Acoustically monitoring the Hawai‘i longline fishery for interactions with false killer whales

Citation
Bayless AR, Oleson EM, Baumann-Pickering S, et al (2017) Acoustically monitoring the Hawai‘i longline fishery for interactions with false killer whales. Fisheries Research 190:122–131. https://doi.org/10.1016/j.fishres.2017.02.006
Abstract

False killer whales (Pseudorca crassidens) feed primarily on several species of large pelagic fish, species that are also targeted by the Hawai‘i-permitted commercial deep-set longline fishery. False killer whales have been known to approach fishing lines in an attempt to procure bait or catch from the lines, a behavior known as depredation. This behavior can lead to the hooking or entanglement of an animal, which currently exceeds sustainable levels for pelagic false killer whales in Hawai‘i. Passive acoustic monitoring (PAM) was used to record false killer whales near longline fishing gear to investigate the timing, rate, and spatial extent of false killer whale occurrence. Acoustic data were collected using small autonomous recorders modified for deployment on the mainline of longline fishing gear. A total of 90 fishing sets were acoustically monitored in 2013 and 2014 on a chartered longline vessel using up to five acoustic recorders deployed throughout the fishing gear. Of the 102 odontocete click and/or whistle bouts detected on 55 sets, 26 bouts detected on 19 different fishing sets were classified as false killer whales with high or medium confidence based on either whistle classification, click classification, or both. The timing of false killer whale acoustic presence near the gear was related to the timing of fishing activities, with 57% of the false killer whale bouts occurring while gear was being hauled, with 50% of those bouts occurring during the first third of the haul. During three fishing sets, false killer whales were detected on more than one recorder, and in all cases the whales were recorded on instruments farther from the fishing vessel as the haul proceeded. Only three of the 19 sets with acoustically-confirmed false killer whale presence showed signs of bait or catch damage by marine mammals, which may relate to the difficulty of reporting depredation. PAM has proven to be a relatively inexpensive and efficient method for monitoring the Hawai‘i longline fishery for interactions with false killer whales.