towers36  |   
Cameron Trotter37 |   Reny Tyson Moore7  |   Caroline R. Weir38  |   Rebecca Wellard39,40  |    
Randall Wells7  |   Kymberly M. Yano2,24  |   Jochen R. Zaeschmar41  |   Lars Bejder1,42

This is an open access article under the terms of the Creative Commons Attribution- NonCommercial License, which permits use, distribution and reproduction 
in any medium, provided the original work is properly cited and is not used for commercial purposes.
© 2023 The Authors. Methods in Ecology and Evolution published by John Wiley & Sons Ltd on behalf of British Ecological Society.

Correspondence
Philip T. Patton
Email: pattonp@hawaii.edu

Funding information
National Oceanic and Atmospheric 
Administration; NOAA Fisheries QUEST 
Fellowship; University of Hawaii 
Information Technology Services; National 
Science Foundation, Grant/Award 
Number: 2232862 and 2201428

Handling Editor: Phil J Bouchet

Abstract
1. Researchers can investigate many aspects of animal ecology through noninvasive 

photo– identification. Photo– identification is becoming more efficient as match-
ing individuals between photos is increasingly automated. However, the convolu-
tional neural network models that have facilitated this change need many training 
images to generalize well. As a result, they have often been developed for in-
dividual species that meet this threshold. These single- species methods might 
underperform, as they ignore potential similarities in identifying characteristics 
and the photo– identification process among species.

2. In this paper, we introduce a multi- species photo– identification model based on 
a state- of- the- art method in human facial recognition, the ArcFace classification 
head. Our model uses two such heads to jointly classify species and identities, 
allowing species to share information and parameters within the network. As a 
demonstration, we trained this model with 50,796 images from 39 catalogues of 
24 cetacean species, evaluating its predictive performance on 21,192 test images 
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1  |  INTRODUC TION

Many critical aspects of animal ecology, including movement 
(Palencia et al., 2021), demography (Borchers et al., 2014) and so-
cial behaviour (Bejder et al., 1998), can be efficiently studied by 
way of noninvasive photo– identification (photo– id). The photo– id 
process, starting from taking photographs of animals in the field to 
knowing the time and location of individual sightings, involves many 
resource– intensive steps. The matching step, that is, identifying the 
same individual in separate images, requires expertise and takes ex-
ponentially more time as the number of individuals in a catalogue 
grows. For example, Tyne et al. (2014) estimated that image match-
ing for their one– year capture recapture survey of spinner dolphins 
Stenella longirostris cost over 1100 h of labour, nearly a third of the 
total financial costs for the project.

To mitigate these costs, researchers have developed several 
tools for automated matching. These tools are increasingly effec-
tive as more and more of them leverage recent advancements in 
deep learning (Bogucki et al., 2019; Clapham et al., 2020; Körschens 
et al., 2018; Miele et al., 2021; see Borowiec et al., 2022 for a thor-
ough introduction to deep learning and its ecological applications). In 
this context, deep learning refers to training convolutional neural net-
works with many layers (definitions of italicized words can be found 
in the Glossary). While effective, these models often have millions of 
parameters (Tan & Le, 2019), making them prone to overfitting, and 

they struggle to identify individuals in images outside of the train-
ing set unless they are trained with many diverse images (Borowiec 
et al., 2022).

As a result, researchers have often focused on developing au-
tomated systems for individual species with enough images to train 
a neural network (Cheeseman et al., 2021; Clapham et al., 2020; 
Körschens et al., 2018; Maglietta et al., 2023; Miele et al., 2021; 
Thompson et al., 2021; but see Weideman et al., 2017). This single- 
species approach, however, has drawbacks. Photo– id surveys, such 
as camera traps, will often photograph any encountered species, 
even if the survey has a focal species. Additionally, this strategy 
passes over species with smaller training datasets, which is unfor-
tunate because these rare or rarely observed species can be of con-
servation concern. Finally, single– species models ignore potential 
similarities in identifying characteristics and the photo– identification 
process among species. For example, species may have similar iden-
tifying marks such that a multi– species model would be able to 
transfer learning from one species to another (see the first two rows 
in Figure 1 for an example using cetaceans). Thus, a multi– species 
model that allows species to share information might outperform a 
single species model, particularly for species with few training im-
ages; this is a standard result in transfer learning (Zhuang et al., 2021).

In this paper, we introduce a multi– species approach to auto-
mated photo– id, then apply it to a large dataset of cetaceans, spe-
cifically, 39 catalogues of 24 species (see Supporting Information S1 

from the same catalogues. We further evaluated its predictive performance with 
two external catalogues entirely composed of identities that the model did not 
see during training.

3. The model achieved a mean average precision (MAP) of 0.869 on the test set. Of 
these, 10 catalogues representing seven species achieved a MAP score over 0.95. 
For some species, there was notable variation in performance among catalogues, 
largely explained by variation in photo quality. Finally, the model appeared to gen-
eralize well, with the two external catalogues scoring similarly to their species' 
counterparts in the larger test set.

4. From our cetacean application, we provide a list of recommendations for potential 
users of this model, focusing on those with cetacean photo– identification cata-
logues. For example, users with high quality images of animals identified by dor-
sal nicks and notches should expect near optimal performance. Users can expect 
decreasing performance for catalogues with higher proportions of indistinct indi-
viduals or poor quality photos. Finally, we note that this model is currently freely 
available as code in a GitHub repository and as a graphical user interface, with ad-
ditional functionality for collaborative data management, via Happywhale.com.

K E Y W O R D S
artificial intelligence, cetacean, computer vision, convolutional neural network, deep learning, 
dolphin, dorsal, lateral, machine learning, multi– species, photo– identification, whale
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and S2 for a details on each catalogue). Photo– id forms the basis of 
nearly all capture– recapture modelling for cetaceans, which, in ad-
dition to distance sampling, is one of the primary methods for mod-
elling demography of this taxon (Hammond et al., 2021). In addition, 
photo– id sheds light on movement ecology (Baird et al., 2008) and 
social structure (Bejder et al., 1998), which are crucial components 
for defining stock boundaries. The high labor costs associated with 
traditional image matching can inhibit these analyses, thereby hin-
dering cetacean conservation.

Our objectives for this paper are three– fold. The first is to intro-
duce a multi– species photo– id model based on a state– of– the– art 
method in human facial recognition, the ArcFace classification head 
(Deng et al., 2019, 2020; Ha et al., 2020). Our model uses two such 
heads to jointly classify species and identities, allowing species to 
share information via shared weights within the network. Secondly, we 
demonstrate this approach on a large, multi– species dataset of ceta-
ceans. The dataset was assembled for a data science competition that 
challenged teams to identify individual cetaceans from images of their 
dorsal/lateral side. The winning team developed the model presented 
in this paper. We train and evaluate this model using the competition 
data, comprising 50,796 training and 27,944 test images. As a further 
evaluation step, we test the model on two additional catalogues that 
were not included in the competition dataset. Our final objective is 
to explain differences in performance among species and catalogues 
and provide recommendations to future users of the algorithm, specif-
ically, to those with cetacean catalogues.

2  |  MATERIAL S AND METHODS

The objective for the multi– species photo– id model is to correctly 
predict the true identity of an animal, yi, in the ith image regardless 
of species. This includes identities already in the catalogue as well as 
new individuals, which is known as an open– set recognition prob-
lem (Deng et al., 2019). That is, the model must be able to classify 
individuals outside of the training set as a “new individual.” (sensu 
Maglietta et al., 2020; Miele et al., 2021).

2.1  |  Multi– species photo– identification model

To facilitate discussion, we split the photo– id model into three parts: 
the backbone, the neck and the classification heads, that is the bot-
tom row, in orange, of Figure 2. The figure shows the training pipe-
line of the model, specifically, the cetacean application, although 
other applications of this framework would likely look similar.

2.1.1  |  The backbone and neck

The first step of the image through the network is into the back-
bone. Backbones are convolutional neural networks designed to be 
widely applicable to many problems in image classification, a broad 
category that includes photo– id. A flurry of research over the past 

F I G U R E  1  Sixteen photo– id images 
of cetaceans, each row contains four 
images of the same individual, showing 
the challenges and opportunities for 
a multi– species photo– id model. The 
model must learn to recognize individuals 
from a variety of angles, under different 
lighting conditions, and in different social 
situations. Additionally, it must transfer 
learning from one species, for example 
false killer whale Pseudorca crassidens 
(top row), to a similar species, for example 
killer whale Orcinus orca (second row), 
while distinguishing them from less similar 
species like humpback whale Megaptera 
novaeangliae (third row) and very different 
species, like southern right whale 
Eubalaena australis (bottom row).

 2041210x, 0, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.14167 by M
inistry O

f H
ealth, W

iley O
nline L

ibrary on [10/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



4  |   Methods in Ecology and Evolu
on PATTON et al.

decade has produced dozens of popular backbones, including 
ResNet, DenseNet, Xception and MobileNet (Khan et al., 2020). 
Validation indicated that the EfficientNet- B7 backbone (Tan & 
Le, 2019) outperformed other similar backbones in the cetacean 
application.

The backbone takes an image and processes it through a se-
ries of convolutional layers and pooling layers, producing a reduced, 
three– dimensional representation of the image. The neck reduces 
this output to a one– dimensional vector, xi , where i  is the image. 
This is known as the feature vector and, as we will see below, plays 
an important role in classification and prediction (Miele et al., 2021).

In the cetacean application, the neck builds the feature vector in 
two steps. First, it condenses the three- dimensional output of the 
backbone to a vector by way of generalized mean (GeM) pooling 
(Radenović et al., 2018), with p = 3, where p is the primary hyperpa-
rameter in GeM pooling. Next, it normalizes the vector with a batch 
normalization layer (Ioffe & Szegedy, 2015), which has been shown 
to improve the performance of the ArcFace classification heads 
(Deng et al., 2019, 2020; Ha et al., 2020).

2.1.2  |  The classification heads

Our objective is to build a model that can classify individuals of 
multiple species. Further, the model should be able to transfer learn 
from one species to another with similar identifying characteris-
tics. To that end, we use a model with two classification heads: 
one for species and one for individual (Figure 2). The input for both 
heads is xi, the output of the neck, meaning that both classifica-
tion heads share weights in the backbone (Figure 2). These shared 
weights encourage the model to transfer learn between the two 
tasks— predicting species and identities— and, as it learns to predict 
species, it learns to better predict identities of those species. Thus, 
while we include every species in the same model, we do so in a 
way that acknowledges differences among species. If these differ-
ences are slight, then the model can readily transfer learning about 
one species to another, which is particularly helpful if one of these 
species has few training images and the other has many (Zhuang 

et al., 2021). Thus, this shared model, consisting of one backbone 
and two classification heads (Figure 2), accomplishes our goals of 
predicting identities regardless of species and encouraging transfer 
learning among species.

Both classification heads convert the feature vector, xi, to class 
probabilities, that is Pr(species) or Pr(individual) (Figure 2). Arguably, 
the most common method for computing these probabilities in-
volves multiplying xi by a matrix of weights, W ∈ ℝ

D×N , where N is 
the number of classes and D is the length of the feature vector (Deng 
et al., 2019). The resulting length- N vector of logits could be fed to 
the softmax function to get the N classification probabilities. This ap-
proach, coupled with the cross- entropy loss function, is sometimes 
referred to as softmax loss (Deng et al., 2019),

where j indicates the class, yi represents the identity in the ith image, 
and wyi

 are the weights associated with the yith identity.
Softmax loss tends to inadequately discriminate among classes 

in open– set photo– id, that is when the model must classify new 
identities in images after deployment (Deng et al., 2019). Other 
losses, such as triplet loss (Miele et al., 2021), are designed to cor-
rect this drawback. That said, triplet loss requires precise combi-
nations of images in each training batch, significantly complicating 
and extending training when the dataset demonstrates extreme 
class imbalance, as is the case in many photo– id catalogues (Deng 
et al., 2019).

To rectify these issues, Deng et al. (2019) developed the 
Additive Angular Margin Loss function, otherwise known as 
ArcFace loss (Equation 2). ArcFace works by rewriting the logit in 
(Equation 1) as wT

j
xi = ∥ wT

j
∥ ∥ xi ∥ cos�j, following the geometric 

definition of the dot product. Then, we fix the magnitude of the 
weight vector, ∥ wj ∥ , and the feature vector, ∥ xi ∥ , to 1 via l2 nor-
malization. Now, the loss incurred strictly depends on �j , the angle 
between the feature vector and the weights, which can be calcu-
lated as �j = arccos

(

wT
j
xi

)

. Then, ArcFace adds a marginal penalty, 
m, to the angle �yi . This is the angle between the feature vector xi 

(1)�softmax = − log
e
wT

yi
xi

∑N

j=1
e
wT

j
xi

,

F I G U R E  2  A model of the training 
pipeline for multi– species photo– id 
of cetaceans. The top row consists of 
preprocessing steps, shown in example by 
an image of a common dolphin Delphinus 
delphis. Crops generated by the four 
object detection models are shown, as 
well as two examples of images generated 
by the data augmentation step. The 
bottom row shows the training steps of 
the image classification network, from the 
backbone to the neck to the classification 
head. See Section 2 for a description of 
each component in the pipeline.
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and the weights, wyi
, associated with the true class in the ith image. 

This penalty effectively pushes each feature vector closer to the 
centre associated with the true class, wyi

, and pulls it away from the 
centres of other classes, wj , (Figure S1; also see fig 3 in Deng 
et al., 2019). Then, we back- transform to logits by taking the cosine 
of the penalized angle, then re- scale the logits with a parameter s. 
Finally, the logits are fed into the softmax function to calculate the 
probabilities, which are evaluated with the target values using cross 
entropy loss. The final loss function can be written as

For all its benefits, ArcFace loss will struggle when samples naturally 
lie far away from their class centres, wyi

 (Deng et al., 2020). This could 
happen if two images of the same individual show opposite flanks, the 
individual acquires new identifying features, or the existing marks are 
obscured. Under these circumstances, ArcFace loss may perform bet-
ter if we allow each class to have multiple centres. This is known as 
Sub- center ArcFace (Deng et al., 2020) and works by adding an ad-
ditional dimension to the weight matrix, W ∈ ℝ

N×K×D , where K is the 
number of sub- centres per class. The loss function becomes

where �i,j is the angle between the feature vector and the sub- centre, 
which can be calculated as �i,j = arccos

(

maxk

(

W
T

jk
xi

))

 for 
k ∈ {1, … ,K}. The dot product, WT

jk
xi , produces a matrix, S ∈ ℝ

N×K , 
which can be viewed as cosine similarity scores between the feature 
vector and the sub- classes. The maxk

(

W
T

jk
xi

)

 effectively max pools 
the matrix S to produce a vector of N similarity scores between the 
feature and the class. This max pooling step, along with the addi-
tional centres for each class, helps alleviate the issue of mark changes 
or images from different angles. In the cetacean application, we set 
K = 2 for both classification heads.

The final nuance of the classification heads involves the margin 
parameter, m, in (Equation 3). Learning the optimal value for the m 
can be challenging with heavily imbalanced classes (Ha et al., 2020). 
To address this issue, we let the value of the m vary by the number 
of images per class, mc = az−�

c
+ b, where mc is the margin value for 

class c, zc is the number of images of the class, a is a coefficient, b is an 
intercept, and � is the rate of decay to b as z grows. Thus, classes with 
fewer images, which tend to be harder to learn, have higher margins 
(Ha et al., 2020). In the cetacean application, we use this technique 
for both classification heads.

Altogether, these types of classification heads are known as Sub- 
center ArcFace with Dynamic Margins and have become popular in 
image search problems (Ha et al., 2020). As such, they should be gen-
erally applicable to many problems in multi- species photo– id, which 
are analogous to image search.

2.2  |  Cetacean application

This approach was originally developed by the winning team, 
“Preferred Dolphin” of a Kaggle competition that lasted from February 
1 to April 18, 2022. Kaggle is a platform that allows organizations to 
solve machine learning and data science problems via open– source 
competition. Its competitions have previously produced effective 
photo– id models (Bogucki et al., 2019; Cheeseman et al., 2021). In this 
case, Happywhale, a platform for recognizing individual humpback 
whales in photographs and sharing data among researchers and the 
public, challenged competitors to develop a model for recognizing any 
individual cetacean from a photograph of its dorsal side. 1588 teams 
competed for $25,000, submitting 39,284 predictions of individuals 
in the test set. Full competition details, including data, discussions, 
notebooks of code and the leaderboard, can be found at https://www.
kaggle.com/compe titio ns/happy-whale-and-dolphin.

The objective for the competition was to maximize the mean av-
erage precision (MAP) of the test set, specifically, the true identity 
of the individual in each test image. The competitors were to submit 
five predictions per image that were scored using precision. For a set 
of five ordered predictions, the precision score will be 1/1 = 1 if the 
first prediction is correct, 1/2 if the second is correct, and so on until 
1/5 if the fifth prediction is correct, or 0 if none of the five predic-
tions are correct. MAP is the mean precision score for a set. Teams 
submitted their predictions to Kaggle, which then reported the MAP 
score. This score was calculated using classified subset of the test 
set, that is the “public” set (6752 images). At the end of the compe-
tition, teams were ranked by their score on the remaining test im-
ages, that is the “private” set (21,192 images). This splitting makes for 
better model evaluation because it reduces the chance that teams 
will overfit to the test set. The competition's winning team, Preferred 
Dolphin, developed the model discussed in this paper.

2.2.1  |  Training data

Happywhale and Kaggle coordinated with researchers across the 
globe to assemble a large, multi– species dataset of individual ceta-
ceans, consisting of 41 catalogues of 25 different species. Two of the 
competition catalogues were omitted from this analysis because one 
consisted of 26 low- quality images for both training and test, while 
the other lacked a test set (Supporting Information S1 and S2). Each 
catalogue contained a single species. Ten species were represented 
in more than one catalogue, and four species were represented in 
more than two. The dataset demonstrated extreme class imbalance 
for both species (Figure 6, top panel) and individual identities. The 
50,796 training images contained 15,546 identities. Of these identi-
ties, 9240 (59%) had only one training image, while 14,210 (91%) had 
five or fewer. Each image was assigned one label, that is, there was 
one “true” individual per image. For images with multiple individuals, 
the label corresponded to the most discernible individual in the pho-
tograph. The test/train split was determined using catalogue charac-
teristics and thus varied by catalogue (top panel, Figure 6).

(2)𝓁ArcFace = − log
e
s⋅cos

�

�yi
+m

�

e
s⋅cos

�

�yi
+m

�

+
∑N

j=1,j≠yi
es⋅cos�j

.

(3)𝓁ArcFacesubcenter
= − log

e
s⋅cos

�

�i,yi
+m

�

e
s⋅cos

�

�i,yi
+m

�

+
∑n

j=1,j≠yi
es⋅cos�i,j

,
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Many of the competition images had considerable background noise 
that is irrelevant to matching (Figure 3). To address this, several com-
petitors trained models that automatically detected a cetacean in an 
image and drew a bounding box around it, permitting automated image 
cropping following the approach of Bogucki et al. (2019). The training 
pipeline (Figure 2) incorporated four of these detectors (Figure 3). The 
diversity of detectors added some robustness to cropping errors (see 
the grey whale panel in Figure 3), and can be viewed as a form of data 
augmentation. To incorporate these four detectors, we randomly choose 
one to crop each image during each training epoch (Figures 2 and 3). 
A dorsal fin only detector was selected with probability 0.15. One of 
three full body detectors was selected with probability 0.6, 0.15 and 
0.05, respectively. These three detectors produced slightly different 
crops (Figure 3), and differed in architecture, with two using YOLOv5 
(Redmon et al., 2015) and one using Detic (Zhou et al., 2022). Finally, 
the original, uncropped image was selected with probability 0.05. Links 
to descriptions of each detector, including code, can be found at input/
README.md in the paper's GitHub repository, as well as in the discus-
sion forum for the competition (see the link in Cetacean application).

After cropping, we resized each image to 1024 pixels by 1024 
pixels to be compatible with the EfficientNet- B7 backbone. After re-
sizing, we applied several data augmentations, including affine trans-
formation, resize and crop, grayscale, gaussian blur, gaussian noise, 
grid shuffle, posterize, brightness and contrast, cutout, snow, rain 
and horizontal flip, all from the Albumentations library (Table S1). 
Data augmentations are crucial for this architecture, which achieves 
100% accuracy for identity in training yet poor performance in vali-
dation without them, suggesting severe overfitting.

2.3  |  Hyperparameter optimization and training

The classification heads in Equation 3 are highly sensitive to the hyper-
parameters, a, b, � and s. To optimize these values for both heads, we 
used Optuna (Akiba et al., 2019). We did so with a smaller backbone, 
EfficientNet B0 and smaller images, (256 by 256 pixels). As with all 
the hyperparameter optimization here, we validated changes in the 
hyperparameters on a hold- out set representing one fifth of the train-
ing images. The optimal values were s = 20.9588 for the classification 
head for the individual identity and s = 33.1383 for the classification 
head for species. See Figure 4 for the optimal margin parameter values.

After setting values for the hyperparameters, we trained the 
model using larger images (1024 by 1024), an EfficientNet- B7 back-
bone, and an AdamW optimizer (Loshchilov & Hutter, 2017). We set 
the maximum learning rate for the backbone to 1.6e − 3, 10 times 
lower than the learning rate for the head 1.6e − 2 (Figure 5). Further, 
we used a learning rate scheduler with a linear warmup for six epochs, 
then cosine annealing with a 1.0e − 2 decay rate (sensu Loshchilov & 
Hutter, 2016, without restarts). We trained the model for 30 total 
epochs using every training image (Figure 5). The total training time 
took about 64 h on a Nvidia Tesla v100 GPU.

We also conducted two rounds of pseudo- labelling. Pseudo- 
labelling is a semi- supervised learning technique for adding images to 

the training set. To do so, we trained the model then predicted individ-
ual identities for the 27,944 images in the test dataset. Images whose 
predicted class probability was over 0.6 were added to the training 
set. Then, we retrained the model, repeating the process once more. 
Essentially, this process accepts the model's most confident predic-
tions as true labels, which can be beneficial with heavily imbalanced 
data. In fact, these two rounds of pseudo- labelling increased the pri-
vate test MAP by 0.016. On the other hand, pseudo- labelling risks 
overfitting to the images in the test and train sets, making it less likely 
that the model will perform well in production. As a result, it was es-
sential to evaluate the model with not only the competition's test set 
but also on catalogues that were not used in training the model.

2.4  |  Prediction and evaluation

To generate predictions for pseudo– labelling and the final evaluation, 
we used the metric learning approach (Miele et al., 2021) of estimating 
similarity scores between feature vectors of the training set to that of 
the predicted image. Specifically, we found the 500 nearest neighbours 
in the training set to the prediction image using cosine similarity as the 
distance metric. If the neighbours included multiple training images of 
the same individual, we took the maximum value of the similarity score 
of that individual. Finally, we added a dummy class for new individual, 
giving it a similarity score of 0.465, then sorted the similarity values 
to get the final predicted classes. Thus, if the six nearest images in the 
training set to the prediction image had {score:class} {0.9:A, 0.8:A, 0.5:B, 
0.3C, 0.2:D, 0.1:E}, the predictions would be {0.9:A, 0.5:B, 0.465:new, 
0.3:C, 0.2:D}. We evaluated these predictions on the 21,192 images in 
the private test set, excluding the public test images for better model 
evaluation. Note that we excluded 52 images of grey whale flukes from 
the evaluation since they are too unlike any other image in training and 
test sets; they do not show the dorsal/lateral view of the animal.

We also evaluated the model's predictive performance on two cat-
alogues that were not included in the competition and entirely com-
prised of identities that the model had not seen during training. One 
is a catalogue of 4670 rough- toothed dolphin Steno bredanensis im-
ages from the main Hawaiian Islands, produced by Cascadia Research 
Collective, spanning 20 years of data collection (Baird et al., 2008). 
The other is a catalogue of 754 spinner dolphin images from O‘ahu, 
Hawai‘i that was collected from 2020 to 2022 by the Marine Mammal 
Research Program at the Hawai‘i Institute of Marine Biology. This 
catalogue only included highly and moderately distinct individuals, as 
well as excellent and good photos (sensu Rosel et al., 2011).

3  |  RESULTS

The model's predictions for the competition test set of 21,192 im-
ages from 39 catalogues of 24 species attained a MAP score of 
0.869. The precision varied among species (Figure 6, Table S2) and 
did not correlate with the number of training images or test images. 
The model was generally better at recognizing toothed whales than 

 2041210x, 0, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.14167 by M
inistry O

f H
ealth, W

iley O
nline L

ibrary on [10/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  7Methods in Ecology and Evolu
onPATTON et al.

baleen whales; only two of the eight baleen whale species scored 
above average. These two species, sei whale Balaenoptera borea-
lis and Bryde's whale Balaenoptera brydei, are primarily identified 
by their dorsal fins, as are most toothed whale species. The best 
performing species included so– called blackfish— false killer whale, 
melon- headed whale Peponocephala electra, pygmy killer whale 
Feresa attenuata, long– finned pilot whale Globicephala melas, short– 
finned pilot whale Globicephala macrorhynchus, and killer whale 
Orcinus orca— as well as common bottlenose dolphin Tursiops trun-
catus and spinner dolphin. The model was least able to recognize 
southern right whale and Cuvier's beaked whale Ziphius cavirostris.

For species with multiple catalogues, some exhibited significant 
variation in performance. For example, one catalogue of common 
minke whale Balaenoptera acutorostrata achieved 0.79 MAP while 
the other achieved 0.60. Other species with large disparities in per-
formance among catalogues included beluga whales Delphinapterus 
leucas and killer whales. Conversely, humpback whales, bottlenose 

dolphins and spinner dolphins demonstrated consistent perfor-
mance across catalogues. We were unable to find a metric to explain 
variation among catalogues. There was no consistent relationship 
between the catalogue– level MAP and mean image width, mean 
bounding box width, the number of training images, the number of 
distinct individuals, or the number of training images per individual 
(Figures 6 and 7). On the other hand, we found several qualitative 
measures that did appear to affect an image's precision score, in-
cluding blur, distinctiveness, mark obfuscation, distance, contrast 
and splashing/spray (Figure 8).

The model was able to recognize individuals in the two un-
seen catalogues— the spinner dolphin and rough– toothed dolphin 
catalogues— better than these species' catalogues in the competition 
set. For example, the three competition spinner dolphin catalogues 
scored 0.96, 0.95 and 0.94, while the unseen catalogue scored 0.99. 
Similarly, the rough– toothed dolphin catalogue in the competition 
scored 0.74, while the unseen catalogue scored 0.83.

FIGURE 3 An image from nine catalogues in the competition set, and bounding boxes generated by the four cetacean detectors used by 
the model. The probability of seeing the crop generated by each bounding box was 0.60 for red, 0.15 for olive green, 0.15 for orange, and 
0.05 for blue.
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4  |  DISCUSSION

Our multi– species approach to photo– id performed well in the ceta-
cean application, scoring 0.869 MAP on the 21,192 test images. For 
reference, the humpback whale fluke model used by Happy whale.com 
achieved roughly 0.97 MAP in competition (Cheeseman et al., 2021) 
and, therefore, many humpback whale biologists trust the model to 
correctly identify the individual in nearly all circumstances. In our 
model, this level of precision (above 0.95) was attained by 10 cata-
logues representing seven species— false killer whale, killer whale, 
long– finned pilot whale, pygmy killer whale, common bottlenose dol-
phin, short– finned pilot whale and spinner dolphin (Figure 6, Table S2).

4.1  |  Guidance for cetacean researchers

While identifying the causes of prediction errors in neural networks 
is challenging, we discuss possible explanations for the heterogeneity 
in performance among catalogues and species, and we make specific 
recommendations based on these findings. Further, for every exam-
ple of a suspected cause of prediction failure in Figure 8, there are 
far more examples of the model accurately predicting an individual 
under the same conditions. That said, we have extensively studied the 
output, namely, the zero precision images, and have identified the fol-
lowing patterns.

4.1.1  |  Species identified by their dorsal fin 
score best

All the highest performing catalogues represented species that 
are primarily identified by their dorsal fin. There are a few pos-
sible explanations for this pattern. Dorsal markings, for example, 
nicks and notches or distinctive curvature, are the primary iden-
tifying characteristic in 19 of the 24 species. Secondly, some of 
these species lack highly distinctive natural marks. As such, cata-
logues for these species, for example, the external spinner dolphin 
catalogue, often only contain individuals that acquire distinctive 
nicks and notches along the dorsal fin. Thus, there is a minimum 
level of distinctiveness for these catalogues, potentially making 
the model's job easier.

4.1.2  |  Catalogues with fewer distinctive individuals 
will underperform

Catalogues without a distinctiveness threshold, for example 
the fin whale catalogue, may underperform since less distinc-
tive animals are harder to identify in lower quality images (Rosel 
et al., 2011). Thus, the model's predictions for these individuals 
are more sensitive to nuisance characteristics in the image, likely 
lowering performance.

F I G U R E  4  Dynamic margin curves for the classification heads for individual identity (ID) and species. The y axis is the margin penalty, 
that is, m in (Equation 3). The x axis represents the number training images for a given class. Note the different scales of the x axis. 
The median number of images by species was 866; for ID, it was 1, that is one training image per identity. Thus, the margin for a given 
identity was much higher than that of a given species as would be expected since individual identity is a more challenging recognition 
task than species identity.

F I G U R E  5  Learning rate scheduler 
and training curve. “Back,” refers to 
the backbone and “Head,” refers to 
the classification heads. The maximum 
learning rate for the backbone, indicated 
at the dashed line, was 10 times lower 
than that of the classification heads. The 
training curve shows the training loss over 
the epochs.
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4.1.3  |  Image quality is important

Most of the suspected causes of poor predictive performance relate 
to some measure of image quality. These include the angle of the sub-
ject to the camera, splash or spray covering the mark, blurred subject, 
the mark partially submerged in water, distance to the subject, and 

contrast of the mark against the background. Many of the differences 
in performance among catalogues for a given species could be attrib-
uted to average photograph quality. For example, the lower perform-
ing minke whale catalogue tended to have images taken from further 
away. Similarly, the lower performing beluga catalogue contained 
older, blurrier images than its higher performing counterpart.

F I G U R E  6  Mean average precision for the 24 species and 39 catalogues constituting the Kaggle test set. The top panel shows the 
number of images for each species by usage, that is, training or test. For species with multiple catalogues, the catalogue– level MAP is 
denoted by an x. The Fraser's dolphin catalogue, which scored 0.42 on 26 total images, is not pictured.

F I G U R E  7  Possible explanatory variables for the catalogue level variation in performance. Each point is one of the catalogues in the 
competition dataset. Image and box width are represented in pixels. Box width is the weighted average of the bounding box, with weights 
corresponding to the probability of each box (Figure 3). Distinct IDs refers to the number of individuals in the training set. There was no 
consistent relationship between the catalogue– level MAP and mean image width, mean bounding box width, the number of training images, 
the number of distinct individuals or the number of training images per individual.
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Some of these image quality measures relate to biology. For 
 example, Cuvier's beaked whales are deep– divers that rarely spend 
time at the surface. As such, images of them are often taken from 
a distance. As another example, it is difficult to capture images of 
common dolphins without blur, breaches or splashes because they 
are fast and acrobatic swimmers.

4.1.4  |  Pigmented animals might be harder to identify

Some species where pigmentation is used as a secondary identi-
fying characteristic appeared to underperform. These included 
rough- toothed dolphin, pantropical spotted dolphin Stenella attenu-
ata, Commerson's dolphin Cephalorhynchus commersonii and pacific 

white– sided dolphin Lagenorhynchus obliquidens. One possible explana-
tion is that pigmentation for these species is not quite as distinctive as a 
mark such as, say, a large notch on the dorsal fin. Further, it may be dif-
ficult to capture a quality image of this pigmentation because of glare, 
contrast, splash/spray or other nuisance characteristics. Additionally, 
identifying pigmentation will vary from the left and right sides of the 
animals.

4.1.5  |  Species with unusual marks relative to the 
training set will score poorly

This category primarily relates to the southern right whale, whose char-
acteristic, callosities, may be too different from the other species in the 

F I G U R E  8  Eight suspected causes of 
prediction errors, including six examples 
from the competition data. None of the 
predicted identities in each image were 
correct.
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training data. While other high- performing catalogues had fewer im-
ages, for example pygmy killer whale, these catalogues often contained 
species with similar marking characteristics to other species with larger 
training sets, for example false killer whale. Conversely, there is no 
larger catalogue of a species with similar marks that can effectively 
transfer learn to the southern right whale catalogue.

4.1.6  |  Preprocessing remains a hurdle

The model in Figure 2 incorporates a pre– processing step to au-
tomatically detect an animal and crop the image before feeding 
it to the photo– id model. Both this preprocessing model and the 
photo– id model were trained with the competition images, which all 
contained animals that had been identified to individual. Conversely, 
many raw images from the field will not contain animals that are 
identifiable because the images are poor quality, or the animal is 
indistinct. Therefore, our current preprocessing model likely would 
not work well for all raw field images. While the cetacean detection 
models used in the training pipeline (Figures 2 and 3) could be used 
to separate images with and without cetaceans, this model is not 
capable of removing images with cetaceans that are too blurry or 
indistinct for matching. Future research should focus on develop-
ing models for automating this grading step, which is essential to 

mark– recapture (Urian et al., 2015) and can be gruelling, such that 
raw field images can be processed before feeding this model.

4.1.7  |  The model may struggle with mark changes

Mark changes may trick the model into classifying changed individu-
als as new, which could explain why the Antarctic killer whale cata-
logue performed worse than the Australian killer whale catalogue. 
Unlike some of their Australian counterparts, Antarctic killer whales 
tend to accumulate diatoms, which can completely obscure marks and 
may have impacted model performance. On the other hand, the struc-
ture of the model, that is the sub- centres in the classification head 
(Equation 3), may have made the model somewhat resilient to minor 
mark changes. Figure 9 shows one such example involving an individ-
ual bottlenose dolphin. In this example, six of seven test images show 
a new nick towards the top of the dorsal fin that was not present in 
the training images. Two of these were correctly classified. The other 
four were incorrectly classified as new individuals. For each of these 
images, however, the correct identity was included in the top five pre-
dictions. Thus, the model appears to show some resilience to a minor 
mark change. Nevertheless, future research should explore how to im-
prove this resilience, perhaps by incorporating additional information, 
for example, social, spatial or other encounter– level data.

F I G U R E  9  An example of a mark 
change and its influence on the model's 
predictions. The figure shows every 
train and test image for one individual 
bottlenose dolphin. The precision for the 
predicted identity in each test image is 
shown in a blue box. Note the degradation 
in prediction confidence before and after 
the new dorsal fin notch highlighted by a 
red arrow, occurred between 2018- 10- 17 
and 2019- 02- 27.
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4.1.8  |  This algorithm is freely available

Finally, we note that this model is available as code in a GitHub re-
pository and as a graphical user interface, with additional function-
ality for collaborative data management, via Happy whale.com.

While this model has been compared to the other 39,284 mod-
els in the competition, it has not been explicitly compared to ce-
tacean photo– id models in the literature (e.g. Bergler et al., 2021; 
Maglietta et al., 2020, 2023; Thompson et al., 2021; Weideman 
et al., 2017). A full comparison (sensu Tyson Moore et al., 2022), 

G LOSSARY 
Backbone Convolutional neural networks designed to be widely applicable to many problems in image classifica-

tion. Examples include ResNet, DenseNet, Xception and MobileNet (Khan et al., 2020).
Classes Discrete output values in an image classification problem, for example rough- toothed dolphin (species) 

or HISb007 (identity).
Class imblance Dataset characteristic whereby some classes have many images while others have very few. Often 

histograms of these datasets, showing the number of images by class, will be right- skewed.
Classification head (head) Layer in the neural network that computes the classification probabilities. In logistic regression, the 

classification head is 
Convolutional layer Layer in a convolutional neural network that reduces the input, for example the raw RGB values of an 

image, using a kernel that extracts the input’s component features, for example edges, textures or co-
lours. The extracted features depend on the weights, which are learned during training.

Convolutional neural network (CNN) A neural network consisting of convolutional layers and pooling layers. These networks 
have been shown to be effective at modelling images, audio and text (Khan et al., 2020).

Data augmentation Image classification technique whereby images have been randomly altered, for example, converted to 
grayscale, mitigating the potential for overfitting.

Epoch One pass through the full training dataset during training. Increasing the number of epochs leads to the 
model learning more about the training data risking the chance of overfitting.

Feature vector A vector that summarizes an object such as an image, into component features. In image classification, 
the feature vector can be a, say, length 512 vector that summarizes a 1024 by 1024 by three RGB 
image. This summary is optimized during training to distinguish among classes, for example, identities. 
Thus, probability that two identities are distinct grows with the distance between their image’s feature 
vectors.

Hyperparameter Parameters that cannot be learned during training and therefore must be set a priori. Optimal values 
are typically chosen via validation.

Learning rate Rate at which the optimizer changes values of the weights during training. In gradient descent, 
wt+1 = wt − �

�ℒ

�w
, where 

�ℒ

�w is the gradient of the loss with respect to the weights and � is the learning 
rate. A learning rate scheduler allows the learning rate to vary by epoch.

Pooling layer Layer in a convolutional neural network that adds robustness to the model, for example robustness to 
changes in an object’s location in an image. A pooling layer typically downsamples a convolutional ker-
nel in the network, for example by simply outputting the maximum value (max pooling) of the kernel.

Neck Any layers in the neural network that separate the backbone from the classification head(s) typically 
reducing the backbone’s three dimensional output to a one dimensional feature vector.

Overfitting Pitfall of machine learning, particularly for complex models. Overfit models will have high predictive 
performance on the training data but low predictive performance in general. In image classification, 
overfit models often memorize irrelevant portions of the training images, for example a boat in the 
background.

Validation Process for finding optimal model structures or values of hyperparameters during which models are 
trained then evaluated on a hold out set. It can be distinguished from test, which is performed once at 
the end of development.

Transfer learning Machine learning technique for applying learning from one problem to another. For examplein the 
shared architecture in Figure 2, the learning from the species classifier is shared with the identity clas-
sifier, improving the performance of the latter.

Weights Model parameters that are learned during training.
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however, would be challenging because we are unaware of any 
model that could be reasonably used to predict the identities of 
every species in the dataset. Thus, any comparison would need 
to be piecemeal, comparing the state- of- the- art for each species 
to the full model presented here. Similarly, we recommend that 
future developers of multi– species models for cetaceans evalu-
ate the performance of their models using the competition data-
set, which has potential to be a powerful common dataset going 
forward.

We demonstrated that this approach can simultaneously 
achieve high predictive performance for classifying many spe-
cies of cetaceans. We expect this approach will work well when 
applied to other multi– species catalogues if they arise from sim-
ilar survey settings, for example camera trap surveys, and the 
species share identifying characteristics. With this in mind, we 
speculate that this multi– species approach would work with 
terrestrial mammals caught with camera traps, or individu-
ally identifiable animals from unoccupied aerial vehicle (UAV; 
drone) imagery, for example beluga whales, humpback whales, 
and crocodiles. Having reliable automation for these species 
and situations may make photo– id research more accessible to 
organizations, potentially quickening the pace of ecological and 
management- focused research.
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SUPPORTING INFORMATION
Additional supporting information can be found online in the 
Supporting Information section at the end of this article.

Supplementary S1. Characteristics for all 41 competition catalogues. 
MAP is the mean average precision on the test set. The two 
catalogues without a MAP score (8 and 21) were included in the 
competition yet omitted from this analysis. Train Img is the number 
of images in the training split. Test Img is the number of images in 
the test split. Train ID is the number of identities in the training split. 
Img / ID is the median number of images per identity in the training 
split. Img Width is the mean width of the images in the training split, 
in pixels. Box Width is a weighted mean of the bounding box size for 
images in the training split. A large difference in box width and image 
width implies that the images contain a lot of background noise.
Supplementary S2. Primary reference in the literature for each 
catalogue in the competition. Two catalogues (8 and 21) were 
included in the competition yet omitted from this analysis.
Supplementary S3. Figure S1: A schematic diagram of the two loss 
functions, inspired by Figure 3 in Deng et al. (2019). Each dorsal fin 
represents the image's projection onto an abstract, high- dimensional 
space (softmax loss) or a hypersphere (ArcFace loss). The three 
coloured boxes contain three images of a known individual dusky 
dolphin (Lagenorhynchus obscurus). Additionally, there is a tenth 
image of a “new individual,” that is, one not in the training set. The 
white space between the boxes represents the decision boundaries. 
For softmax loss, the decision boundaries are so close that the 
identity of the new individual is ambiguous. In ArcFace, each sample 
has been pushed closer to its class centre, and away from the other 
centres, such that we can confidently classify the individual as new.
Table S1: Data augmentations used before training, implemented in 
the Albumentations library. translate_percent dictates the proportion 
of image that is translated. scale dictates the proportion of the image 
that is cropped, while ratio dictates the range of aspect ratio of the 
origin that is cropped. blur_limit dictates the max kernel size for 
blurring the image. grid is the size of the grid for splitting the image.
Table S2: Predictive performance by catalogue, including the mean 
average precision (MAP), Top1 Accuracy and number of images 
precision score.
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