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Abstract
Capture in global pelagic longline fisheries threatens the viability of some seabird popula-

tions. The Hawaii longline tuna fishery annually catches hundreds of seabirds, primarily

Laysan (Phoebastria immutabilis) and black-footed (P. nigripes) albatrosses. Since seabird

regulations were introduced in 2001, the seabird catch rate has declined 74%. However,

over the past decade, seabird catch levels significantly increased due to significant increas-

ing trends in both effort and nominal seabird catch rates. We modelled observer data using

a spatio-temporal generalized additive mixed model with zero-inflated Poisson likelihood to

determine the significance of the effect of various risk factors on the seabird catch rate. The

seabird catch rate significantly increased as annual mean multivariate ENSO index values

increased, suggesting that decreasing ocean productivity observed in recent years in the

central north Pacific may have contributed to the increasing trend in nominal seabird catch

rate. A significant increasing trend in number of albatrosses attending vessels, possibly

linked to declining regional ocean productivity and increasing absolute abundance of black-

footed albatrosses, may also have contributed to the increasing nominal seabird catch rate.

Largest opportunities for reductions are through augmented efficacy of seabird bycatch miti-

gation north of 23° N where mitigation methods are required and during setting instead of

during hauling. Both side vs. stern setting, and blue-dyed vs. untreated bait significantly

reduced the seabird catch rate. Of two options for meeting regulatory requirements, side

setting had a significantly lower seabird catch rate than blue-dyed bait. There was signifi-

cant spatio-temporal and seasonal variation in the risk of seabird capture with highest catch

rates in April and May and to the northwest of the main Hawaiian Islands.

Introduction
Pelagic longline and other marine capture fisheries that target relatively fecund species with r-
selected life history characteristics, such as tuna and tuna-like species (Scombridae), can have
large impacts on incidentally caught species with K-selected life-history strategies, including
seabirds, sea turtles, marine mammals, elasmobranchs and some bony fishes [1, 2]. These K-
selected associated and dependent species have relatively long lifespans, slow growth, late
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sexual maturity, low fecundity and low natural mortality rates. As a result, they have low resis-
tance and resilience to even low levels of anthropogenic mortality [3–6].

At least 160,000 seabirds are estimated to be killed annually in pelagic and demersal longline
fisheries worldwide, threatening the viability of some populations of albatrosses, petrels, shear-
waters and other species [1, 7–10]. Seabird bycatch in longline fisheries occurs primarily in
higher latitudes. Seabirds are captured predominantly while fishing gear is being set: seabirds
are hooked or entangled, and in fisheries where gear soaks below the sea surface, the captured
birds are dragged underwater as the gear sinks [2,8].

The Hawaii deep-set longline tuna fishery lands primarily bigeye tuna (Thunnus obesus)
and also retains several other tuna and tuna-like species (Scombroidei) and billfishes. In 2012,
128 active vessels landed about 10,400 t [11, 12]. The observer coverage rate of the Hawaii long-
line tuna fishery was about 4% from 1994 to 2000, after which it increased to about 20% [13].
Regulations to mitigate seabird bycatch were first adopted in 2001. The most recent amend-
ment, which came into effect in 2006, defines two alternative suites of seabird bycatch mitiga-
tion methods. Deep-setting vessels are required to use one of these two suites of measures
when fishing north of 23° N. latitude. Vessels can opt to (i) set gear from the side of the vessel;
set the mainline and mount a line shooter, if used,� 1 m from the stern corner; deploy a bird
curtain aft of the line shooter that meets regulatory design specifications; and use a minimum
of 45 g weights attached within 1 m of the hook, referred to hereafter as the suite of measures
that includes side setting. Or, vessels can (ii) discharge fish, offal or spent bait, with all fish
hooks removed, from the opposite side of the vessel where gear is being set or hauled when sea-
birds are present; use thawed and blue-dyed bait; use a mainline line shooter; and use a mini-
mum of 45 g weights attached within 1 m of the hook, referred to hereafter as the suite of
measures that includes blue-dyed bait [13, 14]. See Gilman et al. [15–17] and WPFMC [12] for
more information on the Hawaii longline tuna fishery’s gear, methods and catch.

The Hawaii longline tuna fishery catches primarily Laysan (Phoebastria immutabilis) and
black-footed (P. nigripes) albatrosses. Since observer coverage in the fishery began in 1994
through 2013, observers recorded the capture of 710 seabirds. Of these, 47% were Laysan alba-
trosses, 46% black-footed albatrosses, and 6% shearwater spp. (likely sooty shearwaters
Ardenna grissea or short-tailed shearwaters A. tenuirostris),. The remainder was one observed
capture each of a brown booby (Sula leucogaster) and red-footed booby (S. sula) and six
unidentified species of seabirds [13, 18–20]. The IUCN Red List categorizes Laysan and black-
footed albatrosses as Near Threatened, sooty shearwaters as Near Threatened, short-tailed
shearwaters as Least Concern, and brown and red-footed boobies as Least Concern [21]. These
species are not listed as endangered or threatened under the U.S. Endangered Species Act [13].

Gilman et al. [15] analyzed observer data from the Hawaii longline tuna fishery through
2007, finding a 67% significant reduction in the standardized seabird catch rate following the
introduction of regulations in 2001 to manage seabird bycatch. For the most recent decade for
which fleet-wide raised seabird catch levels have been estimated, based on modeling observer
data from about a 20% observer coverage rate [22–31], from 2004 to 2013 there was a signifi-
cant increasing trend in the estimated raised number of seabirds caught per year, increasing by
about 45 seabird captures per year, based on fitting data to a linear regression model (p<0.001,
R2 = 0.85). A mean of 210 seabirds (± 92 95% CI) were estimated to be captured by the fishery
annually during this period. The estimates of annual catch levels, however, do not account for
various sources of fishing mortality, such as unobserved pre-catch events, post-release mortal-
ity, ghost fishing mortality, and indirect collateral sources of mortality, which can be substan-
tial [32–35]. During this period, there were increasing trends in both nominal seabird catch
rates and fishing effort. The annual nominal seabird catch rate was a mean of 0.005 seabird
captures per 1000 hooks (± 0.002 95% CI) from 2004 to 2013, which significantly increased at a
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rate of 0.001 captures per 1000 hooks per year, based on a linear regression model (p<0.001,
R2 = 0.88) [13, 18–20, 27–31, 36]. The number of hooks set per year also significantly increased
by about 1 million hooks per year from 2004 to 2013, based on a simple linear regression
model (p<0.001, R2 = 0.84) [18–20, 27–31, 13, 36]. Thus, the annual seabird catch level has
been increasing over the past decade due to a combination of significant increasing trends in
fishing effort and nominal seabird catch rate.

This study updated and expanded the scope of Gilman et al. [15]. By fitting observer data
from the Hawaii longline tuna fishery to a standardized seabird catch rate model, significant
explanatory variables were identified, providing information on potential opportunities to
reduce the seabird catch rate through changes in fishing methods and gear designs. Identifica-
tion of variables that were not significant effects on the standardized seabird catch rate also
informs management decisions by identifying changes in fishing methods and gear that would
not reduce seabird bycatch. The study assessed whether the two regulatory-required alternative
suites of seabird bycatch mitigation measures were significant effects in the standardized sea-
bird catch rate model, and whether the two alternative suites of measures had significantly dif-
ferent standardized seabird catch rates. To contribute to identifying additional opportunities to
reduce seabird bycatch levels, the study also compared the number of seabird captures and
nominal seabird catch rates within and outside of the area where seabird bycatch mitigation
methods are required, determined the proportion of caught seabirds that were captured during
the haul vs. the set, and determined the mechanism responsible for seabird captures. The study
also explored potential causes of the observed increasing trend in nominal seabird catch rate,
in part, to identify mitigation opportunities. The expanded knowledge of the efficacy of alterna-
tive seabird bycatch mitigation methods is of relevance both locally and globally to manage sea-
bird bycatch in pelagic longline fisheries.

Methods

Study Sample–Catch, Gear, Seabird Local Abundance and
Environmental Data
The study sample was obtained from the U.S. National Marine Fisheries Service Hawaii long-
line observer program dataset from deep-sets made by Hawaii-based longline vessels. Sets were
determined to be deep-sets based on the captain’s declared set type and� 15 branchlines
between floats. Regulations designed to mitigate sea turtle bycatch require deep-setting tuna-
targeting vessels to use� 15 branchlines between floats [37]. We excluded records that had not
yet been validated and approved at the time of accessing the observer program dataset. We also
excluded sets from designated research trips because experimental treatments may have
affected fishing methods, gear and catch characteristics.

The study period was from 17 October 2004 to 19 May 2014, spanning 9.6 years. The begin-
ning of the study period was selected based on when observers began to conduct seabird scan
counts during both setting and hauling operations. The end of the study period was selected
based on the date of the start of the final set of the most current available validated and
approved trip.

The study sample comprised the number of seabirds observed caught in 9,719 pelagic long-
line fishing sets over the study period. Those sets were completed during 1,521 fishing trips
undertaken by 154 unique vessels. There were 471 seabirds captured, with 91% either a black-
footed (48%) or Laysan albatross (43%). While up to six seabirds were caught in a single set,
multiple catches in a set were extremely rare, with 72% of 471 seabirds caught as singletons.

The sample included only: (i) records during which there were observations of one or more
albatross present during observer bird scans during the set or during the haul, and/or (ii) one
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or more seabird of any species was observed captured. Thus, records where no albatrosses were
observed attending the vessel during setting and hauling, and no captured seabirds were
observed, were excluded from the sample. These records were excluded because the observa-
tion of no seabird captures is likely a result of an absence of albatrosses at the fishing grounds
when gear was being deployed and retrieved, and not likely a reflection of seabird susceptibility
to capture [15, 38]. We only considered the presence or absence of albatross species to deter-
mine whether to include a set in the study sample, as reviewed in the Introduction and pre-
sented above, as captures of other seabird species are very rare events in this fishery [13, 18–
20]. Records were also excluded from the sample used to fit to the standardized catch model
due to missing values for one or more of the terms included in the model.

Here seabird ‘captures’ are broadly defined to include observed events of: (i) pre-catch
escapements, when seabirds were temporarily caught via hooking or entanglement but escaped
prior to being landed onboard; (ii) pre-catch losses, when dead seabirds fell from the gear dur-
ing hauling and were not retrieved by crew; and (iii) captures, when seabirds were caught in
the gear and landed onboard during hauling. While the first two interactions can be defined to
be pre-catch losses and not capture events [35, 39], the Hawaii longline observer program data
collection protocol includes these pre-catch events as captures.

We modelled total seabird catch as a function of potentially informative covariates and fac-
tors. The terms included in the model, and several additional variables that were explored but
not included, were considered due to evidence from previous studies that they have potentially
significant effects on seabird catch rates in pelagic longline fisheries [2, 8, 15, 17, 38, 40–45].
Some variables were explored because they are relevant to the seabird bycatch mitigation regu-
lations for this fishery [14]. Definitions of the terms that were included in the model are:

• Year: Based on the date of the start of the set.

• Month: Based on the date of the start of the set.

• Two dimensional spatial location by individual year: In latitude and longitude, of the vessel
at the start of the set, for each year in the study sample.

• Mean density of albatrosses: The mean number of Laysan and black-footed albatrosses
attending the vessel during setting and hauling. During setting and hauling observers esti-
mate the number of individuals of each seabird species within 137 m of the vessel by con-
ducting a visual scan 360 degrees around the vessel from their observation post [46].
Observers make low, medium and high estimates for each scan count. We used the average
of the medium category estimates.

• Side vs. stern setting: The vessel side set, with a line shooter, if used, mounted on the side of
the vessel� 1 m from the stern corner, and deployed the mainline and branchlines from the
side of the vessel [46], or otherwise did not employ these gear setting methods. On 9 April
2007, observers began to separately record whether a vessel set the mainline and branchlines
from the side of the vessel, and whether a bird curtain was deployed. Prior to this change,
observers had recorded whether or not a set employed all elements of the regulatory-defined
suite of measures that includes side setting, reviewed in the Introduction [13, 14]. For sets
during this earlier period recorded as not meeting the regulatory definition of a side set, we
assumed that the vessel was stern setting and did not deploy a bird curtain, possibly introduc-
ing false negatives.

• Blue-dyed vs. untreated bait: Was blue-dyed or untreated bait used during setting. Bait is
recorded as blue-dyed when the bait is at least same intensity as a government blue color
standard [46].

Seabird Bycatch, Hawaii Longline Fishery

PLOS ONE | DOI:10.1371/journal.pone.0155477 May 18, 2016 4 / 24



• MEI: Annual average multivariate El Niño-Southern Oscillation (ENSO) index (MEI) value
as a regional-scale ocean-climate covariate [47, 48]. MEI is based on six variables: sea level
pressure, zonal and meridional surface wind components, sea surface temperature, surface
air temperature and total cloudiness fraction of the sky [47, 48]. MEI values are normalized,
where an MEI value of 0 corresponds to the mean MEI value for the reference period of 1950
to 1993. Positive MEI values represent El Niño phase-like conditions, and negative values
represent La Niña phase-like conditions [47, 48].

Eight variables were explored but excluded as model terms upon determining that they had
no significant effect or added very little to improve model fit. These were: Time of day of initi-
ating setting; Beaufort wind force value; individual and interacting term of branchline weight
amount and leader length; offal and spent bait discharge practices during setting and hauling;
hook shape and size; lunar illumination [44] by calculating the day of the synodic lunar cycle
(moon age or lunation) using the date of the start of the set and applying the celestial mechan-
ics algorithms in Danby [49]; and mean monthly sea surface temperature (SST) for the north
central Pacific Ocean region drawn from the Extended Reconstructed SST v4 series [50].

Six additional potentially significant explanatory variables that were excluded as model
terms due to data quality constraints, duplication of other terms, or a lack of variability were:

• Regulatory-defined alternative suite of seabird mitigation methods: Records were categorized
into those that employed: (i) one of the two alternative regulatory-defined suites, defined in
the Introduction; (ii) sets that met both suites; and (iii) sets that did not meet either of the
two suites. The term was excluded in part because there were incomplete parameter estimates
for the ‘both’ category, likely due to the extremely small sample size (108 sets, zero seabird
captures).

• Bait type: All sets used predominantly small fish species for bait, with saury (sanma, Colola-
bis spp.) used in>80% of records.

• Blue-dyed vs. untreated bait upon hauling: Almost all (98%) records where blue-dyed bait
was used during the set also had bait that was determined to still meet the definition of being
blue-dyed upon hauling.

• Thawed bait: Almost all (98%) sets using blue-dyed bait also used completely thawed bait.

• Bird curtain: Most (89%) of the sets using side setting also used a bird curtain.

• Other mitigation methods: A small sample size (5% of records) used a towed buoy, tori line
or water spray during setting.

• Mainline line shooter: For all but 10 records a line shooter was used to set the mainline. Due
to this lack of variability, and also because mainline tension is not likely to affect seabird
catch rates in this fishery, the term was excluded. [Line shooter use is unlikely to affect sea-
bird catch rates in this fishery because Laysan and black-footed albatrosses only access baited
hooks at or near the surface [8], and because a line shooter would not likely affect the baited
hook sink rate until hooks sank to almost the full length of the branchline below the mainline
(branchlines were a mean of 12.5 m long in the current study sample) [8, 45, 51].]

Statistical Modeling Strategy
Zero seabirds were captured in ca. 96% of the 9,719 sets. To address this apparent excess zeros,
and perhaps overdispersion, we considered modelling the seabird catch data using either a
zero-inflated Poisson or zero-inflated negative binomial likelihood. We also considered a
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negative binomial likelihood that accounts for overdispersion only as a means to assess the
need for a zero-inflated likelihood. The potential nonlinear functional relationship between
seabird catch (which is a rare event) and various informative covariates and factors also needed
to be explored, as well as possible interactions between covariates and factors. The data were
sampled from sets within trips within unique longline fishing vessels so there were three hierar-
chical levels of random effects that required exploration. Additionally, the longline fishing sets
are geo-referenced and we wanted to account for spatial effects. One robust way to explore
these four challenges (excess zeros and appropriate model likelihood, nonlinear functional
form, multi-level or hierarchical sampling structure, spatial effects) was to use model boosting
techniques [52] in conjunction with fitting generalized additive mixed models for location,
scale and shape (GAMLSS: Mayr et al., [53]) to the geo-referenced seabird catch data. The
GAMLSS approach enables modeling both the response mean and dispersion as a function of
potentially informative covariates [53].

We fitted an ensemble of exploratory GAMLSS models with the canonical link functions
using the gamboostLSS package [54] for the R statistical modeling and graphics language [55].
We included a wide range of potentially informative covariates and factors, such as fishing
effort (log offset of the number of hooks per set), 2D spatial effects, the three random effects
(vessel, trip, set), and various variables described above. We used penalized spline base-leaners
for nonlinear effects, bivariate tensor product P-splines for the spatial base-leaner, ridge-penal-
ized base-leaner for random effects (intercepts only) and ordinary least square base-leaners for
all linear or factor effects included in the model ensemble [52]. Variable and model selection
was based on k-fold cross-validation and stability selection procedures [56]. Model comparison
between likelihoods considered here (negative binomial, zero-inflated Poisson, zero-inflated
negative binomial) was based on the predictive risk metric [54]. This exploratory approach for
zero-inflated and high dimensional data helped us to identity: (i) the model likelihood, (ii) a
reduced set of covariates and factors (and appropriate functional form), and (iii) the random
effects that are most appropriate for the next step, involving spatio-temporal modeling of the
seabird data using a geoadditive GAMM approach [57, 58] used previously for seabird bycatch
investigation [17, 38], and outlined below.

Statistical Modelling of Seabird Catch Rates
Wemodelled the seabird catch rates using a generalized additive regression modeling approach
with fixed and random or mixed effects, referred to as a generalized additive mixed model
(GAMM). This approach allowed for flexible specification of both the error and link functions,
enabled arbitrary specification of the functional form for each continuous covariate included in
the model, and accounted for the mixed effects due to the hierarchical sampling scheme here of
sets, trips and vessels [57]. Model likelihood, functional form and covariate set were informed
by results from the boosted GAMLSS approach outlined above. The GAMM with a simple hur-
dle-form of zero-inflated likelihood [59] and canonical link functions was then fitted using: (i)
thin plate regression splines to model nonlinear covariate effects except for the seasonal effect,
where a cyclic cubic regression spline was used to reflect cyclical seasonal behavior [58]; (ii) a
two-dimensional Duchon-spline surface smoother to account for structured spatial effects
attributable to the geospatial location (latitude, longitude: Miller et al. [60]) of each longline
set; (iii) a tensor product of a 2D Duchon-spline surface and a time effect with cubic regression
spline basis used to account for any spatial trend over the study period [61]; (iv) log offset for
the sampling effort (number of hooks per set); and (v) vessel- or trip-specific heterogeneity
incorporated as a random effects (random intercepts) term to account for the multilevel sam-
pling structure of the data set. A set-specific random effect would be redundant as the use of
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‘set’ here is an observation-level effect that is far better dealt with implicitly using either a zero-
inflated Poisson likelihood or explicitly using a zero-inflated negative binomial likelihood [62].
Furthermore, the boosting GAMLSS exploration found no support for a set-specific random
effect.

The spatially explicit GAMM constructed here is known as a geoadditive GAMM [63] and
was fitted using themgcv package for R with all smoothness parameters estimated using REML
[58]. Random effects were implemented using a smoother term with a random effect marginal
basis [eg., s(vessel, bs =“re”)]. Tests for inclusion of random effects was based on a method pro-
posed by [64] and implemented inmgcv. Adequacy of model fit was assessed using residual
diagnostics implemented inmgcv [65] as well as percentage of the null deviance explained and
review of the parameter coefficients and standard errors [58, 66]. Visualization of the estimated
structured 2D-spatial effect over time was done using the vis.gam() function inmgcv coupled
with the legend functions provided by the itsadug package for R [67] and themaps andmap-
data packages for R [68, 69].

Seabird Haulback Condition, Mechanism of Capture, and Captures
during Setting vs. Hauling
The condition (alive, dead or unknown) of each caught seabird upon haulback (at-vessel condi-
tion before being handled by crew) was analyzed. The number of seabirds caught by anatomical
hooking location, or by entanglement but not also hooked, was also assessed. The number of
seabirds observed becoming caught (hooked and/or entangled) while crew members were
retrieving gear was determined. Seabirds observed coming up on the gear from the soak (i.e.,
seabirds that were already hooked and/or entangled in the gear when crew hauled the gear up
to the sea surface from depth) and/or were observed to be waterlogged and with rigor mortis
was also determined.

Seabird Captures and Bycatch Mitigation Methods North and South of
23° N. Latitude
The proportion of seabirds observed captured in the areas where regulations require (north of
23° N.) vs. do not require employment of seabird bycatch mitigation methods (south of 23° N.)
was determined. The proportion of sets made north and south of 23° N. that employed seabird
bycatch mitigation methods required to be used when fishing north of this boundary was also
determined.

Results

Model Likelihood and Minimal set of Covariates and Factors
Model boosting of the GAMLSS models and the various covariate and factor ensembles sug-
gested that the more appropriate likelihood based on the predictive risk metric was the zero-
inflated Poisson with a minimal set of covariates and factors. Model terms for the mean or
expected response component were month as a cyclic covariate, albatross density in the vicinity
of the vessel as a nonlinear covariate, the 2D spatial effect, MEI as a nonlinear effect and a
cofactor of side vs. stern setting. And for the variance component, albatross density was
included as a nonlinear covariate. Other covariates, factors and random effects may be impor-
tant but added very little to improve model fit. The zero-inflated Poisson likelihood model
(risk metric = 1676.2) was a better fit to the seabird catch rate data than a model using the
zero-inflated negative binomial likelihood (risk metric = 1723.8) or just the negative binomial
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likelihood (risk metric = 1685.2). Therefore, the seabird catch data displayed significant zero-
inflation but not overdispersion.

Spatio-temporal GAMM
Other than the variance component identified in the best-fit GAMLSS model, we used the
same ensemble and likelihood to inform our geoadditive GAMM approach. However, we also
included the year effect (as this is of management and conservation interest), blue-dyed bait vs.
untreated bait to compare with the side-setting effect (as this is also of management interest)
and a random intercepts effect for each of the 154 longline vessel as this is still part of the sam-
pling architecture of the study. We also extended the spatial effect to be a spatio-temporal effect
with separate 2D spatial effects for each of the 11 years in the study sample.

Table 1 summarizes the dataset used in the standardized catch rate model through a multi-
dimensional contingency table using four of the variables determined to be significant effects
in the standardized catch rate model (season, albatross density, side vs. stern setting, blue-dyed
vs. untreated bait). Table 1 provides summary statistics of seabird capture rates based on a
binomial estimator with Clopper-Pearson confidence intervals [70]. The average seabird nomi-
nal catch rate point estimate was higher during first half of year (mean of 0.023), than during
the second half of the year (mean of 0.005). Within each season, catch rates trended upwards
with higher albatross density and when stern vs. side setting. Categories 7 and 8, fishing in the
first half of the year with higher albatross density and stern setting, had the highest seabird
catch rates, which were significantly higher than all other categories except for category 13,
fishing in the second half of the year with higher albatross density, with side setting and blue-
dyed bait (Table 1). The nominal seabird catch rate during the study period (0.021 captures per
1000 hooks) (Table 1) was 74% lower than the rate prior to seabird regulations coming into
effect (0.080 captures per 1000 hooks) [15].

Table 1. Multi-dimensional contingency table, providing summary statistics of seabird capture rates based on a binomial estimator with Clopper-
Pearson confidence intervals [70], Hawaii longline tuna fishery, 2004–2015.

Catch rate (no. per 1000
hooks)

Category
no.

Season Albatross
density

Side vs.
stern set

Blue-dyed vs.
untreated bait

No.
sets

No.
hooks

No. seabird
captures

Point
estimate

95% CI

1 Jan-
Jun

<1.5 Side-set Blue bait 86 189,993 0 0.000 0.000 0.019

2 Untreated bait 811 1,966,244 10 0.005 0.002 0.009

3 Stern-set Blue bait 1282 2,834,718 35 0.012 0.009 0.017

4 Untreated bait 1030 2,225,298 30 0.014 0.009 0.019

5 �1.5 Side-set Blue bait 66 156,217 1 0.006 0.000 0.036

6 Untreated bait 1028 2,503,049 59 0.024 0.018 0.030

7 Stern-set Blue bait 1764 4,060,741 248 0.061 0.054 0.069

8 Untreated bait 338 762,467 46 0.060 0.044 0.081

9 Jul-Dec <1.5 Side-set Blue bait 44 105,140 0 0.000 0.000 0.035

10 Untreated bait 643 1,586,850 3 0.002 0.000 0.006

11 Stern-set Blue bait 1109 2,567,462 11 0.004 0.002 0.008

12 Untreated bait 590 1,297,174 11 0.009 0.004 0.015

13 �1.5 Side-set Blue bait 4 9,806 0 0.000 0.000 0.376

14 Untreated bait 298 742,886 5 0.007 0.002 0.016

15 Stern-set Blue bait 539 1,312,260 10 0.008 0.004 0.014

16 Untreated bait 87 195,335 2 0.010 0.001 0.037

doi:10.1371/journal.pone.0155477.t001
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Table 2 presents a summary of the geoadditive GAMM estimates of parameter coefficients
for categorical terms and of the significance of smooth continuous terms and the one random
effects term. Fig 1 presents the results of the geoadditive GAMM. All factors, covariates and
random effect terms were significant except for the covariate year (Table 2, Fig 1A), a finding
consistent with the GAMLSS exploratory results. The spatio-temporal effect was significant
with most space x year terms also significant (Table 2). The fitted model explained 82.4% of the
null deviance. Residual diagnostics showed no anomalous patterns.

Each panel of the GAMM plot in Fig 1 is on the same y-axis scale, allowing for the identifi-
cation of the relative contribution of each covariate and factor in explaining model variability.
The terms’ relative effect sizes on seabird catch risk, from highest to lowest effect size, were:
albatross density, month, annual mean MEI, side setting, blue-dyed bait and year (Fig 1). Fig
1B shows the seasonal effect, with the highest seabird catch rate around April and lowest
around September. The catch rate increased steeply as albatross density around the vessel
increased to a threshold of about 10 individuals within 137 m of the vessel (Fig 1C). Seabird
catch risk increased with increasing mean annual MEI values (Fig 1D). There was significantly
reduced risk of seabird capture with the use of blue-dyed vs. untreated bait (Fig 1E) and with
side vs. stern setting (Fig 1F). The 95% confidence intervals of blue-dyed bait and side setting
in Fig 1E and 1F overlap slightly, but analysis of the parameter estimates from the geoadditive
GAMM fit (Table 2) showed that side-setting reduced the risk of capture significantly more (at
alpha = 0.05 level) than using blue-dyed bait, although the difference was marginal (P = 0.05).
Fig 1G shows a quantile plot of the vessel-specific random effects, which is consistent with the

Table 2. Summary of geoadditive GAMM fit to seabird catch data, Hawaii longline tuna fishery, 2004–2015. edf = effective degrees of freedom,
te() = tensor product, s() = nonparametric smoother. Model terms are defined in the methods section.

Parametric coefficients

Estimate SE z-value P

Intercept -12.5815 0.3203 -39.281 <0.001

Blue-dyed bait -1.3056 0.3130 -4.172 <0.001

Side-set -2.2757 0.3943 -5.772 <0.001

Approximate significance of smooth terms

edf Chi sq P

s(year) 1.000 0.085 0.77

s(month) 1.933 71.520 <0.001

s(albatross_density) 2.924 117.988 <0.001

s(MEI) 2.565 19.917 <0.001

te(lon,lat): year 2004 1.000 3.851 <0.05

te(lon,lat): year 2005 4.830 11.425 0.07

te(lon,lat): year 2006 3.001 7.829 <0.05

te(lon,lat): year 2007 8.429 29.267 <0.001

te(lon,lat): year 2008 7.913 48.864 <0.001

te(lon,lat): year 2009 9.065 32.116 <0.001

te(lon,lat): year 2010 7.542 28.497 <0.001

te(lon,lat): year 2011 8.966 42.372 <0.001

te(lon,lat): year 2012 4.320 10.896 0.06

te(lon,lat): year 2013 3.842 24.523 <0.001

te(lon,lat): year 2014 3.007 2.491 0.48

Random effects term

edf Chi sq P

s(vessel) 58.524 161.530 <0.001

doi:10.1371/journal.pone.0155477.t002
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intercepts for vessels being sampled from a Normal distribution, an important assumption of
the geoadditive GAMM.

Fig 1H shows the residual overall 2D spatial effect averaged over all 11 years of the study
sample. Seabird capture risk was highest to the northwest of the main Hawaiian Islands, with
decreasing seabird catch rate eastward and southward. The spatial effect for each of the

Fig 1. Graphical summary of geoadditive GAMM analysis, Hawaii longline tuna fishery, 2004–2014. The response variable, seabird catch rate, is
shown on the y-axis as a centered smoothed function scale to ensure valid pointwise 95% confidence bands. Covariates and factors are shown on the x-axis:
(A) year, (B) month, (C) mean albatross density during setting and hauling, (D) annual mean MEI value, (E) untreated vs. blue-dyed bait, (F) side vs. stern
setting, (G) quantile plot of random effects for the 154 vessels, and (H) structured spatial effect for all 11 years combined. Color scale units in (H) represent
centered scale values. For covariates, solid curves are the smoothing spline fits conditioned on all other covariates and factors, and the shaded areas are
bounded by pointwise 95% confidence curves around the fit in each panel. For factors, solid bars are the mean, dashed bars are the 95% confidence interval,
and the first factor is the reference level, which is centered at zero on the y-axis. Vertical ticks or rug on the x-axis in each panel show the data distribution.

doi:10.1371/journal.pone.0155477.g001

Seabird Bycatch, Hawaii Longline Fishery

PLOS ONE | DOI:10.1371/journal.pone.0155477 May 18, 2016 10 / 24



individual 11 years, after accounting for the other covariates and factors in the geoadditive
GAMM, is shown in Fig 2. There was relatively higher seabird capture risk in 2007, 2008 and
2010, and decreasing risk in more recent years throughout the fishing grounds. Seabird catch
rates were highest in the northwest in most of the 11 individual calendar years of the study
sample (Fig 2), consistent with the spatial effect averaged over the full study period (Fig 1H).

Haulback Condition, Mechanism of Capture, and Captured During
Setting vs. Hauling
Table 3 identifies the haulback condition, number of seabirds observed getting captured while
gear was being hauled and their haulback condition, and number of seabirds observed coming

Fig 2. Spatio-temporal effect. Structured spatial effect for each of 11 years (2004–2014), Hawaii longline tuna fishery. Color scale units represent centered
scale values as for GAMM response variables shown in Fig 1.

doi:10.1371/journal.pone.0155477.g002
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up on the gear from the soak, or otherwise waterlogged and with rigor mortis, their haulback
condition, and mechanism of capture. Of 471 observed seabird captures, 5% were alive and
95% were dead upon retrieval, before being handled by the crew or observer (Table 3). Observ-
ers witnessed 16 seabirds being captured during hauling, all of which were alive. Observers doc-
umented 96 dead seabirds on the gear as the gear came up from the soak and/or being
waterlogged and with rigor mortis. Almost all caught seabirds were hooked; only 3% were
entangled in line and not hooked (Table 3). Of the seabirds captured via hooking, most (83%)
ingested the hook with the hook lodged in the beak or mouth (47%) or more deeply in the
esophagus or deeper (36%). The remainder was either foul hooked (11%) or the hooking loca-
tion was not identified (6%) (Table 3).

Seabird Captures and Bycatch Mitigation Methods North and South of
23° N. Latitude
Of 392 fishing operations with one or more observed seabird capture, 82.4% had sets begin
north and 17.6% south of 23° N. Of 471 seabird captures observed in the study sample, 83.9%
(395) were caught in fishing operations with sets that began north, and 16% (76) south of 23° N.
By species, 77%, 93% and 78% of black-footed albatrosses, Laysan albatrosses and shearwater
species were caught north of 23° N., respectively. Of the 9,719 records included in the study sam-
ple, 73% (7,114) had sets begin north and 27% (2,605) south of 23° N. Table 4 summarizes the
proportion of records included in the study sample where sets began north or south of 23° N.
where different seabird bycatch mitigation methods were employed.

Discussion and Conclusions

Modeling Expected Seabird Catch
Year. Year was not a significant effect in the seabird standardized catch rate model that

explicitly accounted for the other covariates and factors. The significant nonlinear effect of
year observed by Gilman et al. [17] for the period overlapping with the time series of the cur-
rent study may have been due to not explicitly accounting for MEI value or other index for
ENSO phase or for albatross density at the vessel in their catch rate model.

Table 3. Seabird haulback condition, number caught by anatomical location of hook or by entanglement but not also hooked, number observed
captured while gear was being retrieved and their haulback condition, and number observed coming up on the gear from the soak and their haul-
back condition, observer program data, Hawaii deep-set pelagic longline tuna fishery, 17 October 2004 to 19 May 2014.

Haulback
condition

No. captured by No.
observed
getting
caught

while gear
was being
hauled

No.
observed
coming up
from the
soak

Species/group No.
alive

No.
dead

Hooked in mouth or
internally

Hooked in
body

Hooked location
unknown

Entangled not
hooked

Alive Dead Alive Dead

Black-footed
albatross

8 217 177 22 21 5 6 0 0 58

Laysan albatross 13 190 162 27 4 10 9 0 0 36

Shearwater spp. 0 41 38 2 1 0 0 0 0 1

Brown booby 0 1 1 0 0 0 0 0 0 1

Unidentified 1 0 0 1 0 0 1 0 0 0

Total 22 449 378 52 26 15 16 0 0 96

doi:10.1371/journal.pone.0155477.t003

Seabird Bycatch, Hawaii Longline Fishery

PLOS ONE | DOI:10.1371/journal.pone.0155477 May 18, 2016 12 / 24



Month. Maximizing effort from August to November, and minimizing effort around
April/May would minimize standardized and nominal seabird catch rates in the Hawaii long-
line tuna fishery. Results were generally consistent with Gilman et al. [15], which found higher
standardized and nominal seabird catch rates in the first half of the year than the second half
for the period 1994–2007, and consistent with Gilman et al. [17] and Gilman et al. [38] who
found similar effects in the Hawaii longline tuna and swordfish fisheries, respectively. The
observation of highest standardized catch rates fromMarch to May (Fig 1B) corresponds with
periods when breeding Laysan and black-footed albatrosses are rearing chicks. At this stage,
they make a mix of short and long foraging trips from their breeding colonies in the North-
western Hawaiian Islands in order to provide a frequent rate of chick-feeding, foraging in areas
that partially overlap the distribution of the Hawaii longline tuna fishery grounds [71, 72].
Months with lowest standardized seabird catch rates fall during the post-breeding season for
both Laysan and black-footed albatrosses, and initiation of the breeding season for black-
footed albatrosses. During the nonbreeding season, individuals that were breeders the previous
season have recovered from the demands of breeding, and forage in areas that overlap less with
the fishing grounds of the Hawaii longline tuna fishery relative to the distribution of their for-
aging grounds during the breeding season [71–73].

Albatross density. Findings on the effect of albatross density (local abundance) were con-
sistent with several past studies [17, 33, 38, 74, 75]. Local abundance during setting and hauling
affects catch rates due to the effect of animal density on catchability [8, 33]. The local abun-
dance of seabirds can also affect their scavenging behavior, where up to some threshold specific
to a seabird species complex, the larger the local seabird abundance, the more intense competi-
tive scavenging behavior and risk of capture will be. However, the effect of albatross density
observed here may not occur in longline fisheries in other areas. The effect of hierarchical com-
petitiveness between seabird species and between individual birds, as well as the effect of the
presence and local abundance of small deep-diving seabirds that retrieve submerged baited
hooks and bring them back to the surface where they become available to larger seabird species
with poor diving capabilities may be larger effects and potentially override the effect of alba-
tross relative abundance around vessels on albatross catch rates [8, 76, 77].

There was a significant linear increasing trend in albatrosses attending vessels during the
study period, based on fitting the study data on seabird scan counts to a linear regression
model (p<0.001, R2 = 0.81). This is consistent with observations in the Hawaii longline

Table 4. Percent of fishing operations (one operation being a set, soak and haul of the gear) where
sets began north or south of 23° N. where different seabird bycatch mitigation methods were
employed, observer program data, Hawaii deep-set pelagic longline tuna fishery, 17 October 2004 to
19 May 2014.

Seabird bycatch mitigation method1 % of fishing operations

North of 23° N South of 23° N

One or both regulatory mitigation methods 90.7 18.8

Side set 33.2 23.8

� 45g branchline weight and �1m leader 99.9 98.0

Blue dyed bait 66.9 5.1

Thawed bait 89.0 77.7

‘Strategic' offal or bait discards during set 46.6 18.3

‘Strategic' offal or bait discards during haul 70.8 48.3

1 Mitigation methods are defined in the Methods section description of GAMM terms.

doi:10.1371/journal.pone.0155477.t004
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swordfish fishery [38]. This increasing trend in albatross density attending vessels might partly
explain the significant linear increasing trend in nominal seabird catch rate (reviewed in the
Introduction).

The increasing trend in number of albatrosses attending vessels might be due, in part, to an
increasing trend in absolute abundance of black-footed albatrosses. Based on breeding pair
counts at their main colonies, over the study period, Laysan albatross absolute abundance was
estimated to be stable, while there was an increasing trend in black-footed albatross absolute
abundance [21]. The observed increasing trend in albatrosses attending vessels might also have
reflected increased scavenging from fishing vessels due possibly to decreasing availability of
natural prey due to declining local abundance of tunas and other subsurface predators, which
reduces the availability of prey to pelagic seabirds, discussed below. Or, the observed temporal
trend in albatross density around the Hawaii longline tuna vessels may be linked to trends in
ocean productivity, discussed below.

MEI. Increasing MEI value is indicative of decreasing ocean productivity of the north cen-
tral Pacific Ocean [78]. The findings here on effect of annual mean MEI value suggest that Lay-
san and black-footed albatross capture risk increases with decreasing ocean productivity,
which has decreased in recent years in the central North Pacific Ocean. There has been a signif-
icant -1.1% declining trend in annual median chlorophyll in the north central Pacific Ocean
from 1998–2012 [79]. Decreasing ocean productivity may have partly explained the observed
increasing trend in Laysan and black-footed albatross density around the fishing vessels (dis-
cussed above), which in turn might explain why lower ocean productivity increases capture
risk. Perhaps during periods of lower ocean productivity the local abundance of seabird prey
resources are lower, resulting in increased numbers of birds scavenging from fishing vessels
and also more intense scavenging behavior, increasing the risk of capture.

In the western and central Pacific Ocean, ENSO phases are associated with large scale east–
west shifts in the Warm Pool and the highly productive convergence zone between the Warm
Pool and cold tongue, altering upwelling intensity and the depth of the thermocline in different
regions of the Pacific [80, 81]. This variability in the spatial and temporal occurrence of areas
of high ocean productivity and variability in thermocline depth result in variability in the hori-
zontal and vertical distributions and recruitment of pelagic species. This includes prey species
of North Pacific albatrosses, and species of subsurface predators (e.g., tunas, dolphins) that
drive and cluster prey close to the sea surface making them accessible to shallow-diving sea-
birds [80, 82–84].

Individual pelagic seabird species, and age classes and sexes of a species, have predictable
pelagic habitat preferences for foraging [72, 73, 85, 86]. The distributions and possibly foraging
behavior, including scavenging from fishing vessels, of individual species of pelagic seabirds
may vary in response to variability in the biomass and distributions of their prey resulting from
inter-annual ENSO phases and other natural large scale climate cycles, such as longer-scale
Pacific Decadal Oscillation (PDO) phases. For example, during La Niña conditions (low MEI
values), Laysan and black-footed albatrosses that are brooding chicks at colonies in the North-
western Hawaiian Islands traveled farther to reach preferred foraging habitat, including the
Transition Zone Chlorophyll Front (TZCF) which is farther north from the breeding colonies
than during El Niño conditions (high MEI values) [87].

Findings of the MEI value effect suggest that Laysan and black-footed albatrosses obtain a
larger food subsidy from longline fishing vessels during periods of low ocean productivity. This
might support more stable population abundance and augment resistance and resilience, with
direct effects on the structure, processes and stability of their nesting and foraging communities
and indirect effects on interconnected systems [35, 88, 89].
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The range of annual average MEI values that occurred during the study period represented
relatively weak to moderate strength ENSO phases [48]. With a longer data series, encompass-
ing strong to extreme ENSO phases, larger effects on seabird catch rates than observed here
might therefore be apparent.

Blue-dyed vs. untreated bait. Findings on blue-dyed bait effect were consistent with a pre-
vious assessment of observer data from the Hawaii longline tuna fishery [15]. Blue-dyed bait
has been observed to significantly lower seabird catch rates (see review in Gilman and Hall
[45]). Blue-dyed bait might be more difficult for seabirds foraging from above to see as the con-
trast between the blue-dyed bait and seawater is reduced. Factors that determine whether dyed
bait will have reduced contrast to the sea surface include bait type, the amount of dye absorbed
by the bait, sea color and ambient light levels. Squid soaks up dye better than fish with scales.
Completely thawed bait soaks up dye better than frozen and partially thawed bait, and the longer
the bait soaks, the more dye it will soak up, until some threshold [40]. Alternatively or possibly
additionally, the blue color of the bait may make it unattractive to seabirds perhaps because they
might be less likely to recognize it as a prey item [90]. Completely thawed bait sinks faster than
frozen bait, reducing the duration they are accessible to scavenging seabirds [7]. Almost all (90%)
of the sets recorded as using blue-dyed bait met all of the regulatory defined elements of the suite
of measures that includes blue-dyed bait, reviewed in the Introduction.

Side vs. stern setting. Consistent with findings from this study, previous studies found
side setting with a bird curtain vs. stern setting to significantly reduce seabird catch rates in the
Hawaii longline swordfish and tuna fisheries [15, 34]. When baited hooks are set close to the
side of the vessel hull, seabirds are unable or unwilling to pursue them, and by the time the
stern passes the hooks, they have sunk to a depth where seabirds have more difficulty detecting
them or that exceeds their diving depth range [34]. Almost all (89%) of sets recorded as side
setting met all of the regulatory defined elements of the suite of measures that includes side set-
ting, defined in the Introduction.

Side setting vs. blue-dyed bait. Sets using side setting had a marginally significant lower
standardized seabird catch rate than sets using blue-dyed bait. Gilman et al. [15] found no sig-
nificant difference between standardized seabird catch rates of side setting and blue-dyed bait
in the Hawaii longline tuna fishery, but employed a substantially smaller sample size from a
shorter time series. Discussed above, almost all sets using blue-dyed bait also used all of the
other elements of the regulatory suite of measures that includes blue-dyed bait, and likewise
almost all sets using side setting met all of the elements of the regulatory suite that includes
side setting. The finding from this expanded study suggests that the seabird catch rate would be
reduced by having vessels that opt to use the regulatory suite of measures that includes blue-
dyed bait switch to the suite including side setting. Of sets made in the area where use of sea-
bird bycatch mitigation measures is required, twice as many used blue dyed bait than side set-
ting (Table 4), indicating a higher preference for blue-dyed bait. Discussed below, compliance
with side setting is likely higher than with blue-dyed bait when an observer is not present,
based on observations of practices when fishing in areas where seabird bycatch mitigation
methods are not required (Table 4). Both methods’ efficacy rely on crew practices, e.g., whether
crew throw baited hooks close to the vessel hull and far forward during side setting, and
whether crew completely thaw baits and dye them to the regulatory-required color [8, 15].

Geospatial location. Gilman et al. [15, 17] also found highest standardized seabird catch
rates to the northwest of the main Hawaiian Islands. Displacing effort from this area would
reduce seabird bycatch rates. The higher catch rates in this area may be due to the effect of the
number of albatrosses attending vessels, resulting from foraging habitat preferences of Laysan
and black-footed albatrosses. Albatross mean density during setting and hauling in sets made
within the area west of 165°W and north of 25°N (mean of 4.6 albatrosses within 137 m of the

Seabird Bycatch, Hawaii Longline Fishery

PLOS ONE | DOI:10.1371/journal.pone.0155477 May 18, 2016 15 / 24



vessel during setting and hauling, ± 0.4 95% CI, N = 524 sets) was significantly higher than out-
side this area (mean of 1.9 albatrosses, ± 0.05 95% CI, N = 9195).

Variables Excluded from Standardized Catch Rate Model
The observed lack of effect of hook shape on seabird catch rate may have been due to the low
proportion of captures that occur via foul hooking. The finding may also have been due to
there being a relatively small difference in minimum widths between the predominant circle, J
and tuna hooks used in the fishery, and all of the hook types being small relative to Laysan and
black-footed albatrosses’mouth sizes. Two past studies found wider circle hooks had lower sea-
bird catch rates than narrower J-shaped hooks [91, 92]. Another study found no significant dif-
ference between albatross catch rates on a wider circle hook vs. narrower 9/0 J-hook, however,
there was a small sample size (18 albatross captures [93]). No studies, however, including this
one, have assessed the single factor effect of hook shape or hook minimum width on seabird
catch rates [45]. The predominant circle hooks used in the Hawaii longline tuna fishery are
wider than predominant tuna and J hooks [17]. The less exposed points of circle hooks relative
to J-shaped hooks [94] reduce catch rates by reducing the probability of foul-hooking organ-
isms [1]. Thus, hook shape might have a small effect on seabird catch rates in this fishery given
a small proportion of captures are by foul hooking (Table 3). For fish and sea turtles, J-shaped
hooks tend to deep hook, while circle hooks with little or no offset, when swallowed, tend to
catch in the corner of the mouth [2, 95–98]. If hook shape has the same effect on anatomical
hooking location in seabirds, then using circle instead of J-shaped hooks of the same minimum
width might reduce the degree of injury and increase the probability of post-release survival of
seabirds that are alive upon haulback, but this is a small proportion of seabirds caught in the fish-
ery (Table 3). For some species and sizes, larger hook minimum width reduces catch risk [45,
98]. For species that tend to be caught by ingesting the hook, hook size can affect susceptibility to
capture, as the larger the hook, the lower the probability that an organism can fit it in its mouth
[99]. However, small differences in hook minimum width likely have no effect on the ability of
albatrosses to fit the hooks in their mouths. But larger hooks might be heavier, and thus have a
faster sink rate, reducing seabird catch risk. Therefore, in the Hawaii fishery, hook shape likely
has little effect on seabird catch rates, circle hooks might reduce degree of injury for the few birds
caught alive, while using larger hooks might reduce seabird catch rates due to faster sink rates.

Consistent with findings of Gilman et al. [17], but inconsistent with those of Gilman et al.
[15], the time of day of initiating setting was not a significant effect on seabird catch rate. This
may be due to the relatively small dispersion in the time of day of starting sets, with a mean of
8:09 am and 16% CV.

We explored including a categorical term of sets that employed (i) only one of the two regu-
latory options of suites of seabird bycatch mitigation methods, (ii) both suites, or (iii) neither
suite. Sets using only one of the two suites had a significantly lower standardized catch rate
than sets not employing one of the suites (p<0.01), a similar finding as the GAMM categorical
terms (Fig 1E and 1F). There was a significantly lower standardized seabird catch rate with sets
employing both combinations of methods versus sets using only one suite (p<0.001), however,
there were incomplete parameter estimates for the ‘both’ category, due to the extremely small
sample size for this category.

The mean Beaufort wind force value during setting and hauling was also not a significant effect
on the seabird catch rate in the current study. The result may reflect a moderate dispersion in wind
strength (mean Beaufort wind force value of 3.3, 35.5% CV). This variable was a significant effect
on standardized seabird haul catch rate in the Hawaii longline swordfish fishery [38]. Albatrosses
have improved agility and scavenging ability with higher wind strength [75, 100, 101].
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Not found to be a significant effect in the current study as an interacting term or individu-
ally, branchline weight amount and distance from the hook have been observed in previous
studies to significantly affect seabird catch rates during setting [15, 42, 77, 102] and hauling
[38] in pelagic longline fisheries. There was relatively small dispersion in swivel weight
amounts (mean 47.8 g, 16% CV; 83% of sets used 45 g swivels), and moderate dispersion in
leader lengths (mean 0.53 m, 49% CV;>99% of leaders were�1 m). Branchline weight
amount, and the distance the weight is from the hook, affect the sink rate of the baited hook
and availability to seabirds (see reviews in Clarke et al. [2] and Gilman and Hall [45]).

‘Strategic’ discards, employed in 39% of sets and 65% of hauls, did not significantly affect
the seabird catch rate in the current study. Discharging offal from processed catch, spent bait
and dead discards on the opposite side of the vessel from the setting or hauling stations may
draw scavenging seabirds’ attention away from where baited hooks are available and reduce
catch rates [103]. However, this might be a short-term effect, where vessels that routinely dis-
charge offal and other organic material might consistently have a larger number of seabirds
and other scavengers attending the vessel [7]. Vessels that routinely retain offal and other
organic material during setting and hauling might reduce the number of seabirds and other
organisms attending the vessel, reducing catch rates, relative to vessels that routinely discharge
during setting and hauling [7, 104]. Retention might also reduce competitive seabird scaveng-
ing behavior and foraging intensity, reducing capture risk [7].

Not found to be a significant effect in this study, there is evidence of a significant effect of
lunar phase on catch rates of some pelagic species in pelagic longline fisheries [44, 105–108].
Moon phase affects night-time ambient light levels, which may affect the ability of nocturnal
foraging seabirds to detect and locate baited hooks when scavenging from fishing vessels.
Because the Hawaii longline tuna fishery makes sets predominantly during daytime, and
because the majority of seabird interactions occur during setting, this is likely why variability
in light levels during the nighttime had no significant effect on seabird catch rates.

Not a significant effect in this study, SST, one of several dynamic environmental variables
frequently used to standardize longline catch rates, has been observed to significantly explain
species-specific catch rates in pelagic longline fisheries (reviewed in Gilman and Hall [45]).
SST, which tends to be negatively correlated with latitude, is an indicator for species-specific
habitat suitability, as pelagic predators caught in pelagic longline fisheries have disparate tem-
perature preferences [109].

Haulback Condition, Mechanism for Capture, and Captures during
Setting vs. Hauling
In the Hawaii longline tuna fishery, few seabirds are alive when retrieved and almost all are
caught during setting. Seabirds retrieved alive were likely captured during hauling, while sea-
birds retrieved dead were likely caught during the set. These findings are consistent with Gil-
man et al. [38]. Seabirds that came up on the gear from the soak or that were waterlogged and
with rigor mortis were assumed to have been caught prior to gear hauling, most likely during
setting. Seabirds are not likely captured during the gear soak as hooks soak at depths far below
the diving capabilities Laysan and black-footed albatrosses. Most birds are caught by ingesting
a hook and getting hooked in the beak, mouth or more deeply.

Seabird Bycatch North and South of 23° N. Latitude
Standardized seabird catch rates were lower south of 23° N than north of this latitude, and
there were no seabird catch rate hotspots south of 23° N (Figs 1G and 2). When including rec-
ords that were excluded from the study sample, except for records lacking information on

Seabird Bycatch, Hawaii Longline Fishery

PLOS ONE | DOI:10.1371/journal.pone.0155477 May 18, 2016 17 / 24



latitude at the beginning of the set or number of hooks set, the nominal seabird catch rates
north and south of 23° N. were 0.011 and 0.002 seabirds per 1000 hooks, respectively. Thus,
the nominal seabird catch rate south of 23° N. was an order of magnitude lower than to the
north. In the ca. 50% of observed effort that occurred south of this latitude, only 16% of seabird
captures occurred.

While few sets made south of 23° N. met either regulatory-defined combination of seabird
bycatch mitigation methods (19%) relative to those made north of this latitude (91%), most of
the sets made south of this latitude had� 45g swivels located within 1m of the hook and used
thawed bait. In addition, the proportion of sets using side setting was similar to north of 23° N.
(Table 4). This suggests that vessels that employ this line weighting design, thaw their bait and
side set do so regardless of where they are fishing. Conversely, the low use of blue-dyed bait
and ‘strategic’ discards south of 23° N. relative to sets made north of this latitude suggest that
vessels that employ these methods when at grounds where they are required to employ seabird
bycatch mitigation methods (at least when an observer is present) do not voluntarily use these
methods when not required (Table 4). This further suggests that, when observers are not
onboard, compliance with side setting and line weighting is likely higher than with the other
methods, which is important given that ca. 80% of effort is unobserved in this fishery.

Observer Data Fields and Data Collection Protocols
If more than one gear design is used on a vessel, then observers record the predominant design
[46]. Relying on predominant gear design (swivel weight amount, hook type, bait type, leader
length, etc.) creates uncertainty on the gear design of the branchline on which individual sea-
bird catch events occurred. Modifying observer data collection protocols to have observers
record the gear design on which individual seabirds, and other species of conservation concern,
were captured, would eliminate this source of uncertainty [45].

Adding observer data collection fields would improve data quality to support a more robust
assessment of whether seabirds are captured during setting vs. hauling. Observers recorded, in
a comment field, the at-vessel disposition of only 24% of the observed 471 captured seabirds.
Additional fields could be added for observers to document during the haul whether they: (i)
observed a seabird come up on the gear from the soak; (ii) observed a seabird being captured
during gear retrieval; or (iii) did not observe whether the seabird was caught during the haul or
come up from the gear soak. For field (ii), four codes could be used to indicate whether, during
hauling, the seabird was captured: (a) on a branchline still attached to the mainline, (b) on a
tended branchline (line that crew have unattached from the mainline and are actively retriev-
ing), (c) on an untended branchline (crew have unattached the line from the mainline and tem-
porarily attached it to the vessel with terminal tackle still in the water), and/or (d) via
entanglement in the mainline [38]. Finally, a field could be added for observers to record
whether the seabird had rigor mortis and/or was waterlogged. This latter field could be used as
an indicator of whether the bird was caught during the set vs. the haul, which would be useful
for capture events where the observer was unable to observe whether the bird came up from
the gear soak or was caught during hauling.

It is not currently possible to determine if records met all of the elements of the suite of reg-
ulatory required seabird bycatch mitigation methods that includes side setting. This is because
information is not in the observer program database on whether the regulatory-required loca-
tion for mounting a mainline line shooter was met [14]. The observer program dataset does
not contain information on the distance that a line shooter is mounted from the stern corner
[46]. Similarly, it is not currently possible to determine if records met the suite of regulatory
required methods that includes blue-dyed bait because information is not in the observer
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program database on whether the regulatory-required prohibition for discharged fish and
spent bait to contain hooks was met, and whether a discarded fish was returned to the sea in
accordance with the regulations [46].
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