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Abstract

1. Mobile marine protected areas have been proposed for the conservation of highly

seasonal or mobile marine megafauna. However, seasonal data on the distribution

of marine wildlife to inform protected areas are generally scarce worldwide,

especially for cetaceans, which makes dynamic solutions difficult to implement.

2. Furthermore, conservation objectives are often set at the level of individual

species rather than at the community level, despite many species having similar or

overlapping habitat requirements, and a comparison of the effectiveness of

mobile vs. static Marine Protected Areas options has rarely been done.

3. Systematic conservation planning was used to identify priority areas of cetacean

biodiversity in the north-east Atlantic accounting for seasonal changes in

distribution. Consistent hotspots across seasons at a community level, in

particular along the shelf edge, suggest that fixed priority areas for cetacean

biodiversity may be appropriate.

4. The area required for protection to meet conservation targets (i.e. 20% of a

population occurring within a protected area) is minimized when considering

populations at basin scale rather than national level. Highly mobile megafauna

normally exploit persistent and predictable oceanographic features, so a habitat

suitability rather than a jurisdiction-based approach is more appropriate.
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1 | INTRODUCTION

The ocean is a highly dynamic environment with large variations in

currents, wind regime and temperature across space and time (Hobday

et al., 2014). Pelagic systems in particular represent variability over

large scales, exceeding those in other systems, and driving the mobility

of many pelagic species (Hyrenbach, Forney & Dayton, 2000). For

example, seasonal thermal stratification of the water column plays a

key role in the occurrence of various marine mammal and seabird

species (Scott et al., 2010; Cox, Scott & Camphuysen, 2013). Other

dynamic features important for the distribution and abundance of

marine species include the timing of phytoplankton blooms (Grémillet

et al., 2008) with a strong bottom-up effect at higher trophic levels

(Praca et al., 2009; Druon et al., 2012) or climatological fronts (Bost
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et al., 2009). Nevertheless, spatiotemporally predictable characteristics

such as topography, and tidal and ocean currents can support high

numbers of marine species across multiple trophic levels (Cañadas,

Sagarminaga & García-Tiscar, 2002; Genin, 2004; Certain et al., 2008).

Within this context, precise knowledge of spatiotemporal changes in

species distribution and abundance is crucial to understand population

dynamics and ecosystem functioning (Chase & Leibold, 2003; Ehrlén &

Morris, 2015) but also to identify priority areas for species persistence

(Hoyt, 2012; Evans, 2018).

Highly mobile megafauna, such as cetaceans, sharks, turtles and

seabirds are unlikely to be properly protected within small-scale static

protected areas owing to their mobility (Hoyt, 2012; Critchley

et al., 2018), but some successful examples exist where specific threats

can be properly managed locally (e.g. Gormley et al., 2012). Marine

megafauna usually exhibit considerable seasonal distribution changes

(Campbell et al., 2015; Roberts et al., 2016; Cañadas & Vázquez, 2017),

and adjusting management measures to account for seasonal variability

in species distribution is important in order to achieve effective species

conservation throughout the entire year (Evans & Hammond, 2004;

Guisan et al., 2013). Consequently, mobile marine protected areas, such

as seasonal closures, may potentially be more suitable for the

conservation of highly mobile populations (Hartel, Constantine &

Torres, 2014; Dwyer et al., 2020). Conservation planning will therefore

greatly benefit from seasonal information on species’ habitat

preferences, but despite being crucial, this information rarely is included

(e.g. Cañadas & Vázquez, 2014; Afán et al., 2018; Giménez et al., 2020).

This is particularly important if seasonal variability in distribution is

driven by species changing habitat, for example switching from on-shelf

to off-shelf habitats or range shifts along a particular habitat (e.g. the

shelf edge) (Forney & Barlow, 1998; Neumann, 2001).

Dynamic area-based management (i.e. temporal protection of

certain areas based on the seasonal movements of the species) is a

promising avenue for conservation of pelagic species, particularly

where information on species movement and distribution changes is

included (Hazen et al., 2018; Pinsky et al., 2020). This approach has

proved to be successful in several cases, such as for the protection of

sea turtles and tunas (Hobday et al., 2011; Howell et al., 2015), but is

untested more widely (Ortuño Crespo et al., 2020). Despite the fact

that information on seasonal patterns of occurrence is essential for a

comprehensive conservation strategy (Pratt, Smith & Beck, 2019;

Vilas et al., 2020), seasonal monitoring of marine wildlife is generally

scarce worldwide. Recently, large-scale data integration, spanning

multiple survey platforms, seasons and years, has resulted in the

production of monthly modelled density estimates for 12 species of

cetaceans inhabiting north-eastern Atlantic waters (Waggitt

et al., 2020). This provides a suitable monthly dataset to use decision-

making tools to identify whether static or mobile priority areas best

meet targets for conservation as required by national and EU

legislation (e.g. Habitat Directive (92/43/EEC), Marine Strategy

Framework Directive (2008/56/EC)).

Effective conservation through the use of protected areas is

largely based on the assumption that activities representing threats to

marine biodiversity are limited or excluded from protected areas. In

terms of cetacean conservation, fisheries represent one of the greatest

risks to populations through prey depletion as well as bycatch

(Bearzi, 2002; Hamner et al., 2014; Jaramillo-Legorreta et al., 2019;

Peltier et al., 2021). However, fisheries are rarely excluded from

protected areas, with a recent study showing that across European

waters, habitat-damaging trawling activity was actually more intensive

inside protected areas than outside them, and that sensitive species of

elasmobranchs were more abundant outside the heavily fished

protected areas (Dureuil et al., 2018). Currently fishing activity can be

quantified using the Automatic Identification System, which accounts

for a large part of the fishing fleet (i.e. vessels larger than 12 m) (Natale

et al., 2015; de Souza et al., 2016; McCauley et al., 2016; Vespe

et al., 2016; Kroodsma et al., 2018). Such data can help determine the

occurrence of fishing activity within cetacean biodiversity hotspots as

a potential factor undermining conservation objectives.

The main objective of this study is to identify priority cetacean

areas at a community level (i.e. accounting for multiple cetacean species

that may have similar or overlapping habitat requirements), and

evaluate whether dynamic (i.e. monthly or seasonal priority areas) or

static (i.e. all year-round priority areas) area-based approaches may be

most appropriate within the scale of the north-east Atlantic. The main

hypothesis is that despite known seasonal movements of cetaceans,

persistent priority areas may occur across years and seasons owing to

predictable oceanographic conditions that promote productivity, and

hence suitable habitat for those species. Furthermore, the effect of

setting conservation targets at a basin (i.e. European level) vs. national

level (i.e. exclusive economic zone waters) was evaluated. Finally, the

co-occurrence of fishing effort was explored within priority areas, given

that prey removal and incidental capture in fishing gear are major

threats affecting cetacean populations worldwide.

2 | MATERIAL AND METHODS

2.1 | Data

Density distribution maps of cetaceans (animals/km2) inhabiting the

exclusive economic zones (EEZs) of countries in the north-east

Atlantic, specifically the EEZs of (north to south) Norway, UK, Ireland,

Sweden, Denmark and Germany, The Netherlands, Belgium, Atlantic

France and north-west Spain were obtained from Waggitt et al.

(2020), who modelled the monthly density distribution of 12 cetacean

species (i.e. Atlantic white-sided dolphin (Lagenorhynchus acutus),

bottlenose dolphin (Tursiops truncatus), fin whale (Balaenoptera

physalus), harbour porpoise (Phocoena phocoena), killer whale (Orcinus

orca), long-finned pilot whale (Globicephala melas), minke whale

(Balaenoptera acutorostrata), Rissoʼs dolphin (Grampus griseus), short-

beaked common dolphin (Delphinus delphis), sperm whale (Physeter

macrocephalus), striped dolphin (Stenella coeruleoalba), white-beaked

dolphin (Lagenorhynchus albirostris)) at 10 km resolution using a range

of dedicated and opportunistic survey platforms from 1980 to 2018.

This is the most complete dataset in European waters on seasonal

distribution of cetaceans available at a basin scale. Nevertheless,
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interannual differences were not taken into account and only general

seasonal habitat associations were the focus of the analysis (Waggitt

et al., 2020). As the modelled monthly distributions represent long-

term averages across several decades, harbour porpoise, a widespread

and abundant species which has shown substantial changes in

distribution in recent decades (Hammond et al., 2013; Gilles

et al., 2015), was omitted. However, in contrast to harbour porpoises,

substantial changes in distribution across recent decades have not

been recorded in most species (Evans & Waggitt, 2020), suggesting

that modelled distributions are a good representation of long-term

distributions in most cases.

2.2 | Prioritization analysis

Spatiotemporal prioritization to define priority cetacean areas was

performed using the R package prioritizr (Hanson et al., 2023). The

package uses species distribution data to optimize priority areas based

on user defined conservation objectives, conditions and penalties.

Here, the area required to encompass 20% of all species’ abundance
was minimized within the basin area. This specific target was set

because the IUCN suggested this target as the minimum amount of

each habitat or species to be represented in marine reserves (IUCN

World Parks Congress, 2003) and it has been applied to several

studies (e.g. Morfin, Bez & Fromentin, 2016; Afán et al., 2018). The

planning unit (i.e. the building blocks of any prioritization exercise)

resolution was designed to have the same resolution as cetacean

abundance data, as recommended by Hermoso & Kennard (2012).

Two different scenarios were considered: scenario A for

encompassing 20% of all species’ abundance at a basin level

(i.e. north-east Atlantic); and scenario B for encompassing 20% of all

species’ abundance within each country's EEZ. Furthermore, each

scenario was rerun calibrating the boundary of the solution to obtain

compact solutions (i.e. with fewer boundaries). In this calibration the

add_boundary_penalties parameter of prioritzr was used to favour

solutions that spatially clump planning units together based on the

overall boundary length (perimeter). This parameter is equivalent to

the boundary length modifier parameter in Marxan (Ball,

Possingham & Watts, 2009).

2.3 | Persistence of priority areas

Seasonal persistence of priority areas was assessed by performing a

frequency map of monthly solutions. Higher frequencies imply

a higher selection of areas, indicating that priority areas do not differ

markedly between months. Thus, these areas should be considered

persistent priority areas. Conversely, areas with low values indicate

areas that are only a priority during certain months and suggest a

dynamic scenario. Cohen's kappa coefficient was used to quantify the

similarity between different monthly priority solutions (Ban, Picard &

Vincent, 2009). All pairwise comparisons between months were

performed but the values of the diagonal (see Figure S2) are

particularly important because they indicate the similarity in priority

areas between consecutive months. The categorization of Cohen's

kappa coefficient was done following Landis & Koch (1977), where a

value of 0 is ‘No agreement’, 0–0.2 is ‘Slight agreement’, 0.2–0.4 is

‘Fair agreement’, 0.4–0.6 is ‘Moderate agreement’, 0.6–0.8 is

‘Substantial agreement’ and 0.8–1.0 is ‘Almost perfect agreement’. In
addition, a cluster dendrogram was generated between the spatial

prioritization solutions to quantify the existence of clusters of

solutions (Linke et al., 2011). Finally, the priority area in each month

was quantified for each scenario to evaluate how different decisions

(i.e. EEZ vs. European target and boundary calibration) affect the total

area identified.

2.4 | Fishing activity

Fishing effort (i.e. number of Automatic Identification System

messages detected as fishing) in the north-east Atlantic was extracted

from Global Fishing Watch dataset from 2012 to 2016 (https://

globalfishingwatch.org). Daily information was summarized by month

and fishing gear type (i.e. drifting longlines, fixed gears, purse seines,

trawlers and other fishing) in R. The percentage of fishing effort inside

cetacean priority areas within each country EEZ irrespective of the

country of origin of the boats was calculated with the Zonal Statistic

Tool in ArcMap 10.7.1 for scenarios A and B.

3 | RESULTS

3.1 | Prioritization analysis

The spatiotemporal prioritization analysis shows that within the

north-east Atlantic, priority areas are concentrated in the waters of

four different countries: the UK, Ireland, France and Spain (scenario A,

Figures 1a, S1a, Table S1). When protection targets (i.e. 20% for each

species) were established to be met by each country within their own

EEZ (scenario B, Figures 1b, S1b), the area required increased

markedly (Figure 2), but retained areas identified in scenario A. Areas

identified as priority for cetaceans were mainly concentrated in the

north-west of Scotland, offshore Irish and French waters, as well as

coastal and offshore areas of north-west Spain.

Cohen's kappa matrix, which indicates the similarity between

months, displayed consistent values (Figure S2a), suggesting that

priority areas are consistent throughout the year. Values in the

diagonal represent almost perfect agreement (Figure S2a), suggesting

high agreement in the priority areas month-to-month. The same

pattern is present in scenario B despite setting targets at country level

(Figure S2b). Cluster analysis suggests two differentiated clusters

despite the high agreement in Cohen's kappa values, with one cluster

from November to June and another from July to October

(Figure S3a,b).

When the boundary of the solutions is calibrated (Figures 1c,d

and S1c,d) to obtain more compact solutions, three well-defined areas
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emerge: the north-west offshore waters of Scotland and north of

Ireland; the offshore waters off southern Ireland and France; and the

coastal and offshore waters in north-west Spain. When planning at

country level (scenario B) with boundary calibration (Figure 1d), the

identified areas at basin level generally persist, but additional areas

emerge to meet national targets (Figure 1d), such as the offshore

waters of Norway, waters on the EEZ borders of Denmark, Germany

and The Netherlands, and in offshore waters in the Basque country

(Spain). Cohen's kappa values are generally lower, indicating reduced

similarity across months (Figure S2c,d) compared with prioritization

without boundary calibration (Figure S2a,b). Nevertheless, months

cluster in a similar way to scenario A with months from November to

June clustering together (Figure S3c,d).

The area required to protect 20% of all species’ abundance at

EEZ level (scenario B; mean area, 296,071.0 km2 (minimum,

291,604.3 km2 to maximum, 299,904.3 km2)) is almost 20% larger

than when planning at basin level (scenario A; mean area,

247,861.7 km2 (minimum, 243,503.4 km2 to maximum,

250,003.4 km2), see Figure 2). In addition, calibrating the boundary of

the solutions increases the area requirements because in order to

reduce the overall number of discrete solutions, a greater area is

needed across fewer sites to achieve the same target (Figure 2).

Seasonal area requirements are similar between scenarios with the

total area required between January and May being smaller than that

for the rest of the year.

3.2 | Fishing activity

The proportion of fishing activity occurring inside priority areas on a

country-by-country basis was highly variable (Figure 3). France had

the lowest proportion of fishing effort within priority areas overall,

F IGURE 1 Frequency of all best solutions for: (a) scenario A1 – protection target at basin level without boundary calibration; (b) scenario B1
– protection target at country level without boundary calibration; (c) scenario A2 – protection target at basin level with boundary calibration; and
(d) scenario B2 – protection target at country level with boundary calibration.
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while the UK had the greatest proportion, indicating a high degree of

overlap between priority areas and fishing activity. Fishing activity

within priority areas occurred throughout the year, with no consistent

seasonal pattern across countries. Some countries showed a relatively

consistent proportion of fishing activity within priority areas across

the year (e.g. Netherlands, Norway, Spain), while others had peaks at

different times of the year, probably representing different seasonal

fisheries. Longliners and fixed gears were more prevalent within

priority areas in France, Ireland, the UK and Spain, while The

Netherlands, Germany and Belgium had a higher proportion of

trawlers and other, ‘undesignated’ gears in their priority areas.

4 | DISCUSSION

Identifying priority areas that cover the full annual cycle for cetaceans

is a complex task, as species distribution changes seasonally. Few

studies have generated the kind of data required to account for such

variability (Becker et al., 2014; Roberts et al., 2016; Laran et al., 2017).

Here, spatiotemporal dynamics (i.e. seasonal species distribution

models) have been included in the identification of priority areas for

cetaceans at a community level.

Dynamic area-based solutions for the conservation of marine

wildlife are becoming more common in different ocean basins and can

be especially useful to avoid specific threats, for example, boat

collisions, when focused on a single migratory species (Dunn

et al., 2016; Ortuño Crespo et al., 2020). Despite arguments that

cetaceans require mobile protected areas for their conservation

(Hoyt, 2012), this study suggests that when including multiple species

and setting targets at a basin scale, protected areas become large

enough for fixed approaches to work effectively. An optimal MPA

design should protect the distribution of populations during the whole

year, encompassing seasonal differences in distribution (Hoyt, 2012).

The persistence of large priority areas for cetaceans identified in this

study suggests that these species do not distribute randomly, and

F IGURE 2 Area (in km2) of priority cetacean areas selected when
using a European target (purple, boundary not calibrated; pink,
boundary calibrated) or when the target has to be fulfilled in each
country EEZ (green, boundary not calibrated; orange, boundary
calibrated).

F IGURE 3 Percentage of the fishing effort inside priority cetacean areas for each fishing gear in each month for each country.
(a) Conservation target at European level (scenario A); and (b) conservation target at EEZ level (scenario B).
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probably concentrate in areas of high productivity and prey

abundance. As such, at a multispecies community level, static solutions

are a suitable approach to encompass at least the 20% of each

cetacean species occurring in the NE Atlantic. This basin is a shelf-sea

area dominated by topographically driven processes linked to the

movement of persistent and predictable tidal and ocean currents (Cox

et al., 2018). With static approaches, monitoring presents fewer

challenges for enforcement, and is easier to implement across multiple

stakeholders (Pérez-Jorge et al., 2015) than dynamic approaches

(Maxwell et al., 2015). Furthermore, static protection provides

continuous protection of benthic habitats, potentially enhancing the

wider ecosystem (Brander et al., 2020; Duarte et al., 2020).

The increased area required when setting conservation targets at

country level (i.e. EEZ level) as opposed to basin level gives support to

the argument for setting priority areas for cetaceans across national

jurisdictions. Species distributions and oceanographic features do not

match national borders, so collaboration between countries in

conservation planning is essential to reduce planning costs while

ensuring the achievement of conservation targets (Mazor,

Possingham & Kark, 2013; Kark et al., 2015). Our results suggest that

the identification of priority areas for cetacean species could be done

at the European level, reducing the total area required to encompass

the 20% of the abundance of each species (Figure 2). However, such

an approach places disproportionate responsibility for conserving

species at a European level onto a limited number of countries with

additional costs associated with monitoring and enforcement. In this

case, priority areas are concentrated in the offshore waters off north-

west Scotland, the north of Ireland, southern Ireland and France, and

the coastal and offshore waters in north-west Spain (Figure 1).

Furthermore, there may be knock-on economic effects including

potential exclusion of commercial activities including fisheries within

identified areas. However, in support of a national-level designation

process, an increase in the extent of priority areas required to meet

country-level conservation targets may provide greater resilience

against catastrophic events and climate change through overall

greater area and habitat protection.

Our spatial prioritizations only contain area as a cost but do not

include other cost proxies, for example fishing effort as a cost,

because the objective was to identify multispecies priority areas and

investigate their seasonal persistence rather than identifying areas for

the designation of cetacean MPAs. Nevertheless, fishing effort within

identified priority cetacean areas was visualized to provide some

indication of potential risk to species as well as socio-economic cost if

fishing should be excluded from priority cetacean areas. Temporal

dynamism of fishing effort inside priority areas shows that this

pressure is not homogenously distributed temporally or spatially.

Despite the great advance in spatial analysis of marine threats

(Halpern et al., 2008; Micheli et al., 2013), future research should

focus on the development of spatiotemporal analysis of marine

threats (e.g. Kroodsma et al., 2018) to inform conservation actions.

This study is the first to explore priority areas for cetaceans at a

community level and across large marine ecosystem/basin scales.

While single-species approaches are useful for targeted conservation,

a community-based approach provides a more holistic strategy where

all species in the community are taken into account in order to

achieve Good Environmental Status for European waters, species and

habitats (Authier et al., 2017b). In addition to the distribution of

cetaceans, potential MPA designation should also take into account

the spatiotemporal patterns of threats such as fishing, noise exposure

and ocean pollution (Evans, 2018) as well as appropriately engaging

stakeholders.

While the distribution maps used in the analyses are novel in

providing monthly estimates for common cetacean species

in European waters (Waggitt et al., 2020), it needs acknowledging that

these represent modelled averages using data collected across several

decades with often patchy seasonal coverage in any year. Therefore,

seasonal movements could be partly confounded by interannual

variability in distribution in the distribution maps. Indeed, such

scenarios were highlighted by Waggitt et al. (2020) when discussing

limitations of the underlying distributions used in this study. However,

substantial changes in distribution across recent decades seem absent

in most species except harbour porpoise (Evans & Waggitt, 2020),

suggesting that seasonal variability in occurrence is well represented.

Therefore, while we urge caution in the absolute locations of the

priority areas identified, we believe that they do represent persistent

priority areas for the cetacean community in the north-east Atlantic.

Indeed, the identification of priority areas at the continental shelf-

edge, associated with persistent upwelling and productivity across

summer and winter months, is not surprising given our ecological

knowledge of these habitats (Cox et al., 2018).

In conclusion, these results suggest that a static rather than

dynamic approach to MPA designation is appropriate for the cetacean

community in the north-east Atlantic. However, more information

should be gathered for long-distance migrants including baleen

whales, where a more dynamic protection strategy (Pérez-Jorge

et al., 2020) may be required for the conservation of individual

species. The large priority areas identified for cetaceans highlight the

need for consideration of threats to cetaceans in those areas

(e.g. noise, fisheries, maritime traffic, etc.; Authier et al., 2017a). A

conservation approach using a community-level strategy would

certainly be advantageous, as single-species strategies are unable to

preserve ecosystem-based balance as they only focus on a particular

species.
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