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Some shark populations face declines owing to targeted capture and by-catch in longline fisheries. Exercise intensity during
longline capture and physiological status may be associated, which could inform management strategies aimed at reducing
the impacts of longline capture on sharks. The purpose of this study was to characterize relationships between exercise inten-
sity and physiological status of longline-captured nurse sharks (Ginglymostoma cirratum) and Caribbean reef sharks
(Carcharhinus perezi). Exercise intensity of longline-captured sharks was quantified with digital cameras and accelerometers,
which was paired with blood-based physiological metrics from samples obtained immediately post-capture. Exercise intensity
was associated with physiological status following longline capture. For nurse sharks, blood pH increased with capture dur-
ation and the proportion of time exhibiting low-intensity exercise. Nurse sharks also had higher blood glucose and plasma
potassium concentrations at higher sea surface temperatures. Associations between exercise intensity and physiological sta-
tus for Caribbean reef sharks were equivocal; capture duration had a positive relation with blood lactate concentrations and
a negative relationship with plasma chloride concentrations. Because Caribbean reef sharks did not appear able to influence
blood pH through exercise intensity, this species was considered more vulnerable to physiological impairment. While both
species appear quite resilient to longline capture, it remains to be determined if exercise intensity during capture is a useful
tool for predicting mortality or tertiary sub-lethal consequences. Fisheries management should consider exercise during cap-
ture for sharks when developing techniques to avoid by-catch or reduce physiological stress associated with capture.
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Introduction Longline fisheries are the predominant source of shark by-

catch (Molina and Cooke, 2012; Oliver et al., 2015) and can
Globally, some shark populations are in decline as a result of ~ contribute to shark mortality owing to a suite of physiological
fisheries overexploitation and by-catch (Dulvy et al., 2014).  perturbations that result from exhaustion during capture
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(Butcher et al., 2015; Dapp et al., 2016a). In addition to
mortality, longline-caught sharks can experience numerous
sub-lethal consequences associated with capture such as
acid-base disruptions (Brooks ez al., 2012; Wilson et al.,
2014). Characterizing sub-lethal outcomes of capture is
important because sub-lethal outcomes may result in
population-level consequences, including reduced repro-
ductive output (Skomal and Mandelman, 2012; Guida
et al., 2017b; Adams et al., 2018). Defining sub-lethal out-
comes of longline capture on sharks caught as by-catch is,
therefore, of great value to fisheries management by inform-
ing strategies to mitigate stress.

Sharks exhibit species-specific physiological responses to
longline capture (Gallagher et al., 2014). This is well estab-
lished in the literature; even congeneric species exhibit dispar-
ate physiological responses to longline capture (Mandelman
and Skomal, 2009; Frick et al., 2010; Marshall et al., 2012;
Butcher et al., 2015). The mechanisms underlying inter-specific
variability in the magnitude and intensity of the physiological
response have not been characterized (although it may be
related to aerobic metabolic scope), but this variability has been
useful in identifying vulnerable species (Skomal and Bernal,
20105 Gallagher ez al., 2014). Sharks also exhibit intra-specific
variability in physiological responses to capture, where differ-
ences in metrics have been generally attributed to capture dur-
ation, with mention of individuals’ respiratory physiology and
struggling behaviour (Manire et al., 2001; Jerome et al., 2018).
Laboratory evidence also demonstrates that acute physiological
responses to a standardized experimental capture protocol are
repeatable across days, suggesting that individuals exhibit
unique physiological responses (Frick et al., 2009). While
physiological responses are cryptic and may be difficult to
translate to conservation practices (Cooke and O’Connor,
2010), relating physiology to easily observable responses
like exercise intensity or reflexes could produce valuable
diagnostic tools for predicting an animal’s condition and
informing species-specific management (Gallagher et al.,
2017; Jerome et al., 2018).

Similar to physiological outcomes, the exercise intensity
of sharks caught on longlines appears to be species-specific.
Laboratory studies using experimental capture techniques
have observed contrasts in exercise intensity during longline
capture between species. Lemon sharks (Negaprion breviros-
tris) exposed to experimental longline capture did not rest
and swam more than unhooked animals (Bouyoucos et al.,
2017). Port Jackson sharks (Heterodontus portusjacksoni)
caught on experimental longlines rested following an initial
bout of struggling (Frick et al., 2010). Gummy sharks
(Mustelus antarcticus) caught on longlines in the field rested
throughout most of the capture event, whereas animals
caught on experimental gear in the laboratory were nearly
continuously active (Frick et al., 2010; Guida et al., 2016,
2017a). Intra-specific variation in responses to capture have
received far less attention, although recent evidence of per-
sonality in sharks suggests that individuals exhibit unique,
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repeatable behaviours, including responses to capture and
handling (Wilson et al., 2015; Byrnes et al., 2016a, 2016b;
Finger et al., 2018). Laboratory studies have been instrumen-
tal in providing preliminary insights into species-specific
responses to capture, but there is a need for field-based stud-
ies to define intra- and inter-specific differences in exercise
intensity of sharks during longline capture, especially given
apparent contradictory responses between wild and captive
studies.

Exercise intensity during longline capture may predict
relative physiological status. Of the few studies that have
quantified exercise metrics of captured sharks in various gear
types, several have tested for associations between exercise
intensity and physiological status at various points in time
after the capture event. First, Frick ez al. (2009) found no
evidence of a relationship between peak whole-blood lactate
concentrations and the amount of time Port Jackson sharks
and Australian swellsharks (Cephaloscyllium laticeps) struggled
in gill nets. Second, Guida ez al. (2016) suggested that gummy
sharks’ response of resting throughout demersal longline capture
was responsible for the absence of an effect of capture duration
on physiological status. These studies, however, do not support
the idea that intra-specific variation in exercise intensity during
capture is related to physiological status. Recently, Gallagher
et al. (2017) provided evidence of an association between an
acceleration-based metric of fight intensity and blood lac-
tate concentrations across three shark species, although this
trend likely reflects inter-specific variation, where nurse
sharks (Ginglymostoma cirratum) generally had the lowest
acceleration and blood lactate concentrations, and blacktip
sharks (Carcharbinus limbatus) had the highest acceleration
and blood lactate concentrations. In light of these three stud-
ies, there is a clear knowledge gap whether sharks’ exercise
intensity during capture predicts physiological status.

The purpose of this study was to quantify why individual
sharks fare better than others after longline capture. Our pri-
mary objective was to quantify associations between exercise
intensity and physiological status of two shark species during
longline capture, the nurse shark and Caribbean reef shark (C.
perezi). Because behavioural (i.e. exercise intensity) and physio-
logical responses of sharks appear to be repeatable at the level
of individuals, we predicted that these species should exhibit
intra-specific variation in exercise intensity that explains vari-
ation in physiological status. Our secondary objective was to
compare associations between exercise intensity and physio-
logical status between nurse sharks and Caribbean reef sharks.
We predicted that relationships between exercise intensity and
physiological status would differ in nature between the two
study species because these species rely on different respiratory
modes (stationary respiration and ram ventilation, respectively)
that are generally associated with different levels of fisheries
mortality among elasmobranchs (Dapp et al., 2016b). Thus,
our data have application for species-specific management, by
identifying exercise intensity levels that predict ‘good’ relative
physiological status, or a lack thereof that suggests a general
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species response. Finally, data on the nature of relationships
between exercise intensity and physiological status can inform
technical alterations to longline gear that serve to modify exer-
cise intensity and reduce stress.

Materials and methods

Ethical treatment of sharks was in accordance with permits
MAF/FIS/17 and MAF/FIS/34 issued by the Bahamian
Department of Marine Resources, and the permission to cap-
ture sharks within the Bahamian Shark Sanctuary was estab-
lished in accordance with the Bahamian Department of
Marine Resources Form 20 A, Regulation 36D (3), permit-
ting fishing, possession and exportation of sharks or shark
tissue. Animal care protocols were based on guidelines from
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the Association for the Study of Animal Behavior and the
Animal Behavior Society (Rollin and Kessel, 1998).

Sharks were caught in coastal waters on experimental long-
lines (Fig. 1) between January 2012 and December 2013
around Cape Eleuthera, Eleuthera, The Bahamas (24.54° N,
76.12° W). Longlines were configured as mid-water sets
based on the target species and habitat. Experimental long-
lines were 125.0m long with six evenly spaced modified
gangions. Each gangion was 1.3 m long and equipped with a
digital camera (GoPro Hero 1 and 3 Silver, Woodman Labs
Inc., Half Moon Bay, CA, USA), a hook timer (LP Hook
Timer HT 600, Lindgren Pittman, Pompano Beach, FL,
USA) and a tri-axial accelerometer (Hobo Pendant G Data
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Lactate
pH

Centrifuge

Flame Photometer

d Potassium
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Figure 1: Diagram of experimental longline gear, in situ behavioural observation and assessment of physiological stress parameters.
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Logger, Onset Computer Corporation, Bourne, MA, USA;
1 Hz recording frequency, +3.0 g range, +£0.105 g accuracy,
0.025 g resolution) (sensu Grace et al., 2010). Gangions con-
sisted of a longline snap crimped to 0.15 m of monofilament
attached to 1.0m of braided polyester line, which was
crimped onto 0.15 m of steel leader terminating in a 16/0 cir-
cle hook. Attachment points were conjoined with 8/0 swi-
vels. Hook timers were rigged between monofilament and
line sections, and accelerometers were set in a 7.6 X 3.8 cm
polyvinylchloride capsule 15.0 cm above the circle hook on a
steel leader. Longlines were checked every 30 min to assess
the condition of sharks and monitor capture duration.
Capture durations were limited to 4.5h and intentionally
manipulated to promote a broad range in capture durations
(Brooks et al., 2012). Before release, all sharks were
restrained in the water alongside a boat for morphometric
measurement, identification with dart tags and rototags,
phlebotomy and hook removal. Sea surface temperatures
(SSTs) were measured using a digital thermometer from mid-
line at the beginning of each set.

A suite of secondary stress metrics were measured to charac-
terize the acute physiological status of longline-captured
sharks, including blood acid-base status (i.e. blood pH), lac-
tate and glucose concentrations, haematocrit and plasma ion
(sodium, potassium, chloride and calcium) concentrations.
Blood was drawn from the caudal vasculature (i.e. via caudal
puncture) using 38-mm 16 or 18 gauge needles and 3.0-ml
syringes that were washed with sodium heparin. Following
phlebotomy, whole blood was immediately transferred to an
i-STAT CG4+ cartridge that was inserted into an i-STAT
point-of-care device (Abbot Point of Care Inc., Princeton, NJ,
USA) to measure blood pH and blood lactate concentration
(Stoot et al., 2014; Harter et al., 2015). Because the i-STAT
system measures blood pH at 37 °C (i.e. for use in homo-
eothermic animals), pH values were corrected to reflect SSTs—a
proxy of body temperature—using species-independent conver-
sion equations (Mandelman and Skomal, 2009; Brooks et al.,
2012). It should be noted, however, that the current ‘best-
practice’ approach for measuring blood pH in elasmo-
branchs with the i-STAT system is by using the temperature
correction function of the i-STAT itself rather than the
species-independent conversion equations that were con-
sidered appropriate at the time of our study (Harter ef al.,
2015). Blood was also transferred to an Accu-Chek portable
blood glucose meter (Roche Diagnostics, Basel, Switzerland)
to measure blood glucose concentration (Brooks et al., 2012).
Remaining blood was transferred to a vacutainer coated in
lithium heparin and was stored on ice for 2h until blood
could be analysed for additional physiological stress metrics at
a laboratory facility.

To measure haematocrit, a small volume of whole blood
was transferred to a 75-mm micro-haematocrit tube and spun
at 4400 g for 5 min in a micro-haematocrit centrifuge (Brooks
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et al., 2012). Remaining whole blood was spun at 10000 g for
5 min, and plasma was aliquoted into 1.5-ml microcentrifuge
tubes (Brooks er al, 2012). Plasma samples were stored at
—20°C prior to storage in liquid nitrogen and transport to an
off-site laboratory, where samples were stored at —80°C.
Plasma sodium and potassium were measured using a
single-channel digital flame photometer (Model 2655-00,
Cole Parmer, Vernon Hills, IL, USA), plasma chloride was
quantified with a digital chloridometer (Model 4435000,
Labconco Corporation, Kansas City, MO, USA), and plas-
ma calcium was quantified using a commercially available
kit (QuantiChrom Calcium Assay Kit, DICA-500, Bioassay
Systems, Hayward, CA, USA) and analysed in a commer-
cially available spectrophotometer (Spectra Max Plus 384,
model 05362, Molecular Devices, Union City, CA, USA).

Acceleration data were analysed to distinguish exercise intensity
levels during capture and generate acceleration-based metrics of
exercise intensity. Raw acceleration data in each axis were con-
verted to vectorial sums using HOBOware Graphing and
Analysis Software (Onset Computer Corporation, Bourne,
MA, USA). To generate accelerometric criteria to distin-
guish exercise intensity levels, time series of vectorial sum
data (VS = /x4 y% + 2?) were analysed using k-means
clustering (Sakamoto et al., 2009) to identify distinct exer-
cise intensity levels for both species. Accelerometer-derived
vectorial sum data were selected as a proxy for exercise
intensity because variation in body acceleration is asso-
ciated with metabolic energy expenditure (Gleiss ez al.,
2011). Furthermore, vectorial sum is the preferred metric to
overall dynamic body acceleration when the orientation of
the data logger cannot be standardized across animals (e.g.

hooking location), as was the case with gangions in this
study (Qasem et al., 2012).

Vectorial sum data from each individual were clustered
across three groups. Characteristics (amplitude and cycle of
the acceleration signal) of the three discrete clusters were
visually inspected across all individuals to identify cutoff cri-
teria for defining three exercise intensity levels: ‘high-inten-
sity’ exercise had an amplitude > 0.25 g and a < 5-s cycle,
‘medium-intensity’ exercise had an amplitude < 0.25 g but >
0.05 g, or an amplitude > 0.25 g with a > 5-s cycle, and
‘low-intensity’ exercise referred to any signal with an ampli-
tude < 0.05 g. After defining cutoff criteria, individuals’ clus-
ters were each assigned an exercise intensity level as detailed
above. Therefore, although acceleration data from all ani-
mals were clustered into three groups, not all animals exhib-
ited all three exercise intensity levels. As such, this approach
accounted for any biases that would occur from k-means
clustering across individuals. Analysis of video data corrobo-
rated acceleration data: high-intensity exercise referred to
burst swimming and/or strong contortions, medium-intensity
exercise referred to brief aggravated movement, and slow
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directional or circular swimming and low-intensity exercise
referred to sharks resting on the bottom or suspended verti-
cally on a gangion.

One exercise metric was generated from accelerometric data:
the proportion of the capture event that sharks exhibited
low-intensity exercise (piow). Proportion data were log-ratio
transformed to account for the fact that raw proportions
sum to one and are, therefore, not independent (Aebischer
et al., 1993). Including metrics for the proportion of time
sharks exhibited medium- (pmq) and high-intensity (ppgn) exer-
cise was considered, but data exploration indicated that pj.,
and pmeq were highly correlated (Fig. 2a), and variation in ppigh
would logically be mirrored by variation in pj.y, despite these
transformed variables not being correlated. Other exercise
metrics were considered (e.g. the frequency of bouts of high-
intensity exercise or average fight intensity), but these metrics
have previously been demonstrated to not be associated with
stress markers (lactate, glucose and pH) and were both corre-
lated with capture duration in this study (Fig. 2b) and elsewhere
(Brownscombe et al., 2014; Gallagher et al., 2017). Notably,
capture duration is often associated with stress markers for
sharks (Skomal, 2006; Danylchuk et al., 2014; Dapp et al.,
2016a; Whitney et al., 2017). Therefore, capture duration was
chosen as a proxy of sharks’ fight intensity, where longer cap-
ture durations were associated with lower average fight intensity
(Brownscombe et al., 2014). Capture duration was also an
appropriate metric because it was not correlated with pjq..

Linear models were used to investigate relationships
between exercise metrics and physiological metrics. Separate
models were analysed for each species in anticipation of

(a) 1.5
® Carcharhinus perezi
1.0 - C Ginglymostoma cirmratum

0.5 -
0.0 4

=0.5 +

p medium-intensity exercise

-1.0 -

-1.5 4

-2.0 T T T T 1

plnw-inhsnsily exercise
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species-specific stress responses (Mandelman and Skomal,
2009). Physiological metrics (plasma calcium, plasma sodium,
plasma potassium, plasma chloride, blood glucose, blood lac-
tate, blood pH and haematocrit) were fit as response variables
with pjow, capture duration, SST and total length (TL, in cm)
as covariates. Statistical significance was determined by gener-
ating 95% confidence intervals of effect size from 1000 pos-
terior simulations of factors in our linear models (Nakagawa
and Cuthill, 2007). A factor was considered to be significant
if the 95% confidence interval did not overlap zero (Hasler
et al., 2016). Models were validated with Q-Q plots of model
residuals to assess normality and plotting fitted/predicted
values against model residuals to assess homogeneity of var-
iances. All analyses were conducted in R using the R Stats
Package (R Core Team, 2018). Posterior simulations were
generated using the ‘arm’ package (Gelman and Su, 2018).

Results

Between 15 June 2012 and 13 January 2014, 36 Caribbean
reef sharks and 44 nurse sharks were captured on experi-
mental longlines. Physiological data, pj,w, capture duration,
SST and TL of all sharks in this study are summarized in
Table 1. Capture durations varied from 2.57 to 264.88 min.
Variations in physiological stress metrics were associated
with variation in exercise metrics for nurse sharks and
Caribbean reef sharks (Table 2). For nurse sharks, blood pH
increased with py, and capture duration (Fig. 3). Blood glu-
cose and plasma potassium concentrations increased with
SST (Fig. 4), and plasma potassium concentrations decreased
with increasing TL. For Caribbean reef sharks, plasma chlor-
ide concentrations decreased with capture duration, and

(b) 76 -
® ® Carcharhinus perezi
74 1 O Ginglymostoma cirratum
72 1
701 e
68

66
64 4
62

60

Mean fight intensity (g min~")

58 -

56 T T T T T
0 50 100 150 200 250 300

Capture duration (minutes)

Figure 2: Correlations between possible explanatory exercise metrics. Proportions (a) of the total capture event when sharks exhibited low-
(Plow-intensity exercise) and medium-intensity (Pmedium-intensity exercise) €Xercises were correlated (Linear regression, R*=0.84, F1, 55 = 290.96, P <
0.001) and are presented as log-ratio transformed proportions. Mean fight intensity (b; in g min™' where g = 9.81 m s™) is measured as the
sum of acceleration values recorded during a capture event divided by capture duration and had a negative linear relationship with capture
duration (Linear regression, R?=0.14, F1, 55 = 9.54, P = 0.003). Data are pooled for nurse sharks (Ginglymostoma cirratum) and Caribbean reef

sharks (Carcharhinus perezi).
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Table 1: Descriptive statistics of response variables (blood-based physiological data) and explanatory variables for nurse sharks
(Ginglymostoma cirratum) and Caribbean reef sharks (Carcharhinus perezi). The proportion of time sharks exhibited low-intensity exercise (pow)

refers to periods of inactivity or resting.

Species Metric

blood lactate concentrations increased with capture duration
(Fig. 5).

Discussion

This study sought to better quantify the relationship between
the exercise intensity of sharks while hooked on longlines
and their physiological status upon landing. We found that
nurse sharks that exhibited low-intensity exercise more fre-
quently had higher blood pH relative to more active indivi-
duals, and blood pH increased with capture duration. Nurse
sharks are a mostly sedentary species, possibly owing to this
species’ low metabolic rates, and it follows that nurse sharks
have been documented to rest on the substrate throughout a
capture event (Whitney ez al., 2016; Gallagher ez al., 2017).
Previously, it has been demonstrated that the number of
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disruptions (e.g. acidosis) (Svendsen ez al., 2010). During
intense activity in elasmobranchs, blood pH drops because
of a combination of metabolic acidosis (release of metabolic
protons from the white muscle following anaerobic lactate
production) and respiratory acidosis (dissociation of protons
and bicarbonate following carbon dioxide accumulation
(Wood et al., 1983; Mandelman and Skomal, 2009). For
nurse sharks, it is possible that fewer burst events during
capture (i.e. a higher p),,) resulted in a smaller magnitude of
physiological disturbance (i.e. less pH decline or higher pH).
Given capture duration’s inverse relationship with mean fight
intensity, it is likely that more anaerobically fuelled strug-
gling (i.e. high mean fight intensity or more high-intensity
exercise) is associated with low blood pH. Furthermore, this
relationship suggests that struggling occurs early in the

=
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Table 2: Linear model outputs (95% confidence interval limits) for the effect of exercise intensity (pjow), capture duration, SST and TL on
physiological stress parameters for nurse sharks (Ginglymostoma cirratum) and Caribbean reef sharks (Carcharhinus perezi). Bolded factors
denote statistical significance, where the 95% confidence interval does not include zero.

Nurse sharks Caribbean reef sharks

Response Parameter 2.5% Parameter 2.5%

(Continued)
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Table 2: continued
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Parameter %
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Parameter
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Figure 3: Relationship between exercise intensity (a) and capture duration (b) of longline-caught nurse sharks (Ginglymostoma cirratum) and
physiological status. The proportion of time sharks exhibited low-intensity exercise (Piow-intensity exercise) refers to periods of inactivity or resting.
Proportion data were log-ratio transformed for analyses and were back-transformed for presentation. Dashed lines represent 95% confidence

intervals.

capture event, with less intense activity occurring over longer
durations. Alternatively, if fight intensity is not related to
blood pH, nurse sharks could be recovering over long dura-
tions of longline capture by resting (Brooks et al., 2012;
Brownscombe et al., 2014; Gallagher et al., 2017). Gummy
sharks were documented to remain stationary for ~90% of a
longline capture event, such that blood pH (among other
metrics) was not influenced by capture duration (Guida
et al., 2016). The presence or absence of an effect of capture
duration on blood pH in two sharks that rest during capture
could be related to differences in metabolic rates; nurse
sharks are estimated to have lower metabolic rates than
gummy sharks at comparable temperatures (Skomal and
Mandelman, 2012; Morash ef al., 2016; Whitney et al.,
2016). Therefore, nurse sharks appear to be quite resilient to
stress.

The physiological status of nurse sharks was also asso-
ciated with changes in water temperatures. Nurse sharks
caught at higher water temperatures had higher blood

glucose and plasma potassium concentrations than animals
captured at lower water temperatures. Positive relationships
between SST and blood glucose have previously been
reported for Atlantic sharpnose (Rhizoprionodon terraeno-
vae), gummy and blacktip reef sharks (C. melanopterus)
(Hoffmayer et al., 2012; Guida et al., 2016; Bouyoucos
et al., 2018). Variation in water temperature ranging from
23.0 to 30.0°C has previously been demonstrated to influ-
ence metabolic rate in nurse sharks and increases in blood
glucose concentrations at higher temperatures may reflect
increased energetic demand (as an oxidative fuel source), or
increased rates of anaerobic glycolysis if an increased stand-
ard metabolic rate reduces the available aerobic scope
(Whitney et al., 2016). This study found evidence of a posi-
tive relationship between water temperatures and plasma
potassium concentrations following capture, while a negative
relationship has been reported elsewhere (Guida et al.,
2016). Contrasting trends in plasma electrolytes appear to be
common in studies of elasmobranch stress (Skomal and
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Figure 4: Relationships between sea surface temperature and physiological status of longline-caught nurse sharks (Ginglymostoma cirratum).
Glucose concentrations (a) were measured from whole blood, and potassium concentrations (b) were measured from plasma. Dashed lines

represent 95% confidence intervals.
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Figure 5: Relationships between capture duration of longline-caught Caribbean reef sharks (Carcharhinus perezi) and physiological status.
Chloride concentrations (@) were measured from plasma, and lactate concentrations (b) were measured from whole blood. Dashed lines

represent 95% confidence intervals.

Mandelman, 2012). High plasma potassium concentrations
are generally associated with muscle tetany and, eventually,
mortality in elasmobranchs (Moyes et al., 2006; Skomal and
Mandelman, 2012). Indeed, studies have reported tetany or
poor subjective condition when plasma potassium concentra-
tions exceeded the threshold for hyperkalemia (7.0 mmol 1)
in gummy (>7.0mmol 17'), sandbar (C. plumbeus;
>8.7mmol 17') and dusky sharks (C. obscurus; >9.3 mmol
I7Y) (Frick et al., 2010; Butcher et al., 2015). Sharks in our
study generally had plasma potassium concentrations below
7.0mmol 17! (mean = 5.8 + 1.4 mmol I7), and sharks with

plasma potassium concentrations eclipsing 7.0 mmol ™"
were typically caught at over 28°C. Thus, while it is possible
that nurse sharks may be more vulnerable to experiencing
hyperkalemia at higher water temperatures, this claim war-
rants additional research.

Associations between exercise intensity and physiological
status were equivocal for Caribbean reef sharks. Blood lac-
tate concentrations increased with capture duration, while
capture duration correlated negatively with plasma chloride
concentration. Average fight intensity and the frequency of
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high-intensity exercise decrease with increasing capture dur-
ation because high-intensity exercise (e.g. peak acceleration
values) typically occurs only during the first few minutes of
hook-and-line capture (Frick er al., 2010; Brownscombe
et al., 2014; Guida et al., 2016, 2017a; Gallagher ez al.,
2017). Furthermore, exhaustive chasing protocols implemen-
ted in laboratory settings to simulate fishing capture last only
several minutes and result in increasing blood lactate and
decreasing pH over several hours (Brooks er al., 2011a;
Bouyoucos et al., 2017). Together, these data suggest that
longer capture durations allow for appreciable amounts of
time for lactate to leak from the muscle into the blood,
thereby making it possible to record high lactate concentra-
tions despite sharks having low mean fight intensity values
(Brooks et al., 2011a; Hoffmayer ez al., 2015). Alternatively,
these data also suggest that continued activity over longer capture
durations supports continued lactate production as appears to be
the case for rod-and-reel capture (French et al., 2015; Whitney
et al., 2017). We could not replicate an effect of capture duration
on blood pH for Caribbean reef sharks as we accomplished for
blood lactate concentration, although this is likely the result of
low sample sizes owing to high CG4+ cartridge failure rates
(~60% failure rate) of the i-STAT system (Brooks er al., 2012;
Harter et al., 2015). Overall, Caribbean reef sharks appear to
exhibit consistent exercise intensity levels during longline capture,
and that other extrinsic factors (e.g. environmental conditions)
may be important for influencing physiological status.

In this study, Caribbean reef sharks also exhibited lower
plasma chloride concentrations as capture duration increased.
Effects of capture duration on plasma chloride concentrations
are equivocal for elasmobranchs (Skomal and Mandelman,
2012); studies have documented no variation in plasma chloride
concentrations with capture duration in bronze whaler (C. bra-
chyurus), dusky and Caribbean reef sharks (Cliff and Thurman,
1984; Brooks et al., 2012; Dapp et al., 2016a), while others
have reported negative relationships for dusky and sandbar
sharks (Butcher ez al., 2015). Decreases in plasma chloride con-
centrations with increasing capture duration could be indicative
of recovery over long capture durations (Brooks ef al., 2012).
Alternatively, changes in plasma chloride concentrations can be
explained in the context of capture duration’s inverse relationship
with fight intensity (Brownscombe et al., 2014). It is possible that
plasma chloride concentrations increased with mean fight inten-
sity because of increased anaerobic activity resulting in an
acidosis that drives chloride out of the white muscle cells and
into the plasma (Skomal and Mandelman, 2012). Additional
research is warranted into the utility of plasma electrolytes as
valuable stress markers for elasmobranchs.

Caribbean reef sharks appear to be more vulnerable to
physiological impairment from longline capture than nurse
sharks. Specifically, Caribbean reef sharks, unlike nurse
sharks, did not exhibit associations between exercise metrics
and blood pH. Sufficient declines in blood pH can ultimately
be responsible for exercise-induced mortality of fishes (Wood
et al., 1983; Skomal and Mandelman, 2012), although this

Conservation Physiology - Volume 6 2018

was not the case in our study, as we observed no at-vessel
mortalities. Contrasting exercise intensity levels appear
related to species’ general activity levels, ventilation strategies
and metabolic rates, which influence species’ physiological
status following fisheries interactions (Dapp et al., 2016b;
Gallagher et al., 2017). Caribbean reef sharks likely exhibit
metabolic rates characteristic of other sub-tropical carcharhi-
nid sharks (e.g. lemon sharks or blacktip sharks), which are
higher than for nurse sharks at comparable temperatures
(Lear et al., 2017). Caribbean reef sharks can buccal pump
like nurse sharks (observed by gangion cameras), but their
probable high metabolic rates likely require ram ventilation
for effective gas exchange during and after exercise (Brooks
et al., 2011a). It should be noted that while we suggest
Caribbean reef sharks are more vulnerable to changes in
physiological status owing to longline capture, both species
had 100% at-vessel survival and are generally considered to
be physiologically resilient to capture (Brooks ef al., 2012,
2013; Gallagher et al., 2017; Jerome et al., 2018). In add-
ition, other studies have documented very high post-release
survival estimates following longline capture for Caribbean
reef sharks (Brooks et al., 2011b; Shipley et al., 2017). We
are unaware, however, of the potential for Caribbean reef
sharks or nurse sharks to experience negative long-term sub-
lethal consequences (i.e. a tertiary stress response) from long-
line capture, and the extent to which exercise intensity could
influence outcomes.

In conclusion, our results suggest that sharks’ exercise inten-
sity during longline capture plays an influential role in affecting
physiological status upon release. However, for the two species
studied here, their apparent physiological resilience to short
durations of longline capture suggests that such activities are not
overly detrimental (i.e. no at-vessel mortality). It is possible that
the negative consequences of capture could be magnified given
the context specificity of fisheries interactions with other gear
type or configurations (e.g. hook type, gangion length) or
deployment conditions (e.g. longer set times, presence of preda-
tors, water quality) (Raby ez al., 2015). Based on our data, strat-
egies that minimize capture duration (gear that is easily
depredated by sharks) or allow for sharks to engage in low-
intensity exercise during capture may improve physiological sta-
tus upon release. As our data also demonstrate, exercise intensity
can be determined during capture as a meaningful predictor of
physiological status upon release, although future research is
warranted to establish whether exercise intensity is a useful pre-
dictor of post-release outcomes (e.g. mortality, recovery or ter-
tiary sub-lethal responses). Ultimately, studies aimed at
elasmobranch conservation will require a multi-disciplinary
approach, including the integration of exercise and behaviour
with physiology (see Cooke ez al., 2014).
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