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Impacts of marine heatwaves on top
predator distributions are variable but
predictable
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Marine heatwaves cause widespread environmental, biological, and socio-
economic impacts, placing them at the forefront of 21st-century management
challenges. However, heatwaves vary in intensity and evolution, and a paucity
of information on how this variability impacts marine species limits our ability
to proactively manage for these extreme events. Here, wemodel the effects of
four recent heatwaves (2014, 2015, 2019, 2020) in the Northeastern Pacific on
the distributions of 14 top predator species of ecological, cultural, and com-
mercial importance. Predicted responses were highly variable across species
and heatwaves, ranging from near total loss of habitat to a two-fold increase.
Heatwaves rapidly altered political bio-geographies, with up to 10% of pre-
dicted habitat across all species shifting jurisdictions during individual heat-
waves. The variability in predicted responses across species and heatwaves
portends the need for novel management solutions that can rapidly respond
to extreme climate events. As proof-of-concept, we developed an operational
dynamic ocean management tool that predicts predator distributions and
responses to extreme conditions in near real-time.

Long-term climate trends (e.g., global warming) and short-term
extreme events (e.g., heatwaves) have global impacts on ecosystem
structure and functioning, and human well-being1–3. The impacts of
long-termclimate trends have received considerable attention through

the examination of the warming signal in both historical observations
and future climate projections4–9. However, mounting evidence
indicates that episodic events like fires, floods, and heatwaves can
have catastrophic ecosystem and socio-economic impacts1,10–12.
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In particular, heatwaves on land13 and at sea1 adversely impact an
additional 157 million people today compared to the turn of the
century14. The largest and warmest marine heatwaves (MHWs) on
record have occurred in the last decade and include the 2012 North-
west Atlantic15, the 2015–16 Tasman Sea16, and 2013–16 Northeast
Pacific17 events, exerting considerable physical, ecological, socio-eco-
nomic, and human health impacts1.

Faced with a changing climate, mobile species’ first responses are
often to shift their geographic ranges to remain within suitable
environmental conditions2. This phenomenon is well-described within
the context of long-term warming4–6,8 and El Niño events18,19, yet there
is a paucity of information on species redistribution in response to
unprecedented warming during recent MHWs20. Temperatures
observed during MHWs can be similar to projected mean future con-
ditions at the end of the 21st century21, providing valuable insight into
species redistribution in the coming decades. Previous investigations
on MHW-driven species range shifts have largely relied on observa-
tionaldata fromopportunistic sightings, surveys, or taggingprograms,
and have demonstrated poleward or vertical distributional shifts
towards cooler temperatures22–26. However, these data are often pat-
chy, offering only snapshots of impacts from a single MHWon a single
species22,23,27 or on several species24,25,28. Comparisons of multi-species
responses across multiple MHWs are rare despite ample evidence that
there is high variability in the evolution, drivers, and physical char-
acteristics of MHW events21,29,30. Statistical models provide a means of
interpolating across space, time, and taxa, providing information on
MHW-driven redistribution by offering inferences on unobserved
locations, MHWs, and individuals. Furthermore, statistical models can
relate species distributions tomultiple environmental drivers, thereby
accounting for the complex physical and biogeochemical changes
beyond the increased temperature that occurs during MHWs29.

Here, we quantify the impacts of four major North Pacific MHWs
(2014, 2015, 2019, 2020; Supplementary Fig. 1) on the spatial dis-
tributions of 14 marine top predators, spanning several major guilds:
seabirds, mammals, turtles, tunas, and sharks (Fig. 1). The impacts to
most of these species during the MHWs were previously unexamined,

and thus, we provide an unprecedented look at how responses vary
across a group of iconic species and across MHWs.

The Northeast Pacific Ocean provides an ideal testbed for exam-
ining the effects of MHWs. This region has experienced some of the
longest, largest, and most intense MHWs on historical record31,32

(Fig. 1A), with thermal displacements of >1000 km during the stron-
gest events21. The Northeast Pacific is also a biodiversity hotspot and
major foraging ground33, attracting a range of top predator species
from across the broader Pacific Ocean, many of which are ecologically
and commercially valuable and/or threatened with extinction33

(Fig. 1B). These predators are highly mobile and conduct large-scale
movements throughout the Pacific basin34, and thus have the physical
ability to actively redistribute in response to MHWs. Many of the most
extreme temperature anomalies have occurred where predator den-
sity is highest (Fig. 1), providing an opportunity to examine MHW
impacts across several higher trophic levels that are particularly sen-
sitive to climate perturbations35. Furthermore, we examine howMHWs
shift predators across political boundaries, revealing which exclusive
economic zones (EEZs) lost and gained predator habitat and where
adaptable governance strategies are likely to be important. By imple-
menting a multi-species, multi-MHW analytical framework, our work
provides the basis for informing future management of the impacts of
these extreme climatic events.

Results
We used boosted regression tree models fit extensive telemetry
datasets33,36,37 to predict the redistribution of species’ preferred habi-
tats during each MHW event. Our models accurately predicted dis-
tribution shifts during MHW years captured by an extensive (>one
million records) independent top predator dataset collated from
public, private, and government sources (Supplementary Table 2 &
Supplementary Fig. 7). This independent dataset included records
from tagging programs, shipboard surveys, opportunistic sightings,
and fisheries observer programs, and allowed us to explore predictive
performance in the telemetry-based models. For some species, inde-
pendent datasets were more closely aligned with those used to build

Fig. 1 | Marine heatwave (MHW) and top predator distributions in the North
Pacific. AMean sea surface temperature anomaly in August–October (the months
in which the highest temperature anomalies were observed across the Pacific),
calculated relative to a 2000–2020 baseline for each of the four MHW events
explored, with 1.5 °C contour in black.B Species kernel densitieswhile foraging and
transiting in the Northeastern Pacific, grouped by the location of animal tracking

data (2000–2010). The 75th percentile kernel for each species group is shown by
the white contour. Coastal species include blue and mako sharks, yellowfin, alba-
core, and bluefin tuna, California sea lions, sooty shearwaters, and blue whales;
Northern species include elephant seals, salmon sharks, black-footed and Laysan
albatross; Southern species include white sharks and leatherback turtles.
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models due to a similar spatial domain and/or data type (e.g., tele-
metry data for blue whales), which resulted in higher predictive per-
formance. However, for others, opportunistic sightings and shipboard
surveys covered different spatial domains than the telemetry datasets
and typically had lower predictive performance (e.g., Laysan albatross,
Supplementary Fig. 8).

Predicted MHW impacts were highly variable within and among
MHW events (Fig. 2). For example, responses among MHWs (rows,
Fig. 2) were highly variable for Coastal species. While all Coastal spe-
cies were displaced to the northwest during the 2014 and 2015 events,
the 2019 and/or 2020 events drove southeastward displacement for
bluefin and albacore tuna, and blue and mako sharks (Figs. 2B and
Fig. 3C; Supplementary Fig. 10A, C, I). Southeastward displacement
may be related to the emergent cool water refugia along the southern
US and Mexican coasts during these two events (Fig. 1A). Sooty
shearwaters and sea lions underwent a reversal in range shifts between
the 2014–15 and 2019–20 events, experiencing range compression
during the 2014 and 2015 events (22–64% decrease), and range
expansion during the 2019 and 2020 events (335–377% increase)
(Figs. 2C and 3A; Supplementary Fig. 10E). Similarly, elephant seals and
sea lions lost habitat during the 2014 MHW (29% and 65% decrease,
respectively), but gained habitat during the 2019 and 2020 MHWs
(71–46% and 117–158% increase) (Fig. 3B; Supplementary Fig. 10E).

In addition to among-MHW differences, we found differences in
predicted impacts within-MHWs (columns, Fig. 2). While most species
were predicted to experience relatively low displacement distances
during the 2019 and 2020 events, sooty shearwaters were displaced
large distances (536 and 721 km, respectively) during these twoMHWs.
Displacement direction during the 2020 event ranged from north

(blue shark), east (salmon shark), south (Laysan albatross), and west
(blue whale) (Fig. 2B; Supplementary Fig. 10). The 2019 and 2020
events caused large range expansions for sooty shearwaters and
California sea lions whereas most other species experienced range
compression (Figs. 2C and 3A; Supplementary Fig. 10E). While most
species lost habitat in 2019 and 2020, elephant seals, salmon sharks,
California sea lions, and yellowfin tuna gained habitat (Fig. 2D).

Among- and within-MHW differences were also apparent in the
predicted redistribution of predators across political boundaries
(Fig. 4). TheUS EEZwas predicted to gain predator habitat during each
MHW, with the largest increase during the 2015 event (10%), and the
smallest increase during the 2020 event (2%; Fig. 4A). TheMexican EEZ
was predicted to lose predator habitat during 2014, 2015, and 2020
events (with the largest decrease in 2015 of 8%). The Canadian EEZ and
high seas were predicted to gain and lose predator habitat during each
MHW, respectively. Coastal species experienced the largest jurisdic-
tional redistributions during the 2014 and 2015 events, particularly
yellowfin and albacore tunas, with 31% and 22% of their respective
habitats predicted to shift into US waters (Fig. 4B). Southern species
experienced the largest redistributions during the 2019 event, with
39% of white shark habitat and 8% of leatherback turtle habitat pre-
dicted to shift into the US EEZ. Northern species experienced the lar-
gest redistributions during the 2020 event, with 14% of salmon shark
habitat predicted to shift into the Canadian EEZ.

Discussion
Weused a standardized framework to quantify the impacts ofmultiple
MHWs on a numerous and diverse set of top predators. This is an
important step because MHWs vary in intensity and evolution, and

Fig. 2 | Predicted impacts on top predator habitat within (columns, e.g., 2014)
and among (rows, e.g., White shark) marine heatwave events measured using
four metrics. A Displacement distance (kilometers), B displacement direction
(degrees, where 0/360 is north (N), 90 is east (E), 180 is south (S), and 270 is west
(W)), C range compression or expansion (percent change relative to baseline
conditions), D habitat area gain or loss (percent change relative to baseline

conditions). All metrics were calculated from August–October in each MHW year
relative to baseline conditions (August–October 2000–2020), see Supplementary
Table 5 for an analysis of metric uncertainty. Northern, Coastal, and Southern
regional groupings indicate the geographies where the majority of the species
telemetry data occurs. Source data are provided as a Source Data file.
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predators vary in their relationship to the environment.While previous
studies have examined species redistribution in response to past cli-
mate variability18,19, few have done so in a standardized way across a
large range of predator guilds. Here, predicted responses were highly
variable across species and MHWs (Fig. 2): some predators were pre-
dicted to experience near-total loss of habitat and range compression,
e.g., bluefin tuna during the 2015 event, while others were predicted to
experience a two-foldhabitat increase and significant range expansion,
e.g., California sea lion during the 2019 event. Critically, this MHW-
induced habitat loss exceeds the projected habitat loss by the year
2100 for these same species due to long-term warming4, though we
note that there are differences in methodologies between these
studies.

Themost severe species impacts tended tooccur in regionswhere
MHWs temperature anomalies were highest (Figs. 1 and 2; Supple-
mentary Fig. 3). Coastal and Southern species were predicted to
experience particularly warm temperatures during the 2014 and 2015,
and 2015 and 2019 events, respectively, leading to large displacement,
range compression, habitat loss, and cross-jurisdictional shifts.
Northern species were predicted to experience more moderate tem-
perature anomalies and habitat impacts relative to Coastal and
Southern species. However, temperature anomalies were fairly con-
sistent across the 75th percentile kernels of sooty shearwaters and
elephant seals during the four MHW events, yet each species experi-
enced markedly different predicted impacts among MHWs. Sooty
shearwaters were predicted to expand their range during the 2019 and

Fig. 3 | Marine heatwave (MHW) impacts on four species. A Sooty shearwaters,
B Elephant Seal, C Bluefin tuna, and D Yellowfin tuna. Large maps: arrows indicate
predicted habitat displacement from the center of gravity in each MHW (center of
colored crosses) relative to the center of gravity during baseline conditions (center
of black cross). Crosses indicate predicted longitudinal and latitudinal range

extents during each MHW and during baseline conditions (colored and black
crosses, respectively); an increase in cross sizeduring aMHWcompared to baseline
conditions indicates range expansionwith the converse representing compression.
Inset: percent change habitat area relative to baseline conditions.
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2020 events, likely associated with elevated primary productivity in
coastal Alaskan waters (Supplementary Fig. 2). Elephant seals were
predicted to experience large habitat loss during the 2014 and 2015
events, likely due to a reduction of primary productivity and subsur-
face oxygen in the north-central Pacific (Supplementary Fig. 2). The
deepwarmwater anomalies of the 2014 and 2015 events decreased the
solubility of oxygen and led to a near-surface decline in oxygen
concentration38. The 2019 and 2020 events, in contrast, had much
shallower temperature anomalies and likely had a weaker impact on
local biogeochemical signals and productivity. In general, variations in
winds, air-sea gas exchange, circulation patterns, and water column
stratification can lead to very different physical and biogeochemical
conditions amongMHWevents. The idiosyncratic responses of species
to MHWs reflect these variable conditions and differing species-
environment relationships (Supplementary Fig. 5).

MHW-driven species redistributions aremost commonly ascribed
to the relocation of preferred temperature conditions23,26,39. However,

our findings suggest that a multi-variable approach allows for addi-
tional ecological inferences with regard to MHW biodiversity impacts.
Many of the predators examined here have broad thermal tolerances
and are distributed in warmer waters elsewhere in the Pacific than
those encountered during theMHWs33. Thus it is likely that anomalous
conditions of variables beyond temperature (SupplementaryFig. 3) are
driving their responses. Indeed, a comparable suite of temperature-
onlymodels had a significantlyworse predictive performance onnovel
validation data than the multivariate models (median Area Under the
Receiver Operator Characteristic Curve of 0.6 in the temperature-only
models vs 0.8 in the multivariate models, t-test p-value < 0.05). In
following with evidence that temperature alone cannot account for
species responses to climate change6,40, we suggest that a multi-
variable approach is critical to capture species responses to short-term
warming. Several programs exist to monitor and forecast extreme
ocean warming based on observed and predicted ocean
temperatures41,42, and these results indicate the utility of concurrently

Fig. 4 | Cross-jurisdictional shifts in predators’ predicted habitats during
marineheatwaves (MHWs).ATotal loss and gain of species habitat area across the
US, Mexican (MEX), and Canadian (CAN) exclusive economic zones (EEZs), and the
high seas during each MHW. B Largest loss and gain of habitat for each predator in
any MHW event (x-axis text color indicates species regional groupings: Southern

(green), Coastal (black), Northern (blue)). Percent change in habitat area is calcu-
lated relative to baseline conditions (2000–2020), see Supplementary Table 7 for
an analysis of uncertainty in cross-jurisdictional shifts. Source data are provided as
a Source Data file.
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tracking ocean conditions such as oxygen and productivity for a more
nuanced understanding of possible species impacts.

Inferences from models
Correlative species distribution models such as those used in the
present study are valuable tools to understand species ecology and are
often used to support environmental conservation and management
across multiple time horizons4–6,33,43,44. Importantly for MHWs, models
allow for insights into the complex environmental relationships that
drive species responses. However, the correlativemodels used heredo
not explicitly capture species traits such as physiology, movement
syndromes, and life-histories45. For example, ocean wanderers like
sharks, tunas, elephant seals, and albatrosses may be buffered from
MHW effects due to their generalist diets and ability to exploit distant
waters26,46. The effects of MHWs on central place foragers that are tied
to a colony during the breeding season (e.g., sea lions)may be greater,
as these species are less capable of accessing distant patches of sui-
table habitat. The models captured species fundamental niches, the
full set of environmental conditions where a species foraged or
transited within the North Pacific. However, they did not account for
their environmental preferences during reproductive behaviors (e.g.,
some species migrate to the West Pacific for spawning or nesting) or
other ecological processes that may affect distribution (e.g., prey
availability, interspecific interactions, population structure, or site
fidelity)45.

Transboundary predators
Long-term warming has redistributed species across EEZ boundaries,
and is projected to continue to redistribute species in the future5. Here,
we demonstrate that MHWs may drive jurisdictional shifts over more
immediate time-frames, leading to new national risks, rewards, and
responsibilities. During each event, our models predicted an influx of
species habitat into theUS EEZ from theMexican EEZ and the high seas
(Fig. 4A). Predators also shifted into the Canadian EEZ during each
MHW, though to a lesser extent than that of the US. Themagnitudes of
predicted losses and gains of predator habitat varied by MHW event,
indicating that transnationalmanagement will need to be dynamic and
adaptable. Conflicts over shifting transboundary stocks have occurred
elsewhere, for example, the northeast Atlantic mackerel (Scomber
scombrus) wars47, offering precautionary tales for the value of coor-
dinated and proactive management across nations.

These findings indicate that the US in particular, will face new
management challenges during MHWs. Between 10 and 31% of the
predicted habitat of commercially valuable albacore, bluefin, and yel-
lowfin tuna shifted fromMexico to the US (Fig. 4B); indeed, an unusual
abundance of yellowfin and bluefin tuna was reported by California
commercial and recreational fishers during the 2014 and 2015 event25.
These episodic fishing opportunities will require rapid managerial
oversight to ensure stock sustainability, e.g., a climate-driven tilefish
redistribution along the US east coast led to the stock being exploited
without regulation for nearly a decade5. Predicted core habitats of
protected species also shifted into US waters: elephant seal and lea-
therback turtle habitats were redistributed to theUS EEZ from the high
seas. Both species are bycaught in US fisheries (although bycatch rates
are currently low), and may require increased monitoring to ensure
fisheries interactions donot threaten their populations. Protected blue
whale habitat shifted from Mexican to US waters, potentially increas-
ing management concern over mortality from ship-strikes and entan-
glement in fishing gear which has been observed in US waters during
MHW conditions48,49. Up to 39% of threatened white shark habitat
shifted into the US waters from the high seas—the largest redistribu-
tion of any species (Fig. 4B). Although redistributed white sharks may
benefit from low bycatch rates in US waters, higher white shark pre-
valencemay lead to increasing predation rates of protected pinnipeds
and associated ecosystem effects such as reduced kelp cover50.

Early warning systems
Our results show a wide range of species impacts across MHW events
and jurisdictions. This diversity of responses poses a daunting man-
agement challenge: how to plan ahead and respond swiftly to MHW-
driven species redistribution. Our results indicate that species
responses to MHWs are highly variable yet predictable: our models
performed well through extensive validation across space, time, and
on novel data (Supplementary Figs. 6 and 7; Supplementary Table 3).
The high variability of species responses to MHWs suggests that we
cannot assume future MHWs will impact species in the same way as
past events. However, high predictability indicates that species
responses to future MHWs could be predicted in real-time to provide
accurate information on impacts. This combination of high variability
and predictability is also seen in hurricanes—future hurricane paths
cannot be extrapolated from past paths, yet they can be predicted in
real-time to provide accurate information on risk.

Dynamic ocean management51 tools are designed to translate
changing environmental and biological information into real-time
management recommendations, and have shown promise at keeping
pace with anomalous ecological conditions during MHW events39,43,44.
These tools frequently rely on near real-time predictions from species
distribution models to capture current ecological conditions52. As a
proof of concept, we have operationalized the top predator models to
produce daily predictions of each species’ current distribution: https://
oceanview.pfeg.noaa.gov/top-predator-watch/. This operational fra-
mework could be rapidly integrated into a dynamic ocean manage-
ment tool to address MHW-driven human-wildlife conflicts in real-
time, similar to several tools already in applied use43,44. Successful
monitoring of MHW impacts requires continued observation of spe-
cies responses, which in the past has proved to be more opportunistic
than by design. Real-time predictions of species distributions during
MHWs could be used to guide observational programs (e.g., field
surveys and tagging programs) during anomalous conditions. Impor-
tantly, these new observations could be assimilated with distribution
model outputs to improve real-time model predictions, a common
process in oceanography, which is not yet a standard practice in
ecology53.

Forecasts of future impacts would offer longer lead times for
decision-making compared to real-time predictions. Extreme episodic
events like hurricanes, fires, and floods are successfully forecast on
land54,55, and skillful forecasts of MHWs have recently become opera-
tional at lead times of up to a year, depending on the region41,56. The
next frontier is to skillfully forecast ecological variables, including
species distributions, in response to these extreme episodic events.
These early warning systemswould allow for proactive—as opposed to
reactive—responses to new human-wildlife conflicts, changing marine
resource availability, and emergent refugia caused by MHWs49,57,
allowing us to plan ahead for our fundamentally dynamic world.

Methods
Telemetry data used to build the species distribution models (SDMs)
were acquired for 14 top predators tagged from 2000–2010, including
data from the Tagging of Pacific Predators Project33 and private data-
sets. For all species except albatrosses, detailed methods on the
number of individuals tagged, handlingof taggingbias, and state space
modeling are included in Block et al.33, Winship et al.36, and Jordan
et al.37. Further details on albatross telemetry data are available in
Supplementary methods section 1.3.

Species were assigned to one of three geographical groups—
Northern, Coastal, and Southern—based on the locations of telemetry
data collected from August–October across all years. Coastal species
hadover 60%ofobservations locatedwithin theCaliforniaCurrent and
Gulf of California Large Marine Ecosystems (blue [Prionace glauca]
and mako [Isurus oxyrinchus] sharks; albacore [Thunnus alalunga],
yellowfin [T. albacares], and bluefin [T. thynnus] tunas; blue whales
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[Balaenoptera musculus], sooty shearwaters [Ardenna grisea], and
California sea lions [Zalophus californianus]), despite some of these
species undertaking longmigrations across theNorth Pacific.Northern
species had observations to the northwest of Coastal species (black-
footed [Phoebastria nigripes] and Laysan [P. immutabilis] albatross;
elephant seals [Mirounga angustirostris] and salmon sharks [Lamna
ditropis]); and Southern species had observations to the southwest
(white sharks [Carcharodon carcharias] and leatherback turtles [Der-
mochelys coriacea]). These regional groupings were useful to describe
broad patterns, as MHW impacts were most similar across species
within the same geographical group. The 75th percentile kernels for
each geographical group were calculated by randomly subsampling
each species’ locational data to the same number of records, and then
calculating kernel densities and the 75th percentile kernel across all
species within each grouping (Fig. 1B). Kernel densities and 75th per-
centile kernels were also calculated for each species individually and
used to quantify environmental conditions within each species’ 75th
percentile kernel during the MHW events (Supplementary Fig. 3).

For each year, MHWs were assessed from August–October: the
months in which the highest temperature anomalies were observed
across the Pacific (Supplementary Fig. 1, Supplementary methods
section 1.2). In addition to SST anomalies (Fig. 1A), anomalies ofoxygen
at 200m, mean primary productivity within the upper 200m, and
surface chlorophyll-a conditions were also assessed during MHWs
(Supplementary Table 1). Anomalies during eachMHWwere calculated
relative to mean conditions across August–October 2000–2020. We
were precluded from using a longer baseline by the availability of
satellite observations for chlorophyll-a (a covariate in the SDMs),
which came online as a science-quality product in 1998.

The boosted regression tree (BRT) models used the multi-year
animal telemetry data to describe species-environment relationships
from a suite of environmental variables (Supplementary Table 1, Sup-
plementary Methods section 1.1). Dynamic variables used to fit the
BRTs included primary productivity, oxygen, sea surface temperature
(SST) and its spatial standard deviation, sea level anomaly, eddy kinetic
energy, mixed layer depth, chlorophyll-a, and day of the year. All
environmental variables were resampled from their native resolutions
to 0.25 degrees to match the coarsest resolution of the environmental
datasets (sea surface height products). All analyses were performed in
R version 4.0.4.

Background pseudo-absences were generated at a 1:1 ratio of
presences for the telemetry datasets58. For each presence point, a
pseudo-absence was generated for the same date (Supplementary
methods section 1.5.1). Presence and pseudo-absence data were mat-
ched to the environmental datasets in space and time. We used a BRT
framework to model the probability of species presence as a function
of the environment. BRTs are a common machine learning model,
popularized by their ability to fit complex nonlinear relationships and
their robustness to wide varieties of data types and distributions. For
all 14 species, BRTs with a binomial distribution were used to model
the probability of species presence as a function of the environment.
BRTs were built with a bag fraction of 0.6, and a tree complexity of
three, and a learning rate that varied between 0.0001 and 0.00001 to
ensure at least 2,000 trees were fit for each model. In addition to
predicting suitable habitats, the relative importance of variables in
each SDM was identified (Supplementary Fig. 5).

Independent datasets were used to validate the temporal extra-
polation of telemetry-derived models beyond the time-series of the
training data (i.e., post-2010), particularly during MHW years (Sup-
plementary Table 2, Supplementary methods sections 1.4. and 1.5.4).
Datasetswere acquired fromadiverse range of public and government
sources including fisheries observer programs, animal sightings from
citizen science databases, and tagging data from dedicated programs.
For each species, all data sources were pooled for validation, e.g., the
blue shark model was validated on an independent dataset composed

of both California drift gillnet observer data and survey data from the
North Pacific Pelagic Seabird Database (Supplementary Table 2). In
addition to validation on independent data, several methods of cross-
validation were performed (Supplementary Table 3, Supplementary
methods section 1.5.3).

TheBRTmodelswerepredictedover the daily environmental data
from 2000–2020, and spatially constrained within a minimum convex
hull of the training data. The resultant habitat suitability predictions
ranged from 0–1, with low and high values indicating unsuitable and
suitable habitats, respectively. These continuous predictions were
averaged to create an August–October 2000–2020 mean, and
August–October anomalies during each MHW year were calculated
relative to the long-term mean (Supplementary Fig. 9).

The continuous habitat suitability predictions were reclassified
into daily binary core habitat using species-specific thresholds (see
Supplementary methods section 1.6.2 for a comparison of binary ver-
sus continuous core habitat). Core habitat was defined as pixels with
habitat suitability greater than or equal to the top 50% of predicted
values at true presences (i.e., models were predicted back on the
telemetry data used in model fitting, and 50% prediction quantile was
used as the threshold). The 50% threshold was selected over the more
conservative thresholds used in the climate projection literature (e.g.,
25%4) as these conservative thresholds sometimes resulted in a com-
plete loss of core habitat during extreme events (e.g., 2015).

We quantified MHW impacts on species’ core habitats using four
metrics (Fig. 2). Displacement direction anddistance capturedhow the
center of gravity of core habitat changed during MHWs, and was
measured as a vector of both cardinal direction (degrees) and distance
(kilometers). Range extent captured the distance between the leading
and trailing edges of the core habitat in the north-south and east-west
directions, providing a metric of range compression or expansion due
to MHWs (negative and positive percent change range, respectively).
Core habitat area captured the total available core habitat and its loss
or gain due to MHWs (negative and positive percent change area,
respectively). These metrics are independent of one another; for
example, during a MHW, a species can gain new habitat beyond its
typical range (i.e., range expansion), while overall having less available
habitat throughout its range (i.e., habitat loss).

Three metrics were calculated from the daily binary core habitat
rasters: the center of gravity of core habitat (mean latitude/longitude
coordinate pairs), the interquartile range of core habitat (latitude/
longitude coordinate pairs for the north-south and east-west inter-
quartile ranges), and the total amount of core habitat (km2). To
quantify species’ range extents, the daily north-south interquartile
range was multiplied by the daily east-west interquartile range (both
measured in decimal degrees). The interquartile range was selected
over the absolute range to remove the effect of outliers (e.g., individual
pixels of core habitat with extreme distributions), and to ensure that
expansion of range was not artificially truncated due to proximity to
the convex hull boundary.

The three metrics were averaged across each MHW event
(August–October of 2014, 2015, 2019, 2020), and deviations from the
2000–2020 August–October mean was calculated for each habitat
metric and each species, producing estimates of habitat displacement,
changes to the range extent, and changes to the habitat area. Habitat
displacement was assessed as a vector (i.e., cardinal direction and
distance) joining the long-term mean position of the core habitat
center of gravity to its MHW-specific location. Range extent change
reflected the MHW-specific compression or expansion of range extent
compared to the mean range, measured by area, while habitat area
change assessed the MHW-specific loss or gain of total core habitat,
measured by area. In addition to species-specific habitat metrics
(Fig. 2), themean and standard deviation of eachmetricwas calculated
across the regional species groups (Supplementary Table 4). To cap-
ture model sensitivity to input data, 20 replicate BRTs were fit to 20
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different 75% subsamples of the telemetry and pseudo-absence data.
Replicate models were predicted across the time-series and habitat
metrics were calculated as above.Mean, standard error and coefficient
of variation were then calculated for each species, MHW, and habitat
metric across the 20 models (see Supplementary methods sec-
tion 1.6.2, Supplementary Table 5).

The absolute magnitude of change to species’ range extent and
habitat area varied greatly across species, due in part to differences in
occurrence extent (e.g., seabirds have large ranges relative to Cali-
fornia sea lions). In order to make MHW impacts comparable across
species, range compression/expansion and habitat area loss/gain were
expressed as a percent change from mean conditions.

We quantified how species core habitats redistributed across
national jurisdictions during MHW events. Version 11 of Exclusive
Economic Zone (EEZ) boundaries were used to define national jur-
isdictions (marineregions.org)59 (Supplementary Fig. 1). The amount of
each species core habitat within the EEZs of Canada, the US, and
Mexico, and within the high seas was calculated for each day in
August–October of 2000–2020. For each species, the average core
habitat area in each jurisdiction was calculated for August–October of
each MHW year, and the August–October 2000–2020 baseline was
subtracted to obtain the anomaly. Anomalies were expressed as a
percent change relative to baseline conditions. Habitat redistribution
was summarized as both a percent change for each jurisdiction/MHW,
and as the largest percent loss and gain for each species. Mean
anomaly, standard error, and coefficient of variation were calculated
for each species, MHW, and jurisdiction across the 20 replicate BRT
models (see Supplementary methods section 1.7, Supplementary
Table 7).

Data availability
All environmental data are publicly available from CMEMS (https://
marine.copernicus.eu/).Model data. The telemetry data used inmodel
fitting are available from the Tagging of Pacific Predators project
(https://mola.stanford.edu/DataLinks/). Additional telemetry data used
in model fitting for black-footed and Laysan albatrosses are available in
the BirdLife International Seabird Tracking Database (http://www.
seabirdtracking.org). Validation data. Species datasets used in model
validation are available from eBird (https://ebird.org/home), and the
North Pacific Pelagic Seabird Database (https://www.usgs.gov/centers/
alaska-science-center/science/north-pacific-pelagic-seabird-database).
Additional datasets from the National Observer Program and US sur-
face fishery logbook data were provided under a confidentiality
agreement. Requests for observer program data and logbook data can
be directed to NOAA (https://www.fisheries.noaa.gov/national/
fisheries-observers/national-observer-program and https://www.
fisheries.noaa.gov/west-coast/sustainable-fisheries/west-coast-highly-
migratory-species-logbooks). NOAA albacore tagging data are not
publicly posted at the request of the American Fishermen’s Research
Foundation (AFRF), who collaborated with NOAA to implement the
tagging program. However, these data are freely available for use in
research projects through AFRF and NOAA. Further information on
how to obtain these data can be directed to B. Muhling (barbar-
a.muhling@noaa.gov). OSU blue whale tagging data are publically
available on the Animal Tracking Network (ATN): https://portal.atn.
ioos.us/#metadata/507d3d6f-16e7-4f02-91a4-a2142d056c0e/project.
Portions of the UCSC elephant seal tagging data are publicly available
on from MoveBank (https://www.movebank.org/cms/webapp?gwt_
fragment=page=studies,path=study7006760) and ATN (https://portal.
atn.ioos.us/#metadata/edc4b2d0-b90d-484b-86da-e1e4212409f6/
project). The remaining elephant seal data are not currently public
because they are being prepared as part of an in-prep data paper,
however, they are available upon reasonable request to D. Costa
(costa@ucsc.edu). Source data are provided in this paper.

Code availability
Code in support of this study is publicly available on GitHub (https://
github.com/HeatherWelch/MHW_impacts_top_predators)60.
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