A systematic review of sensory deterrents for bycatch mitigation of marine megafauna

Citation
Lucas S, Berggren P (2022) A systematic review of sensory deterrents for bycatch mitigation of marine megafauna. Rev Fish Biol Fisheries 33:1–33. https://doi.org/10.1007/s11160-022-09736-5
Abstract

Marine megafauna are critical for marine ecosystem health and their removal can cause food webs to collapse. Methods to reduce marine megafauna mortality can result in conflict between scientists, conservationists, fishers and fisheries management due to real or perceived effects on target catch, income and food security. Sensory deterrents have been used in attempts to mitigate bycatch and retain target catch quantity and quality. Here, we completed a systematic review of 116 papers, plus 25 literature reviews published between 1991 and 2022, to investigate potential for sensory deterrents to mitigate bycatch across four marine megafauna taxonomic groups (marine mammals, sea turtles, seabirds and elasmobranchs). Lights on gillnets are the only technology so far to result in significant bycatch reductions across all four taxonomic groups. It is difficult to make generalisations about the efficacy of sensory deterrents and their ability to deliver consistent bycatch reductions. The efficacy of each method is context dependent, varying with species, fishery and environmental characteristics. Further research is recommended for field studies assessing bycatch mitigation in all sensory deterrents, including combinations of deterrents, to assess effects on target and non-target species. The associated issues of habituation, habitat exclusion and foraging around fishing gear are important, although reducing mortality of vulnerable species should remain the highest priority for conservation and preserving ecosystems that fishers depend on. Multiple complementary measures will be required to achieve consistent bycatch reduction targets in many fisheries, of which sensory deterrents could play some part if implemented appropriately.

Also published as IOTC-2023-WPEB19-INF17.