Beyond Post-release Mortality: Inferences on Recovery Periods and Natural Mortality From Electronic Tagging Data for Discarded Lamnid Sharks

Citation
Bowlby HD, Benoît HP, Joyce W, et al (2021) Beyond Post-release Mortality: Inferences on Recovery Periods and Natural Mortality From Electronic Tagging Data for Discarded Lamnid Sharks. Front Mar Sci 8:619190. https://doi.org/10.3389/fmars.2021.619190
Abstract

Accurately characterizing the biology of a pelagic shark species is critical when assessing its status and resilience to fishing pressure. Natural mortality (M) is well known to be a key parameter determining productivity and resilience, but also one for which estimates are most uncertain. While M can be inferred from life history, validated direct estimates are extremely rare for sharks. Porbeagle (Lamna nasus) and shortfin mako (Isurus oxyrinchus) are presently overfished in the North Atlantic, but there are no directed fisheries and successful live release of bycatch is believed to have increased. Understanding M, post-release mortality (PRM), and variables that affect mortality are necessary for management and effective bycatch mitigation. From 177 deployments of archival satellite tags, we inferred mortality events, characterized physiological recovery periods following release, and applied survival mixture models to assess M and PRM. We also evaluated covariate effects on the duration of any recovery period and PRM to inform mitigation. Although large sample sizes involving extended monitoring periods (>90 days) would be optimal to directly estimate M from survival data, it was possible to constrain estimates and infer probable values for both species. Furthermore, the consistency of M estimates with values derived from longevity information suggests that age determination is relatively accurate for these species. Regarding bycatch mitigation, our analyses suggest that juvenile porbeagle are more susceptible to harm during capture and handling, that keeping lamnid sharks in the water during release is optimal, and that circle hooks are associated with longer recovery periods for shortfin mako.

Also published as IOTC-2023-WPEB19-INF10.